mm: introduce do_shared_fault() and drop do_fault()

Introduce do_shared_fault().  The function does what do_fault() does for
write faults to shared mappings

Unlike do_fault(), do_shared_fault() is relatively clean and
straight-forward.

Old do_fault() is not needed anymore.  Let it die.

[lliubbo@gmail.com: fix NULL pointer dereference]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Kirill A. Shutemov 2014-04-03 14:48:13 -07:00 коммит произвёл Linus Torvalds
Родитель ec47c3b954
Коммит f0c6d4d295
1 изменённых файлов: 64 добавлений и 166 удалений

Просмотреть файл

@ -2748,7 +2748,7 @@ reuse:
* bit after it clear all dirty ptes, but before a racing * bit after it clear all dirty ptes, but before a racing
* do_wp_page installs a dirty pte. * do_wp_page installs a dirty pte.
* *
* do_fault is protected similarly. * do_shared_fault is protected similarly.
*/ */
if (!page_mkwrite) { if (!page_mkwrite) {
wait_on_page_locked(dirty_page); wait_on_page_locked(dirty_page);
@ -3410,188 +3410,86 @@ uncharge_out:
return ret; return ret;
} }
/* static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* do_fault() tries to create a new page mapping. It aggressively
* tries to share with existing pages, but makes a separate copy if
* the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
* the next page fault.
*
* As this is called only for pages that do not currently exist, we
* do not need to flush old virtual caches or the TLB.
*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte neither mapped nor locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned long address, pmd_t *pmd,
pgoff_t pgoff, unsigned int flags, pte_t orig_pte) pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{ {
pte_t *page_table; struct page *fault_page;
struct address_space *mapping;
spinlock_t *ptl; spinlock_t *ptl;
struct page *page, *fault_page; pte_t entry, *pte;
struct page *cow_page; int dirtied = 0;
pte_t entry; struct vm_fault vmf;
int anon = 0; int ret, tmp;
struct page *dirty_page = NULL;
int ret;
int page_mkwrite = 0;
/*
* If we do COW later, allocate page befor taking lock_page()
* on the file cache page. This will reduce lock holding time.
*/
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
if (!cow_page)
return VM_FAULT_OOM;
if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
page_cache_release(cow_page);
return VM_FAULT_OOM;
}
} else
cow_page = NULL;
ret = __do_fault(vma, address, pgoff, flags, &fault_page); ret = __do_fault(vma, address, pgoff, flags, &fault_page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
goto uncharge_out; return ret;
/* /*
* Should we do an early C-O-W break? * Check if the backing address space wants to know that the page is
* about to become writable
*/ */
page = fault_page; if (!vma->vm_ops->page_mkwrite)
if (flags & FAULT_FLAG_WRITE) { goto set_pte;
if (!(vma->vm_flags & VM_SHARED)) {
page = cow_page;
anon = 1;
copy_user_highpage(page, fault_page, address, vma);
__SetPageUptodate(page);
} else {
/*
* If the page will be shareable, see if the backing
* address space wants to know that the page is about
* to become writable
*/
if (vma->vm_ops->page_mkwrite) {
struct vm_fault vmf;
int tmp;
vmf.virtual_address = unlock_page(fault_page);
(void __user *)(address & PAGE_MASK); vmf.virtual_address = (void __user *)(address & PAGE_MASK);
vmf.pgoff = pgoff; vmf.pgoff = pgoff;
vmf.flags = flags; vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
vmf.page = fault_page; vmf.page = fault_page;
unlock_page(page);
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(tmp &
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
ret = tmp;
goto unwritable_page;
}
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
lock_page(page);
if (!page->mapping) {
ret = 0; /* retry the fault */
unlock_page(page);
goto unwritable_page;
}
} else
VM_BUG_ON_PAGE(!PageLocked(page), page);
page_mkwrite = 1;
}
}
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
page_cache_release(fault_page);
return tmp;
} }
page_table = pte_offset_map_lock(mm, pmd, address, &ptl); if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
lock_page(fault_page);
/* if (!fault_page->mapping) {
* This silly early PAGE_DIRTY setting removes a race unlock_page(fault_page);
* due to the bad i386 page protection. But it's valid
* for other architectures too.
*
* Note that if FAULT_FLAG_WRITE is set, we either now have
* an exclusive copy of the page, or this is a shared mapping,
* so we can make it writable and dirty to avoid having to
* handle that later.
*/
/* Only go through if we didn't race with anybody else... */
if (likely(pte_same(*page_table, orig_pte))) {
flush_icache_page(vma, page);
entry = mk_pte(page, vma->vm_page_prot);
if (flags & FAULT_FLAG_WRITE)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
pte_mksoft_dirty(entry);
if (anon) {
inc_mm_counter_fast(mm, MM_ANONPAGES);
page_add_new_anon_rmap(page, vma, address);
} else {
inc_mm_counter_fast(mm, MM_FILEPAGES);
page_add_file_rmap(page);
if (flags & FAULT_FLAG_WRITE) {
dirty_page = page;
get_page(dirty_page);
}
}
set_pte_at(mm, address, page_table, entry);
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, address, page_table);
} else {
if (cow_page)
mem_cgroup_uncharge_page(cow_page);
if (anon)
page_cache_release(page);
else
anon = 1; /* no anon but release faulted_page */
}
pte_unmap_unlock(page_table, ptl);
if (dirty_page) {
struct address_space *mapping = page->mapping;
int dirtied = 0;
if (set_page_dirty(dirty_page))
dirtied = 1;
unlock_page(dirty_page);
put_page(dirty_page);
if ((dirtied || page_mkwrite) && mapping) {
/*
* Some device drivers do not set page.mapping but still
* dirty their pages
*/
balance_dirty_pages_ratelimited(mapping);
}
/* file_update_time outside page_lock */
if (vma->vm_file && !page_mkwrite)
file_update_time(vma->vm_file);
} else {
unlock_page(fault_page);
if (anon)
page_cache_release(fault_page); page_cache_release(fault_page);
return 0; /* retry */
}
} else
VM_BUG_ON_PAGE(!PageLocked(fault_page), fault_page);
set_pte:
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
if (unlikely(!pte_same(*pte, orig_pte))) {
pte_unmap_unlock(pte, ptl);
unlock_page(fault_page);
page_cache_release(fault_page);
return ret;
} }
return ret; flush_icache_page(vma, fault_page);
entry = mk_pte(fault_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
inc_mm_counter_fast(mm, MM_FILEPAGES);
page_add_file_rmap(fault_page);
set_pte_at(mm, address, pte, entry);
unwritable_page: /* no need to invalidate: a not-present page won't be cached */
page_cache_release(page); update_mmu_cache(vma, address, pte);
return ret; pte_unmap_unlock(pte, ptl);
uncharge_out:
/* fs's fault handler get error */ if (set_page_dirty(fault_page))
if (cow_page) { dirtied = 1;
mem_cgroup_uncharge_page(cow_page); mapping = fault_page->mapping;
page_cache_release(cow_page); unlock_page(fault_page);
if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
/*
* Some device drivers do not set page.mapping but still
* dirty their pages
*/
balance_dirty_pages_ratelimited(mapping);
} }
/* file_update_time outside page_lock */
if (vma->vm_file && !vma->vm_ops->page_mkwrite)
file_update_time(vma->vm_file);
return ret; return ret;
} }
@ -3609,7 +3507,7 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (!(vma->vm_flags & VM_SHARED)) if (!(vma->vm_flags & VM_SHARED))
return do_cow_fault(mm, vma, address, pmd, pgoff, flags, return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
orig_pte); orig_pte);
return do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
} }
/* /*
@ -3647,7 +3545,7 @@ static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (!(vma->vm_flags & VM_SHARED)) if (!(vma->vm_flags & VM_SHARED))
return do_cow_fault(mm, vma, address, pmd, pgoff, flags, return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
orig_pte); orig_pte);
return do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
} }
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,