Generated files are also checked by sparse that's why add newline to
remove sparse (C=1) warning.
The issue was found on Microblaze and reported like this:
./arch/microblaze/include/generated/uapi/asm/unistd_32.h:438:45: warning:
no newline at end of file
Mips and PowerPC have it already but let's align with style used by m68k.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Stefan Asserhall <stefan.asserhall@xilinx.com>
Acked-by: Max Filippov <jcmvbkbc@gmail.com> (xtensa)
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/4d32ab4e1fb2edb691d2e1687e8fb303c09fd023.1581504803.git.michal.simek@xilinx.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXjFo8wAKCRCRxhvAZXjc
omaGAQDVwCHQekqxp2eC8EJH4Pkt+Bn1BLrA25stlTo93YBPHgEAsPVUCRNcrZAl
VncYmxCfpt3Yu0S/MTVXu5xrRiIXPQk=
=uqTN
-----END PGP SIGNATURE-----
Merge tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread management updates from Christian Brauner:
"Sargun Dhillon over the last cycle has worked on the pidfd_getfd()
syscall.
This syscall allows for the retrieval of file descriptors of a process
based on its pidfd. A task needs to have ptrace_may_access()
permissions with PTRACE_MODE_ATTACH_REALCREDS (suggested by Oleg and
Andy) on the target.
One of the main use-cases is in combination with seccomp's user
notification feature. As a reminder, seccomp's user notification
feature was made available in v5.0. It allows a task to retrieve a
file descriptor for its seccomp filter. The file descriptor is usually
handed of to a more privileged supervising process. The supervisor can
then listen for syscall events caught by the seccomp filter of the
supervisee and perform actions in lieu of the supervisee, usually
emulating syscalls. pidfd_getfd() is needed to expand its uses.
There are currently two major users that wait on pidfd_getfd() and one
future user:
- Netflix, Sargun said, is working on a service mesh where users
should be able to connect to a dns-based VIP. When a user connects
to e.g. 1.2.3.4:80 that runs e.g. service "foo" they will be
redirected to an envoy process. This service mesh uses seccomp user
notifications and pidfd to intercept all connect calls and instead
of connecting them to 1.2.3.4:80 connects them to e.g.
127.0.0.1:8080.
- LXD uses the seccomp notifier heavily to intercept and emulate
mknod() and mount() syscalls for unprivileged containers/processes.
With pidfd_getfd() more uses-cases e.g. bridging socket connections
will be possible.
- The patchset has also seen some interest from the browser corner.
Right now, Firefox is using a SECCOMP_RET_TRAP sandbox managed by a
broker process. In the future glibc will start blocking all signals
during dlopen() rendering this type of sandbox impossible. Hence,
in the future Firefox will switch to a seccomp-user-nofication
based sandbox which also makes use of file descriptor retrieval.
The thread for this can be found at
https://sourceware.org/ml/libc-alpha/2019-12/msg00079.html
With pidfd_getfd() it is e.g. possible to bridge socket connections
for the supervisee (binding to a privileged port) and taking actions
on file descriptors on behalf of the supervisee in general.
Sargun's first version was using an ioctl on pidfds but various people
pushed for it to be a proper syscall which he duely implemented as
well over various review cycles. Selftests are of course included.
I've also added instructions how to deal with merge conflicts below.
There's also a small fix coming from the kernel mentee project to
correctly annotate struct sighand_struct with __rcu to fix various
sparse warnings. We've received a few more such fixes and even though
they are mostly trivial I've decided to postpone them until after -rc1
since they came in rather late and I don't want to risk introducing
build warnings.
Finally, there's a new prctl() command PR_{G,S}ET_IO_FLUSHER which is
needed to avoid allocation recursions triggerable by storage drivers
that have userspace parts that run in the IO path (e.g. dm-multipath,
iscsi, etc). These allocation recursions deadlock the device.
The new prctl() allows such privileged userspace components to avoid
allocation recursions by setting the PF_MEMALLOC_NOIO and
PF_LESS_THROTTLE flags. The patch carries the necessary acks from the
relevant maintainers and is routed here as part of prctl()
thread-management."
* tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim
sched.h: Annotate sighand_struct with __rcu
test: Add test for pidfd getfd
arch: wire up pidfd_getfd syscall
pid: Implement pidfd_getfd syscall
vfs, fdtable: Add fget_task helper
/* Background. */
For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown flags
are present[1].
This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road to
being added to openat(2).
Userspace also has a hard time figuring out whether a particular flag is
supported on a particular kernel. While it is now possible with
contemporary kernels (thanks to [3]), older kernels will expose unknown
flag bits through fcntl(F_GETFL). Giving a clear -EINVAL during
openat(2) time matches modern syscall designs and is far more
fool-proof.
In addition, the newly-added path resolution restriction LOOKUP flags
(which we would like to expose to user-space) don't feel related to the
pre-existing O_* flag set -- they affect all components of path lookup.
We'd therefore like to add a new flag argument.
Adding a new syscall allows us to finally fix the flag-ignoring problem,
and we can make it extensible enough so that we will hopefully never
need an openat3(2).
/* Syscall Prototype. */
/*
* open_how is an extensible structure (similar in interface to
* clone3(2) or sched_setattr(2)). The size parameter must be set to
* sizeof(struct open_how), to allow for future extensions. All future
* extensions will be appended to open_how, with their zero value
* acting as a no-op default.
*/
struct open_how { /* ... */ };
int openat2(int dfd, const char *pathname,
struct open_how *how, size_t size);
/* Description. */
The initial version of 'struct open_how' contains the following fields:
flags
Used to specify openat(2)-style flags. However, any unknown flag
bits or otherwise incorrect flag combinations (like O_PATH|O_RDWR)
will result in -EINVAL. In addition, this field is 64-bits wide to
allow for more O_ flags than currently permitted with openat(2).
mode
The file mode for O_CREAT or O_TMPFILE.
Must be set to zero if flags does not contain O_CREAT or O_TMPFILE.
resolve
Restrict path resolution (in contrast to O_* flags they affect all
path components). The current set of flags are as follows (at the
moment, all of the RESOLVE_ flags are implemented as just passing
the corresponding LOOKUP_ flag).
RESOLVE_NO_XDEV => LOOKUP_NO_XDEV
RESOLVE_NO_SYMLINKS => LOOKUP_NO_SYMLINKS
RESOLVE_NO_MAGICLINKS => LOOKUP_NO_MAGICLINKS
RESOLVE_BENEATH => LOOKUP_BENEATH
RESOLVE_IN_ROOT => LOOKUP_IN_ROOT
open_how does not contain an embedded size field, because it is of
little benefit (userspace can figure out the kernel open_how size at
runtime fairly easily without it). It also only contains u64s (even
though ->mode arguably should be a u16) to avoid having padding fields
which are never used in the future.
Note that as a result of the new how->flags handling, O_PATH|O_TMPFILE
is no longer permitted for openat(2). As far as I can tell, this has
always been a bug and appears to not be used by userspace (and I've not
seen any problems on my machines by disallowing it). If it turns out
this breaks something, we can special-case it and only permit it for
openat(2) but not openat2(2).
After input from Florian Weimer, the new open_how and flag definitions
are inside a separate header from uapi/linux/fcntl.h, to avoid problems
that glibc has with importing that header.
/* Testing. */
In a follow-up patch there are over 200 selftests which ensure that this
syscall has the correct semantics and will correctly handle several
attack scenarios.
In addition, I've written a userspace library[4] which provides
convenient wrappers around openat2(RESOLVE_IN_ROOT) (this is necessary
because no other syscalls support RESOLVE_IN_ROOT, and thus lots of care
must be taken when using RESOLVE_IN_ROOT'd file descriptors with other
syscalls). During the development of this patch, I've run numerous
verification tests using libpathrs (showing that the API is reasonably
usable by userspace).
/* Future Work. */
Additional RESOLVE_ flags have been suggested during the review period.
These can be easily implemented separately (such as blocking auto-mount
during resolution).
Furthermore, there are some other proposed changes to the openat(2)
interface (the most obvious example is magic-link hardening[5]) which
would be a good opportunity to add a way for userspace to restrict how
O_PATH file descriptors can be re-opened.
Another possible avenue of future work would be some kind of
CHECK_FIELDS[6] flag which causes the kernel to indicate to userspace
which openat2(2) flags and fields are supported by the current kernel
(to avoid userspace having to go through several guesses to figure it
out).
[1]: https://lwn.net/Articles/588444/
[2]: https://lore.kernel.org/lkml/CA+55aFyyxJL1LyXZeBsf2ypriraj5ut1XkNDsunRBqgVjZU_6Q@mail.gmail.com
[3]: commit 629e014bb8 ("fs: completely ignore unknown open flags")
[4]: https://sourceware.org/bugzilla/show_bug.cgi?id=17523
[5]: https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
[6]: https://youtu.be/ggD-eb3yPVs
Suggested-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This wires up the pidfd_getfd syscall for all architectures.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20200107175927.4558-4-sargun@sargun.me
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Wire up the mount API syscalls on non-x86 arches.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add the io_uring and pidfd_send_signal system calls to all architectures.
These system calls are designed to handle both native and compat tasks,
so all entries are the same across architectures, only arm-compat and
the generic tale still use an old format.
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> (s390)
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
The __SYSCALL macro's arguments are system call number, system call
entry name and number of arguments for the system call.
Argument- nargs in __SYSCALL(nr, entry, nargs) is neither calculated nor
used anywhere. So it would be better to keep the implementation as
__SYSCALL(nr, entry). This unifies the implementation with some other
architectures too.
Link: http://lkml.kernel.org/r/1546443445-21075-2-git-send-email-firoz.khan@linaro.org
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Simon Horman <horms+renesas@verge.net.au>
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.
This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.
In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.
However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.
Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.
This is only a cleanup patch and it should not change any behavior.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.
The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.
It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Most architectures define system call numbers for the rseq and pkey system
calls, even when they don't support the features, and perhaps never will.
Only a few architectures are missing these, so just define them anyway
for consistency. If we decide to add them later to one of these, the
system call numbers won't get out of sync then.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The IPC system call handling is highly inconsistent across architectures,
some use sys_ipc, some use separate calls, and some use both. We also
have some architectures that require passing IPC_64 in the flags, and
others that set it implicitly.
For the addition of a y2038 safe semtimedop() system call, I chose to only
support the separate entry points, but that requires first supporting
the regular ones with their own syscall numbers.
The IPC_64 is now implied by the new semctl/shmctl/msgctl system
calls even on the architectures that require passing it with the ipc()
multiplexer.
I'm not adding the new semtimedop() or semop() on 32-bit architectures,
those will get implemented using the new semtimedop_time64() version
that gets added along with the other time64 calls.
Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
The system call tables are in different format in all
architecture and it will be difficult to manually add,
modify or delete the syscall table entries in the res-
pective files. To make it easy by keeping a script and
which will generate the uapi header and syscall table
file. This change will also help to unify the implemen-
tation across all architectures.
The system call table generation script is added in
kernel/syscalls directory which contain the scripts to
generate both uapi header file and system call table
files. The syscall.tbl will be input for the scripts.
syscall.tbl contains the list of available system calls
along with system call number and corresponding entry
point. Add a new system call in this architecture will
be possible by adding new entry in the syscall.tbl file.
Adding a new table entry consisting of:
- System call number.
- ABI.
- System call name.
- Entry point name.
syscallhdr.sh and syscalltbl.sh will generate uapi header
unistd_32.h and syscall_table.h files respectively. Both
.sh files will parse the content syscall.tbl to generate
the header and table files. unistd_32.h will be included
by uapi/asm/unistd.h and syscall_table.h is included by
kernel/syscall_32.S - the real system call table.
Please note, this support is only available for 32-bit
kernel, not 64-bit kernel. As I came across the 64-bit
kernel is not active for long time.
ARM, s390 and x86 architecuture does have similar support.
I leverage their implementation to come up with a generic
solution.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>