cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()
Implement cpuset_for_each_descendant_pre() and replace the cpuset-specific tree walking using cpuset->stack_list with it. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Li Zefan <lizefan@huawei.com>
This commit is contained in:
Родитель
5d21cc2db0
Коммит
fc560a26ac
123
kernel/cpuset.c
123
kernel/cpuset.c
|
@ -103,9 +103,6 @@ struct cpuset {
|
|||
/* for custom sched domain */
|
||||
int relax_domain_level;
|
||||
|
||||
/* used for walking a cpuset hierarchy */
|
||||
struct list_head stack_list;
|
||||
|
||||
struct work_struct hotplug_work;
|
||||
};
|
||||
|
||||
|
@ -207,6 +204,20 @@ static struct cpuset top_cpuset = {
|
|||
cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
|
||||
if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
|
||||
|
||||
/**
|
||||
* cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
|
||||
* @des_cs: loop cursor pointing to the current descendant
|
||||
* @pos_cgrp: used for iteration
|
||||
* @root_cs: target cpuset to walk ancestor of
|
||||
*
|
||||
* Walk @des_cs through the online descendants of @root_cs. Must be used
|
||||
* with RCU read locked. The caller may modify @pos_cgrp by calling
|
||||
* cgroup_rightmost_descendant() to skip subtree.
|
||||
*/
|
||||
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
|
||||
cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
|
||||
if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
|
||||
|
||||
/*
|
||||
* There are two global mutexes guarding cpuset structures - cpuset_mutex
|
||||
* and callback_mutex. The latter may nest inside the former. We also
|
||||
|
@ -507,31 +518,24 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
|
|||
return;
|
||||
}
|
||||
|
||||
static void
|
||||
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
|
||||
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
|
||||
struct cpuset *root_cs)
|
||||
{
|
||||
LIST_HEAD(q);
|
||||
struct cpuset *cp;
|
||||
struct cgroup *pos_cgrp;
|
||||
|
||||
list_add(&c->stack_list, &q);
|
||||
while (!list_empty(&q)) {
|
||||
struct cpuset *cp;
|
||||
struct cgroup *cont;
|
||||
struct cpuset *child;
|
||||
|
||||
cp = list_first_entry(&q, struct cpuset, stack_list);
|
||||
list_del(q.next);
|
||||
|
||||
if (cpumask_empty(cp->cpus_allowed))
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
|
||||
/* skip the whole subtree if @cp doesn't have any CPU */
|
||||
if (cpumask_empty(cp->cpus_allowed)) {
|
||||
pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (is_sched_load_balance(cp))
|
||||
update_domain_attr(dattr, cp);
|
||||
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_child(child, cont, cp)
|
||||
list_add_tail(&child->stack_list, &q);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -591,7 +595,6 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
|
|||
static int generate_sched_domains(cpumask_var_t **domains,
|
||||
struct sched_domain_attr **attributes)
|
||||
{
|
||||
LIST_HEAD(q); /* queue of cpusets to be scanned */
|
||||
struct cpuset *cp; /* scans q */
|
||||
struct cpuset **csa; /* array of all cpuset ptrs */
|
||||
int csn; /* how many cpuset ptrs in csa so far */
|
||||
|
@ -600,6 +603,7 @@ static int generate_sched_domains(cpumask_var_t **domains,
|
|||
struct sched_domain_attr *dattr; /* attributes for custom domains */
|
||||
int ndoms = 0; /* number of sched domains in result */
|
||||
int nslot; /* next empty doms[] struct cpumask slot */
|
||||
struct cgroup *pos_cgrp;
|
||||
|
||||
doms = NULL;
|
||||
dattr = NULL;
|
||||
|
@ -627,33 +631,27 @@ static int generate_sched_domains(cpumask_var_t **domains,
|
|||
goto done;
|
||||
csn = 0;
|
||||
|
||||
list_add(&top_cpuset.stack_list, &q);
|
||||
while (!list_empty(&q)) {
|
||||
struct cgroup *cont;
|
||||
struct cpuset *child; /* scans child cpusets of cp */
|
||||
|
||||
cp = list_first_entry(&q, struct cpuset, stack_list);
|
||||
list_del(q.next);
|
||||
|
||||
if (cpumask_empty(cp->cpus_allowed))
|
||||
continue;
|
||||
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
|
||||
/*
|
||||
* All child cpusets contain a subset of the parent's cpus, so
|
||||
* just skip them, and then we call update_domain_attr_tree()
|
||||
* to calc relax_domain_level of the corresponding sched
|
||||
* domain.
|
||||
* Continue traversing beyond @cp iff @cp has some CPUs and
|
||||
* isn't load balancing. The former is obvious. The
|
||||
* latter: All child cpusets contain a subset of the
|
||||
* parent's cpus, so just skip them, and then we call
|
||||
* update_domain_attr_tree() to calc relax_domain_level of
|
||||
* the corresponding sched domain.
|
||||
*/
|
||||
if (is_sched_load_balance(cp)) {
|
||||
csa[csn++] = cp;
|
||||
if (!cpumask_empty(cp->cpus_allowed) &&
|
||||
!is_sched_load_balance(cp))
|
||||
continue;
|
||||
}
|
||||
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_child(child, cont, cp)
|
||||
list_add_tail(&child->stack_list, &q);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
if (is_sched_load_balance(cp))
|
||||
csa[csn++] = cp;
|
||||
|
||||
/* skip @cp's subtree */
|
||||
pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
for (i = 0; i < csn; i++)
|
||||
csa[i]->pn = i;
|
||||
|
@ -2068,31 +2066,6 @@ static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
|
|||
move_member_tasks_to_cpuset(cs, parent);
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function to traverse cpusets.
|
||||
* It can be used to walk the cpuset tree from top to bottom, completing
|
||||
* one layer before dropping down to the next (thus always processing a
|
||||
* node before any of its children).
|
||||
*/
|
||||
static struct cpuset *cpuset_next(struct list_head *queue)
|
||||
{
|
||||
struct cpuset *cp;
|
||||
struct cpuset *child; /* scans child cpusets of cp */
|
||||
struct cgroup *cont;
|
||||
|
||||
if (list_empty(queue))
|
||||
return NULL;
|
||||
|
||||
cp = list_first_entry(queue, struct cpuset, stack_list);
|
||||
list_del(queue->next);
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_child(child, cont, cp)
|
||||
list_add_tail(&child->stack_list, queue);
|
||||
rcu_read_unlock();
|
||||
|
||||
return cp;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
|
||||
* @cs: cpuset in interest
|
||||
|
@ -2229,12 +2202,12 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
|
|||
/* if cpus or mems went down, we need to propagate to descendants */
|
||||
if (cpus_offlined || mems_offlined) {
|
||||
struct cpuset *cs;
|
||||
LIST_HEAD(queue);
|
||||
struct cgroup *pos_cgrp;
|
||||
|
||||
list_add_tail(&top_cpuset.stack_list, &queue);
|
||||
while ((cs = cpuset_next(&queue)))
|
||||
if (cs != &top_cpuset)
|
||||
schedule_cpuset_propagate_hotplug(cs);
|
||||
rcu_read_lock();
|
||||
cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
|
||||
schedule_cpuset_propagate_hotplug(cs);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
mutex_unlock(&cpuset_mutex);
|
||||
|
|
Загрузка…
Ссылка в новой задаче