Now that the only field in struct sys_timer is .init, delete the struct,
and replace the machine descriptor .timer field with the initialization
function itself.
This will enable moving timer drivers into drivers/clocksource without
having to place a public prototype of each struct sys_timer object into
include/linux; the intent is to create a single of_clocksource_init()
function that determines which timer driver to initialize by scanning
the device dtree, much like the proposed irqchip_init() at:
http://www.spinics.net/lists/arm-kernel/msg203686.html
Includes mach-omap2 fixes from Igor Grinberg.
Tested-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
The new clock subsystem was merged in linux-3.4 without any users, this
now moves the first three platforms over to it: imx, mxs and spear.
The series also contains the changes for the clock subsystem itself,
since Mike preferred to have it together with the platforms that require
these changes, in order to avoid interdependencies and conflicts.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPuexPAAoJEIwa5zzehBx3YBsP/0nFhXjb5t1PdLfFzGKtcZVB
j4zXWXMHQ1fA7wIfEpZF3Nnco6MQkufF5wJPoPdn1+wmkzCn3D6IwNVWVtW4U5i9
VGyShSbgusAAYXUe/9yYj8eN+bbRQSvdN4eWYWU6+rRXShGZ5dZZmp+IPNl54dnW
6F8uCnHX0cnIMCpGqV+41zZgZ/4wL2k9gdqu0LO6pi07o4tGd0Z4gcySgUFAnn1R
kofNHueYIP4UgOg8DREoBzVKlpRqMou3S2kSZUfMeb3Q9ryF7UIvaGqIILyi7PKL
kWd3nptg0EPavfL21SwXHiGpnDpB/Gj/F70kcPLus5RYujB24C9bvBmc26z68NZx
Sz9mbElkkIU5duZsl1nxBWJ8IZ/tSWdtmC2xQMznmV7gHyGgVwr4j47f4Uv5sBvM
14JHDO7mqN6E6FnTFZu/oPAN5pDjgL+TVNK5BU6Wkq0zitrA6eyKDqCvBCqkO6Nn
tNzOuyRDzMOwM7HzqXhxqtzJWXylO1Mldc4bM8X4Cocf4pnLna/X6uP6dgE6A+JY
azVYx4I/0NdEPerDTzIcEhBDgZeBVROhUQr+kHxc4rf6WzUUbu/wEo1UKXWV66oW
1jb1yAFFWqYjkQuQc2PD4JSx35sFJaoSaoneRtmzBzRDfzSr5KjKj1E0e1skyMFq
7ZVLCqZD0cB9DhmMDkWP
=rwFF
-----END PGP SIGNATURE-----
Merge tag 'clock' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull arm-soc clock driver changes from Olof Johansson:
"The new clock subsystem was merged in linux-3.4 without any users,
this now moves the first three platforms over to it: imx, mxs and
spear.
The series also contains the changes for the clock subsystem itself,
since Mike preferred to have it together with the platforms that
require these changes, in order to avoid interdependencies and
conflicts."
Fix up trivial conflicts in arch/arm/mach-kirkwood/common.c (code
removed in one branch, added OF support in another) and
drivers/dma/imx-sdma.c (independent changes next to each other).
* tag 'clock' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (97 commits)
clk: Fix CLK_SET_RATE_GATE flag validation in clk_set_rate().
clk: Provide dummy clk_unregister()
SPEAr: Update defconfigs
SPEAr: Add SMI NOR partition info in dts files
SPEAr: Switch to common clock framework
SPEAr: Call clk_prepare() before calling clk_enable
SPEAr: clk: Add General Purpose Timer Synthesizer clock
SPEAr: clk: Add Fractional Synthesizer clock
SPEAr: clk: Add Auxiliary Synthesizer clock
SPEAr: clk: Add VCO-PLL Synthesizer clock
SPEAr: Add DT bindings for SPEAr's timer
ARM i.MX: remove now unused clock files
ARM: i.MX6: implement clocks using common clock framework
ARM i.MX35: implement clocks using common clock framework
ARM i.MX5: implement clocks using common clock framework
ARM: Kirkwood: Replace clock gating
ARM: Orion: Audio: Add clk/clkdev support
ARM: Orion: PCIE: Add support for clk
ARM: Orion: XOR: Add support for clk
ARM: Orion: CESA: Add support for clk
...
Most PCI implementations use the standard PCI swizzle function, which
handles the well defined behaviour of PCI-to-PCI bridges which can be
found on cards (eg, four port ethernet cards.)
Rather than having almost every platform specify the standard swizzle
function, make this the default when no swizzle function is supplied.
Therefore, a swizzle function only needs to be provided when there is
something exceptional which needs to be handled.
This gets rid of the swizzle initializer from 47 files, and leaves us
with just two platforms specifying a swizzle function: ARM Integrator
and Chalice CATS.
Acked-by: Krzysztof Hałasa <khc@pm.waw.pl>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove now redundant tclk from SPI platform data. This makes the platform
data empty, so remove it.
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Tested-by: Jamie Lentin <jm@lentin.co.uk>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
Hook these platforms restart code into the new restart hook rather than
using arch_reset().
In addition, convert calls to arm_machine_restart() to orion5x_restart()
to ensure that they continue to work as intended.
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Convert arch/arm includes of mach/gpio.h and asm/gpio.h to linux/gpio.h
before we start consolidating the individual platform implementations
of the gpio header files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch makes the various mach dirs that use the plat-orion time
code pass in timer and bridge addresses explicitly, instead of having
plat-orion get those values by including a mach dir include file --
the latter mechanism is problematic if you want to support multiple
ARM platforms in the same kernel image.
Signed-off-by: Lennert Buytenhek <buytenh@secretlab.ca>
Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
Since we're now using addruart to establish the debug mapping, we can
remove the io_pg_offst and phys_io members of struct machine_desc.
The various declarations were removed using the following script:
grep -rl MACHINE_START arch/arm | xargs \
sed -i '/MACHINE_START/,/MACHINE_END/ { /\.\(phys_io\|io_pg_offst\)/d }'
[ Initial patch was from Jeremy Kerr, example script from Russell King ]
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Eric Miao <eric.miao at canonical.com>
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds DSA switch instantiation hooks to the orion5x and the
kirkwood ARM SoC platform code, and instantiates the DSA switch
driver on the 88F5181L FXO RD, the 88F5181L GE RD, the 6183 AP GE
RD, the Linksys WRT350n v2, and the 88F6281 RD boards.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: Nicolas Pitre <nico@marvell.com>
The RD88F6183AP-GE is an access point reference design for the
88F6183 SoC, with a 88E6161 six-port gigabit ethernet switch with
five PHYs (providing 1 WAN and 4 LAN ports and an interface to the
CPU), and a mini-PCIe slot for a wireless card.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>