genirq/affinity: Move group_cpus_evenly() into lib/
group_cpus_evenly() has become a generic function which can be used for other subsystems than the interrupt subsystem, so move it into lib/. Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jens Axboe <axboe@kernel.dk> Link: https://lore.kernel.org/r/20221227022905.352674-6-ming.lei@redhat.com
This commit is contained in:
Родитель
523f1ea76a
Коммит
f7b3ea8cf7
|
@ -10935,6 +10935,8 @@ L: linux-kernel@vger.kernel.org
|
|||
S: Maintained
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git irq/core
|
||||
F: kernel/irq/
|
||||
F: include/linux/group_cpus.h
|
||||
F: lib/group_cpus.c
|
||||
|
||||
IRQCHIP DRIVERS
|
||||
M: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2016 Thomas Gleixner.
|
||||
* Copyright (C) 2016-2017 Christoph Hellwig.
|
||||
*/
|
||||
|
||||
#ifndef __LINUX_GROUP_CPUS_H
|
||||
#define __LINUX_GROUP_CPUS_H
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/cpu.h>
|
||||
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps);
|
||||
|
||||
#endif
|
|
@ -7,403 +7,7 @@
|
|||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/sort.h>
|
||||
|
||||
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
||||
unsigned int cpus_per_grp)
|
||||
{
|
||||
const struct cpumask *siblmsk;
|
||||
int cpu, sibl;
|
||||
|
||||
for ( ; cpus_per_grp > 0; ) {
|
||||
cpu = cpumask_first(nmsk);
|
||||
|
||||
/* Should not happen, but I'm too lazy to think about it */
|
||||
if (cpu >= nr_cpu_ids)
|
||||
return;
|
||||
|
||||
cpumask_clear_cpu(cpu, nmsk);
|
||||
cpumask_set_cpu(cpu, irqmsk);
|
||||
cpus_per_grp--;
|
||||
|
||||
/* If the cpu has siblings, use them first */
|
||||
siblmsk = topology_sibling_cpumask(cpu);
|
||||
for (sibl = -1; cpus_per_grp > 0; ) {
|
||||
sibl = cpumask_next(sibl, siblmsk);
|
||||
if (sibl >= nr_cpu_ids)
|
||||
break;
|
||||
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
||||
continue;
|
||||
cpumask_set_cpu(sibl, irqmsk);
|
||||
cpus_per_grp--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static cpumask_var_t *alloc_node_to_cpumask(void)
|
||||
{
|
||||
cpumask_var_t *masks;
|
||||
int node;
|
||||
|
||||
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++) {
|
||||
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
||||
goto out_unwind;
|
||||
}
|
||||
|
||||
return masks;
|
||||
|
||||
out_unwind:
|
||||
while (--node >= 0)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void free_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int node;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
}
|
||||
|
||||
static void build_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
||||
}
|
||||
|
||||
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *mask, nodemask_t *nodemsk)
|
||||
{
|
||||
int n, nodes = 0;
|
||||
|
||||
/* Calculate the number of nodes in the supplied affinity mask */
|
||||
for_each_node(n) {
|
||||
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
||||
node_set(n, *nodemsk);
|
||||
nodes++;
|
||||
}
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
|
||||
struct node_groups {
|
||||
unsigned id;
|
||||
|
||||
union {
|
||||
unsigned ngroups;
|
||||
unsigned ncpus;
|
||||
};
|
||||
};
|
||||
|
||||
static int ncpus_cmp_func(const void *l, const void *r)
|
||||
{
|
||||
const struct node_groups *ln = l;
|
||||
const struct node_groups *rn = r;
|
||||
|
||||
return ln->ncpus - rn->ncpus;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate group number for each node, so that for each node:
|
||||
*
|
||||
* 1) the allocated number is >= 1
|
||||
*
|
||||
* 2) the allocated number is <= active CPU number of this node
|
||||
*
|
||||
* The actual allocated total groups may be less than @numgrps when
|
||||
* active total CPU number is less than @numgrps.
|
||||
*
|
||||
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
||||
* for each node.
|
||||
*/
|
||||
static void alloc_nodes_groups(unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
const nodemask_t nodemsk,
|
||||
struct cpumask *nmsk,
|
||||
struct node_groups *node_groups)
|
||||
{
|
||||
unsigned n, remaining_ncpus = 0;
|
||||
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
node_groups[n].id = n;
|
||||
node_groups[n].ncpus = UINT_MAX;
|
||||
}
|
||||
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
unsigned ncpus;
|
||||
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
|
||||
if (!ncpus)
|
||||
continue;
|
||||
remaining_ncpus += ncpus;
|
||||
node_groups[n].ncpus = ncpus;
|
||||
}
|
||||
|
||||
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
|
||||
|
||||
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
|
||||
ncpus_cmp_func, NULL);
|
||||
|
||||
/*
|
||||
* Allocate groups for each node according to the ratio of this
|
||||
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
|
||||
* bigger than number of active numa nodes. Always start the
|
||||
* allocation from the node with minimized nr_cpus.
|
||||
*
|
||||
* This way guarantees that each active node gets allocated at
|
||||
* least one group, and the theory is simple: over-allocation
|
||||
* is only done when this node is assigned by one group, so
|
||||
* other nodes will be allocated >= 1 groups, since 'numgrps' is
|
||||
* bigger than number of numa nodes.
|
||||
*
|
||||
* One perfect invariant is that number of allocated groups for
|
||||
* each node is <= CPU count of this node:
|
||||
*
|
||||
* 1) suppose there are two nodes: A and B
|
||||
* ncpu(X) is CPU count of node X
|
||||
* grps(X) is the group count allocated to node X via this
|
||||
* algorithm
|
||||
*
|
||||
* ncpu(A) <= ncpu(B)
|
||||
* ncpu(A) + ncpu(B) = N
|
||||
* grps(A) + grps(B) = G
|
||||
*
|
||||
* grps(A) = max(1, round_down(G * ncpu(A) / N))
|
||||
* grps(B) = G - grps(A)
|
||||
*
|
||||
* both N and G are integer, and 2 <= G <= N, suppose
|
||||
* G = N - delta, and 0 <= delta <= N - 2
|
||||
*
|
||||
* 2) obviously grps(A) <= ncpu(A) because:
|
||||
*
|
||||
* if grps(A) is 1, then grps(A) <= ncpu(A) given
|
||||
* ncpu(A) >= 1
|
||||
*
|
||||
* otherwise,
|
||||
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
|
||||
*
|
||||
* 3) prove how grps(B) <= ncpu(B):
|
||||
*
|
||||
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
|
||||
* over-allocated, so grps(B) <= ncpu(B),
|
||||
*
|
||||
* otherwise:
|
||||
*
|
||||
* grps(A) =
|
||||
* round_down(G * ncpu(A) / N) =
|
||||
* round_down((N - delta) * ncpu(A) / N) =
|
||||
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
||||
* round_down((N * ncpu(A) - delta * N) / N) =
|
||||
* cpu(A) - delta
|
||||
*
|
||||
* then:
|
||||
*
|
||||
* grps(A) - G >= ncpu(A) - delta - G
|
||||
* =>
|
||||
* G - grps(A) <= G + delta - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= N - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= cpu(B)
|
||||
*
|
||||
* For nodes >= 3, it can be thought as one node and another big
|
||||
* node given that is exactly what this algorithm is implemented,
|
||||
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
|
||||
* finally for each node X: grps(X) <= ncpu(X).
|
||||
*
|
||||
*/
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
unsigned ngroups, ncpus;
|
||||
|
||||
if (node_groups[n].ncpus == UINT_MAX)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(numgrps == 0);
|
||||
|
||||
ncpus = node_groups[n].ncpus;
|
||||
ngroups = max_t(unsigned, 1,
|
||||
numgrps * ncpus / remaining_ncpus);
|
||||
WARN_ON_ONCE(ngroups > ncpus);
|
||||
|
||||
node_groups[n].ngroups = ngroups;
|
||||
|
||||
remaining_ncpus -= ncpus;
|
||||
numgrps -= ngroups;
|
||||
}
|
||||
}
|
||||
|
||||
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
struct cpumask *nmsk, struct cpumask *masks)
|
||||
{
|
||||
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
|
||||
unsigned int last_grp = numgrps;
|
||||
unsigned int curgrp = startgrp;
|
||||
nodemask_t nodemsk = NODE_MASK_NONE;
|
||||
struct node_groups *node_groups;
|
||||
|
||||
if (cpumask_empty(cpu_mask))
|
||||
return 0;
|
||||
|
||||
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
||||
|
||||
/*
|
||||
* If the number of nodes in the mask is greater than or equal the
|
||||
* number of groups we just spread the groups across the nodes.
|
||||
*/
|
||||
if (numgrps <= nodes) {
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
/* Ensure that only CPUs which are in both masks are set */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
|
||||
if (++curgrp == last_grp)
|
||||
curgrp = 0;
|
||||
}
|
||||
return numgrps;
|
||||
}
|
||||
|
||||
node_groups = kcalloc(nr_node_ids,
|
||||
sizeof(struct node_groups),
|
||||
GFP_KERNEL);
|
||||
if (!node_groups)
|
||||
return -ENOMEM;
|
||||
|
||||
/* allocate group number for each node */
|
||||
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
|
||||
nodemsk, nmsk, node_groups);
|
||||
for (i = 0; i < nr_node_ids; i++) {
|
||||
unsigned int ncpus, v;
|
||||
struct node_groups *nv = &node_groups[i];
|
||||
|
||||
if (nv->ngroups == UINT_MAX)
|
||||
continue;
|
||||
|
||||
/* Get the cpus on this node which are in the mask */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
if (!ncpus)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(nv->ngroups > ncpus);
|
||||
|
||||
/* Account for rounding errors */
|
||||
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
|
||||
|
||||
/* Spread allocated groups on CPUs of the current node */
|
||||
for (v = 0; v < nv->ngroups; v++, curgrp++) {
|
||||
cpus_per_grp = ncpus / nv->ngroups;
|
||||
|
||||
/* Account for extra groups to compensate rounding errors */
|
||||
if (extra_grps) {
|
||||
cpus_per_grp++;
|
||||
--extra_grps;
|
||||
}
|
||||
|
||||
/*
|
||||
* wrapping has to be considered given 'startgrp'
|
||||
* may start anywhere
|
||||
*/
|
||||
if (curgrp >= last_grp)
|
||||
curgrp = 0;
|
||||
grp_spread_init_one(&masks[curgrp], nmsk,
|
||||
cpus_per_grp);
|
||||
}
|
||||
done += nv->ngroups;
|
||||
}
|
||||
kfree(node_groups);
|
||||
return done;
|
||||
}
|
||||
|
||||
/*
|
||||
* build affinity in two stages for each group, and try to put close CPUs
|
||||
* in viewpoint of CPU and NUMA locality into same group, and we run
|
||||
* two-stage grouping:
|
||||
*
|
||||
* 1) allocate present CPUs on these groups evenly first
|
||||
* 2) allocate other possible CPUs on these groups evenly
|
||||
*/
|
||||
static struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
||||
{
|
||||
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
|
||||
cpumask_var_t *node_to_cpumask;
|
||||
cpumask_var_t nmsk, npresmsk;
|
||||
int ret = -ENOMEM;
|
||||
struct cpumask *masks = NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
||||
return NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
||||
goto fail_nmsk;
|
||||
|
||||
node_to_cpumask = alloc_node_to_cpumask();
|
||||
if (!node_to_cpumask)
|
||||
goto fail_npresmsk;
|
||||
|
||||
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
||||
if (!masks)
|
||||
goto fail_node_to_cpumask;
|
||||
|
||||
/* Stabilize the cpumasks */
|
||||
cpus_read_lock();
|
||||
build_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
/* grouping present CPUs first */
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
cpu_present_mask, nmsk, masks);
|
||||
if (ret < 0)
|
||||
goto fail_build_affinity;
|
||||
nr_present = ret;
|
||||
|
||||
/*
|
||||
* Allocate non present CPUs starting from the next group to be
|
||||
* handled. If the grouping of present CPUs already exhausted the
|
||||
* group space, assign the non present CPUs to the already
|
||||
* allocated out groups.
|
||||
*/
|
||||
if (nr_present >= numgrps)
|
||||
curgrp = 0;
|
||||
else
|
||||
curgrp = nr_present;
|
||||
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
npresmsk, nmsk, masks);
|
||||
if (ret >= 0)
|
||||
nr_others = ret;
|
||||
|
||||
fail_build_affinity:
|
||||
cpus_read_unlock();
|
||||
|
||||
if (ret >= 0)
|
||||
WARN_ON(nr_present + nr_others < numgrps);
|
||||
|
||||
fail_node_to_cpumask:
|
||||
free_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
fail_npresmsk:
|
||||
free_cpumask_var(npresmsk);
|
||||
|
||||
fail_nmsk:
|
||||
free_cpumask_var(nmsk);
|
||||
if (ret < 0) {
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
return masks;
|
||||
}
|
||||
#include <linux/group_cpus.h>
|
||||
|
||||
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
|
||||
{
|
||||
|
|
|
@ -353,6 +353,8 @@ obj-$(CONFIG_SBITMAP) += sbitmap.o
|
|||
|
||||
obj-$(CONFIG_PARMAN) += parman.o
|
||||
|
||||
obj-y += group_cpus.o
|
||||
|
||||
# GCC library routines
|
||||
obj-$(CONFIG_GENERIC_LIB_ASHLDI3) += ashldi3.o
|
||||
obj-$(CONFIG_GENERIC_LIB_ASHRDI3) += ashrdi3.o
|
||||
|
|
|
@ -0,0 +1,427 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2016 Thomas Gleixner.
|
||||
* Copyright (C) 2016-2017 Christoph Hellwig.
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/sort.h>
|
||||
#include <linux/group_cpus.h>
|
||||
|
||||
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
||||
unsigned int cpus_per_grp)
|
||||
{
|
||||
const struct cpumask *siblmsk;
|
||||
int cpu, sibl;
|
||||
|
||||
for ( ; cpus_per_grp > 0; ) {
|
||||
cpu = cpumask_first(nmsk);
|
||||
|
||||
/* Should not happen, but I'm too lazy to think about it */
|
||||
if (cpu >= nr_cpu_ids)
|
||||
return;
|
||||
|
||||
cpumask_clear_cpu(cpu, nmsk);
|
||||
cpumask_set_cpu(cpu, irqmsk);
|
||||
cpus_per_grp--;
|
||||
|
||||
/* If the cpu has siblings, use them first */
|
||||
siblmsk = topology_sibling_cpumask(cpu);
|
||||
for (sibl = -1; cpus_per_grp > 0; ) {
|
||||
sibl = cpumask_next(sibl, siblmsk);
|
||||
if (sibl >= nr_cpu_ids)
|
||||
break;
|
||||
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
||||
continue;
|
||||
cpumask_set_cpu(sibl, irqmsk);
|
||||
cpus_per_grp--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static cpumask_var_t *alloc_node_to_cpumask(void)
|
||||
{
|
||||
cpumask_var_t *masks;
|
||||
int node;
|
||||
|
||||
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++) {
|
||||
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
||||
goto out_unwind;
|
||||
}
|
||||
|
||||
return masks;
|
||||
|
||||
out_unwind:
|
||||
while (--node >= 0)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void free_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int node;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
}
|
||||
|
||||
static void build_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
||||
}
|
||||
|
||||
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *mask, nodemask_t *nodemsk)
|
||||
{
|
||||
int n, nodes = 0;
|
||||
|
||||
/* Calculate the number of nodes in the supplied affinity mask */
|
||||
for_each_node(n) {
|
||||
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
||||
node_set(n, *nodemsk);
|
||||
nodes++;
|
||||
}
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
|
||||
struct node_groups {
|
||||
unsigned id;
|
||||
|
||||
union {
|
||||
unsigned ngroups;
|
||||
unsigned ncpus;
|
||||
};
|
||||
};
|
||||
|
||||
static int ncpus_cmp_func(const void *l, const void *r)
|
||||
{
|
||||
const struct node_groups *ln = l;
|
||||
const struct node_groups *rn = r;
|
||||
|
||||
return ln->ncpus - rn->ncpus;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate group number for each node, so that for each node:
|
||||
*
|
||||
* 1) the allocated number is >= 1
|
||||
*
|
||||
* 2) the allocated number is <= active CPU number of this node
|
||||
*
|
||||
* The actual allocated total groups may be less than @numgrps when
|
||||
* active total CPU number is less than @numgrps.
|
||||
*
|
||||
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
||||
* for each node.
|
||||
*/
|
||||
static void alloc_nodes_groups(unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
const nodemask_t nodemsk,
|
||||
struct cpumask *nmsk,
|
||||
struct node_groups *node_groups)
|
||||
{
|
||||
unsigned n, remaining_ncpus = 0;
|
||||
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
node_groups[n].id = n;
|
||||
node_groups[n].ncpus = UINT_MAX;
|
||||
}
|
||||
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
unsigned ncpus;
|
||||
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
|
||||
if (!ncpus)
|
||||
continue;
|
||||
remaining_ncpus += ncpus;
|
||||
node_groups[n].ncpus = ncpus;
|
||||
}
|
||||
|
||||
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
|
||||
|
||||
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
|
||||
ncpus_cmp_func, NULL);
|
||||
|
||||
/*
|
||||
* Allocate groups for each node according to the ratio of this
|
||||
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
|
||||
* bigger than number of active numa nodes. Always start the
|
||||
* allocation from the node with minimized nr_cpus.
|
||||
*
|
||||
* This way guarantees that each active node gets allocated at
|
||||
* least one group, and the theory is simple: over-allocation
|
||||
* is only done when this node is assigned by one group, so
|
||||
* other nodes will be allocated >= 1 groups, since 'numgrps' is
|
||||
* bigger than number of numa nodes.
|
||||
*
|
||||
* One perfect invariant is that number of allocated groups for
|
||||
* each node is <= CPU count of this node:
|
||||
*
|
||||
* 1) suppose there are two nodes: A and B
|
||||
* ncpu(X) is CPU count of node X
|
||||
* grps(X) is the group count allocated to node X via this
|
||||
* algorithm
|
||||
*
|
||||
* ncpu(A) <= ncpu(B)
|
||||
* ncpu(A) + ncpu(B) = N
|
||||
* grps(A) + grps(B) = G
|
||||
*
|
||||
* grps(A) = max(1, round_down(G * ncpu(A) / N))
|
||||
* grps(B) = G - grps(A)
|
||||
*
|
||||
* both N and G are integer, and 2 <= G <= N, suppose
|
||||
* G = N - delta, and 0 <= delta <= N - 2
|
||||
*
|
||||
* 2) obviously grps(A) <= ncpu(A) because:
|
||||
*
|
||||
* if grps(A) is 1, then grps(A) <= ncpu(A) given
|
||||
* ncpu(A) >= 1
|
||||
*
|
||||
* otherwise,
|
||||
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
|
||||
*
|
||||
* 3) prove how grps(B) <= ncpu(B):
|
||||
*
|
||||
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
|
||||
* over-allocated, so grps(B) <= ncpu(B),
|
||||
*
|
||||
* otherwise:
|
||||
*
|
||||
* grps(A) =
|
||||
* round_down(G * ncpu(A) / N) =
|
||||
* round_down((N - delta) * ncpu(A) / N) =
|
||||
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
||||
* round_down((N * ncpu(A) - delta * N) / N) =
|
||||
* cpu(A) - delta
|
||||
*
|
||||
* then:
|
||||
*
|
||||
* grps(A) - G >= ncpu(A) - delta - G
|
||||
* =>
|
||||
* G - grps(A) <= G + delta - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= N - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= cpu(B)
|
||||
*
|
||||
* For nodes >= 3, it can be thought as one node and another big
|
||||
* node given that is exactly what this algorithm is implemented,
|
||||
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
|
||||
* finally for each node X: grps(X) <= ncpu(X).
|
||||
*
|
||||
*/
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
unsigned ngroups, ncpus;
|
||||
|
||||
if (node_groups[n].ncpus == UINT_MAX)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(numgrps == 0);
|
||||
|
||||
ncpus = node_groups[n].ncpus;
|
||||
ngroups = max_t(unsigned, 1,
|
||||
numgrps * ncpus / remaining_ncpus);
|
||||
WARN_ON_ONCE(ngroups > ncpus);
|
||||
|
||||
node_groups[n].ngroups = ngroups;
|
||||
|
||||
remaining_ncpus -= ncpus;
|
||||
numgrps -= ngroups;
|
||||
}
|
||||
}
|
||||
|
||||
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
struct cpumask *nmsk, struct cpumask *masks)
|
||||
{
|
||||
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
|
||||
unsigned int last_grp = numgrps;
|
||||
unsigned int curgrp = startgrp;
|
||||
nodemask_t nodemsk = NODE_MASK_NONE;
|
||||
struct node_groups *node_groups;
|
||||
|
||||
if (cpumask_empty(cpu_mask))
|
||||
return 0;
|
||||
|
||||
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
||||
|
||||
/*
|
||||
* If the number of nodes in the mask is greater than or equal the
|
||||
* number of groups we just spread the groups across the nodes.
|
||||
*/
|
||||
if (numgrps <= nodes) {
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
/* Ensure that only CPUs which are in both masks are set */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
|
||||
if (++curgrp == last_grp)
|
||||
curgrp = 0;
|
||||
}
|
||||
return numgrps;
|
||||
}
|
||||
|
||||
node_groups = kcalloc(nr_node_ids,
|
||||
sizeof(struct node_groups),
|
||||
GFP_KERNEL);
|
||||
if (!node_groups)
|
||||
return -ENOMEM;
|
||||
|
||||
/* allocate group number for each node */
|
||||
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
|
||||
nodemsk, nmsk, node_groups);
|
||||
for (i = 0; i < nr_node_ids; i++) {
|
||||
unsigned int ncpus, v;
|
||||
struct node_groups *nv = &node_groups[i];
|
||||
|
||||
if (nv->ngroups == UINT_MAX)
|
||||
continue;
|
||||
|
||||
/* Get the cpus on this node which are in the mask */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
if (!ncpus)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(nv->ngroups > ncpus);
|
||||
|
||||
/* Account for rounding errors */
|
||||
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
|
||||
|
||||
/* Spread allocated groups on CPUs of the current node */
|
||||
for (v = 0; v < nv->ngroups; v++, curgrp++) {
|
||||
cpus_per_grp = ncpus / nv->ngroups;
|
||||
|
||||
/* Account for extra groups to compensate rounding errors */
|
||||
if (extra_grps) {
|
||||
cpus_per_grp++;
|
||||
--extra_grps;
|
||||
}
|
||||
|
||||
/*
|
||||
* wrapping has to be considered given 'startgrp'
|
||||
* may start anywhere
|
||||
*/
|
||||
if (curgrp >= last_grp)
|
||||
curgrp = 0;
|
||||
grp_spread_init_one(&masks[curgrp], nmsk,
|
||||
cpus_per_grp);
|
||||
}
|
||||
done += nv->ngroups;
|
||||
}
|
||||
kfree(node_groups);
|
||||
return done;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/**
|
||||
* group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
|
||||
* @numgrps: number of groups
|
||||
*
|
||||
* Return: cpumask array if successful, NULL otherwise. And each element
|
||||
* includes CPUs assigned to this group
|
||||
*
|
||||
* Try to put close CPUs from viewpoint of CPU and NUMA locality into
|
||||
* same group, and run two-stage grouping:
|
||||
* 1) allocate present CPUs on these groups evenly first
|
||||
* 2) allocate other possible CPUs on these groups evenly
|
||||
*
|
||||
* We guarantee in the resulted grouping that all CPUs are covered, and
|
||||
* no same CPU is assigned to multiple groups
|
||||
*/
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
||||
{
|
||||
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
|
||||
cpumask_var_t *node_to_cpumask;
|
||||
cpumask_var_t nmsk, npresmsk;
|
||||
int ret = -ENOMEM;
|
||||
struct cpumask *masks = NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
||||
return NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
||||
goto fail_nmsk;
|
||||
|
||||
node_to_cpumask = alloc_node_to_cpumask();
|
||||
if (!node_to_cpumask)
|
||||
goto fail_npresmsk;
|
||||
|
||||
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
||||
if (!masks)
|
||||
goto fail_node_to_cpumask;
|
||||
|
||||
/* Stabilize the cpumasks */
|
||||
cpus_read_lock();
|
||||
build_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
/* grouping present CPUs first */
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
cpu_present_mask, nmsk, masks);
|
||||
if (ret < 0)
|
||||
goto fail_build_affinity;
|
||||
nr_present = ret;
|
||||
|
||||
/*
|
||||
* Allocate non present CPUs starting from the next group to be
|
||||
* handled. If the grouping of present CPUs already exhausted the
|
||||
* group space, assign the non present CPUs to the already
|
||||
* allocated out groups.
|
||||
*/
|
||||
if (nr_present >= numgrps)
|
||||
curgrp = 0;
|
||||
else
|
||||
curgrp = nr_present;
|
||||
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
npresmsk, nmsk, masks);
|
||||
if (ret >= 0)
|
||||
nr_others = ret;
|
||||
|
||||
fail_build_affinity:
|
||||
cpus_read_unlock();
|
||||
|
||||
if (ret >= 0)
|
||||
WARN_ON(nr_present + nr_others < numgrps);
|
||||
|
||||
fail_node_to_cpumask:
|
||||
free_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
fail_npresmsk:
|
||||
free_cpumask_var(npresmsk);
|
||||
|
||||
fail_nmsk:
|
||||
free_cpumask_var(nmsk);
|
||||
if (ret < 0) {
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
return masks;
|
||||
}
|
||||
#else
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
||||
{
|
||||
struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
||||
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
/* assign all CPUs(cpu 0) to the 1st group only */
|
||||
cpumask_copy(&masks[0], cpu_possible_mask);
|
||||
return masks;
|
||||
}
|
||||
#endif
|
Загрузка…
Ссылка в новой задаче