test_prog's prog_tests/verifier_log.c is superseding test_verifier_log
stand-alone test. It cover same checks and adds more, and is also
integrated into test_progs test runner.
Just remove test_verifier_log.c.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230412170655.1866831-1-andrii@kernel.org
bpf_testmod.ko sometimes fails to build from a clean checkout:
BTF [M] linux/tools/testing/selftests/bpf/bpf_testmod/bpf_testmod.ko
/bin/sh: 1: linux-build//tools/build/resolve_btfids/resolve_btfids: not found
The reason is that RESOLVE_BTFIDS may not yet be built. Fix by adding a
dependency.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230403172935.1553022-1-iii@linux.ibm.com
Extends test_loader.c:test_loader__run_subtests() by allowing to
execute tests in unprivileged mode, similar to test_verifier.c.
Adds the following new attributes controlling test_loader behavior:
__msg_unpriv
__success_unpriv
__failure_unpriv
* If any of these attributes is present the test would be loaded in
unprivileged mode.
* If only "privileged" attributes are present the test would be loaded
only in privileged mode.
* If both "privileged" and "unprivileged" attributes are present the
test would be loaded in both modes.
* If test has to be executed in both modes, __msg(text) is specified
and __msg_unpriv is not specified the behavior is the same as if
__msg_unpriv(text) is specified.
* For test filtering purposes the name of the program loaded in
unprivileged mode is derived from the usual program name by adding
`@unpriv' suffix.
Also adds attribute '__description'. This attribute specifies text to
be used instead of a program name for display and filtering purposes.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230325025524.144043-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, test_progs outputs all stdout/stderr as it runs, and when it
is done, prints a summary.
It is non-trivial for tooling to parse that output and extract meaningful
information from it.
This change adds a new option, `--json-summary`/`-J` that let the caller
specify a file where `test_progs{,-no_alu32}` can write a summary of the
run in a json format that can later be parsed by tooling.
Currently, it creates a summary section with successes/skipped/failures
followed by a list of failed tests and subtests.
A test contains the following fields:
- name: the name of the test
- number: the number of the test
- message: the log message that was printed by the test.
- failed: A boolean indicating whether the test failed or not. Currently
we only output failed tests, but in the future, successful tests could
be added.
- subtests: A list of subtests associated with this test.
A subtest contains the following fields:
- name: same as above
- number: sanme as above
- message: the log message that was printed by the subtest.
- failed: same as above but for the subtest
An example run and json content below:
```
$ sudo ./test_progs -a $(grep -v '^#' ./DENYLIST.aarch64 | awk '{print
$1","}' | tr -d '\n') -j -J /tmp/test_progs.json
$ jq < /tmp/test_progs.json | head -n 30
{
"success": 29,
"success_subtest": 23,
"skipped": 3,
"failed": 28,
"results": [
{
"name": "bpf_cookie",
"number": 10,
"message": "test_bpf_cookie:PASS:skel_open 0 nsec\n",
"failed": true,
"subtests": [
{
"name": "multi_kprobe_link_api",
"number": 2,
"message": "kprobe_multi_link_api_subtest:PASS:load_kallsyms 0 nsec\nlibbpf: extern 'bpf_testmod_fentry_test1' (strong): not resolved\nlibbpf: failed to load object 'kprobe_multi'\nlibbpf: failed to load BPF skeleton 'kprobe_multi': -3\nkprobe_multi_link_api_subtest:FAIL:fentry_raw_skel_load unexpected error: -3\n",
"failed": true
},
{
"name": "multi_kprobe_attach_api",
"number": 3,
"message": "libbpf: extern 'bpf_testmod_fentry_test1' (strong): not resolved\nlibbpf: failed to load object 'kprobe_multi'\nlibbpf: failed to load BPF skeleton 'kprobe_multi': -3\nkprobe_multi_attach_api_subtest:FAIL:fentry_raw_skel_load unexpected error: -3\n",
"failed": true
},
{
"name": "lsm",
"number": 8,
"message": "lsm_subtest:PASS:lsm.link_create 0 nsec\nlsm_subtest:FAIL:stack_mprotect unexpected stack_mprotect: actual 0 != expected -1\n",
"failed": true
}
```
The file can then be used to print a summary of the test run and list of
failing tests/subtests:
```
$ jq -r < /tmp/test_progs.json '"Success: \(.success)/\(.success_subtest), Skipped: \(.skipped), Failed: \(.failed)"'
Success: 29/23, Skipped: 3, Failed: 28
$ jq -r < /tmp/test_progs.json '.results | map([
if .failed then "#\(.number) \(.name)" else empty end,
(
. as {name: $tname, number: $tnum} | .subtests | map(
if .failed then "#\($tnum)/\(.number) \($tname)/\(.name)" else empty end
)
)
]) | flatten | .[]' | head -n 20
#10 bpf_cookie
#10/2 bpf_cookie/multi_kprobe_link_api
#10/3 bpf_cookie/multi_kprobe_attach_api
#10/8 bpf_cookie/lsm
#15 bpf_mod_race
#15/1 bpf_mod_race/ksym (used_btfs UAF)
#15/2 bpf_mod_race/kfunc (kfunc_btf_tab UAF)
#36 cgroup_hierarchical_stats
#61 deny_namespace
#61/1 deny_namespace/unpriv_userns_create_no_bpf
#73 fexit_stress
#83 get_func_ip_test
#99 kfunc_dynptr_param
#99/1 kfunc_dynptr_param/dynptr_data_null
#99/4 kfunc_dynptr_param/dynptr_data_null
#100 kprobe_multi_bench_attach
#100/1 kprobe_multi_bench_attach/kernel
#100/2 kprobe_multi_bench_attach/modules
#101 kprobe_multi_test
#101/1 kprobe_multi_test/skel_api
```
Signed-off-by: Manu Bretelle <chantr4@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230317163256.3809328-1-chantr4@gmail.com
This patch tests how many kmallocs is needed to create and free
a batch of UDP sockets and each socket has a 64bytes bpf storage.
It also measures how fast the UDP sockets can be created.
The result is from my qemu setup.
Before bpf_mem_cache_alloc/free:
./bench -p 1 local-storage-create
Setting up benchmark 'local-storage-create'...
Benchmark 'local-storage-create' started.
Iter 0 ( 73.193us): creates 213.552k/s (213.552k/prod), 3.09 kmallocs/create
Iter 1 (-20.724us): creates 211.908k/s (211.908k/prod), 3.09 kmallocs/create
Iter 2 ( 9.280us): creates 212.574k/s (212.574k/prod), 3.12 kmallocs/create
Iter 3 ( 11.039us): creates 213.209k/s (213.209k/prod), 3.12 kmallocs/create
Iter 4 (-11.411us): creates 213.351k/s (213.351k/prod), 3.12 kmallocs/create
Iter 5 ( -7.915us): creates 214.754k/s (214.754k/prod), 3.12 kmallocs/create
Iter 6 ( 11.317us): creates 210.942k/s (210.942k/prod), 3.12 kmallocs/create
Summary: creates 212.789 ± 1.310k/s (212.789k/prod), 3.12 kmallocs/create
After bpf_mem_cache_alloc/free:
./bench -p 1 local-storage-create
Setting up benchmark 'local-storage-create'...
Benchmark 'local-storage-create' started.
Iter 0 ( 68.265us): creates 243.984k/s (243.984k/prod), 1.04 kmallocs/create
Iter 1 ( 30.357us): creates 238.424k/s (238.424k/prod), 1.04 kmallocs/create
Iter 2 (-18.712us): creates 232.963k/s (232.963k/prod), 1.04 kmallocs/create
Iter 3 (-15.885us): creates 238.879k/s (238.879k/prod), 1.04 kmallocs/create
Iter 4 ( 5.590us): creates 237.490k/s (237.490k/prod), 1.04 kmallocs/create
Iter 5 ( 8.577us): creates 237.521k/s (237.521k/prod), 1.04 kmallocs/create
Iter 6 ( -6.263us): creates 238.508k/s (238.508k/prod), 1.04 kmallocs/create
Summary: creates 237.298 ± 2.198k/s (237.298k/prod), 1.04 kmallocs/create
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-18-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We recently added -Wuninitialized, but it's not enough to catch various
silly mistakes or omissions. Let's go all the way to -Wall, just like we
do for user-space code.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309054015.4068562-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Function verifier.c:convert_ctx_access() applies some rewrites to BPF
instructions that read or write BPF program context. This commit adds
machinery to allow test cases that inspect BPF program after these
rewrites are applied.
An example of a test case:
{
// Shorthand for field offset and size specification
N(CGROUP_SOCKOPT, struct bpf_sockopt, retval),
// Pattern generated for field read
.read = "$dst = *(u64 *)($ctx + bpf_sockopt_kern::current_task);"
"$dst = *(u64 *)($dst + task_struct::bpf_ctx);"
"$dst = *(u32 *)($dst + bpf_cg_run_ctx::retval);",
// Pattern generated for field write
.write = "*(u64 *)($ctx + bpf_sockopt_kern::tmp_reg) = r9;"
"r9 = *(u64 *)($ctx + bpf_sockopt_kern::current_task);"
"r9 = *(u64 *)(r9 + task_struct::bpf_ctx);"
"*(u32 *)(r9 + bpf_cg_run_ctx::retval) = $src;"
"r9 = *(u64 *)($ctx + bpf_sockopt_kern::tmp_reg);" ,
},
For each test case, up to three programs are created:
- One that uses BPF_LDX_MEM to read the context field.
- One that uses BPF_STX_MEM to write to the context field.
- One that uses BPF_ST_MEM to write to the context field.
The disassembly of each program is compared with the pattern specified
in the test case.
Kernel code for disassembly is reused (as is in the bpftool).
To keep Makefile changes to the minimum, symbolic links to
`kernel/bpf/disasm.c` and `kernel/bpf/disasm.h ` are added.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230304011247.566040-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Per C99 standard [0], Section 6.7.8, Paragraph 10:
If an object that has automatic storage duration is not initialized
explicitly, its value is indeterminate.
And in the same document, in appendix "J.2 Undefined behavior":
The behavior is undefined in the following circumstances:
[...]
The value of an object with automatic storage duration is used while
it is indeterminate (6.2.4, 6.7.8, 6.8).
This means that use of an uninitialized stack variable is undefined
behavior, and therefore that clang can choose to do a variety of scary
things, such as not generating bytecode for "bunch of useful code" in
the below example:
void some_func()
{
int i;
if (!i)
return;
// bunch of useful code
}
To add insult to injury, if some_func above is a helper function for
some BPF program, clang can choose to not generate an "exit" insn,
causing verifier to fail with "last insn is not an exit or jmp". Going
from that verification failure to the root cause of uninitialized use
is certain to be frustrating.
This patch adds -Wuninitialized to the cflags for selftest BPF progs and
fixes up existing instances of uninitialized use.
[0]: https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Cc: David Vernet <void@manifault.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230303005500.1614874-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If target is bpf, there is no __loongarch__ definition, __BITS_PER_LONG
defaults to 32, __NR_nanosleep is not defined:
#if defined(__ARCH_WANT_TIME32_SYSCALLS) || __BITS_PER_LONG != 32
#define __NR_nanosleep 101
__SC_3264(__NR_nanosleep, sys_nanosleep_time32, sys_nanosleep)
#endif
Work around this problem, by explicitly setting __BITS_PER_LONG to
__loongarch_grlen which is defined by compiler as 64 for LA64.
This is similar with commit 36e70b9b06 ("selftests, bpf: Fix broken
riscv build").
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/1677585781-21628-1-git-send-email-yangtiezhu@loongson.cn
Add a new benchmark which measures hashmap lookup operations speed. A user can
control the following parameters of the benchmark:
* key_size (max 1024): the key size to use
* max_entries: the hashmap max entries
* nr_entries: the number of entries to insert/lookup
* nr_loops: the number of loops for the benchmark
* map_flags The hashmap flags passed to BPF_MAP_CREATE
The BPF program performing the benchmarks calls two nested bpf_loop:
bpf_loop(nr_loops/nr_entries)
bpf_loop(nr_entries)
bpf_map_lookup()
So the nr_loops determines the number of actual map lookups. All lookups are
successful.
Example (the output is generated on a AMD Ryzen 9 3950X machine):
for nr_entries in `seq 4096 4096 65536`; do echo -n "$((nr_entries*100/65536))% full: "; sudo ./bench -d2 -a bpf-hashmap-lookup --key_size=4 --nr_entries=$nr_entries --max_entries=65536 --nr_loops=1000000 --map_flags=0x40 | grep cpu; done
6% full: cpu01: lookup 50.739M ± 0.018M events/sec (approximated from 32 samples of ~19ms)
12% full: cpu01: lookup 47.751M ± 0.015M events/sec (approximated from 32 samples of ~20ms)
18% full: cpu01: lookup 45.153M ± 0.013M events/sec (approximated from 32 samples of ~22ms)
25% full: cpu01: lookup 43.826M ± 0.014M events/sec (approximated from 32 samples of ~22ms)
31% full: cpu01: lookup 41.971M ± 0.012M events/sec (approximated from 32 samples of ~23ms)
37% full: cpu01: lookup 41.034M ± 0.015M events/sec (approximated from 32 samples of ~24ms)
43% full: cpu01: lookup 39.946M ± 0.012M events/sec (approximated from 32 samples of ~25ms)
50% full: cpu01: lookup 38.256M ± 0.014M events/sec (approximated from 32 samples of ~26ms)
56% full: cpu01: lookup 36.580M ± 0.018M events/sec (approximated from 32 samples of ~27ms)
62% full: cpu01: lookup 36.252M ± 0.012M events/sec (approximated from 32 samples of ~27ms)
68% full: cpu01: lookup 35.200M ± 0.012M events/sec (approximated from 32 samples of ~28ms)
75% full: cpu01: lookup 34.061M ± 0.009M events/sec (approximated from 32 samples of ~29ms)
81% full: cpu01: lookup 34.374M ± 0.010M events/sec (approximated from 32 samples of ~29ms)
87% full: cpu01: lookup 33.244M ± 0.011M events/sec (approximated from 32 samples of ~30ms)
93% full: cpu01: lookup 32.182M ± 0.013M events/sec (approximated from 32 samples of ~31ms)
100% full: cpu01: lookup 31.497M ± 0.016M events/sec (approximated from 32 samples of ~31ms)
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230213091519.1202813-8-aspsk@isovalent.com
When the BPF selftests are cross-compiled, only the a host version of
bpftool is built. This version of bpftool is used on the host-side to
generate various intermediates, e.g., skeletons.
The test runners are also using bpftool, so the Makefile will symlink
bpftool from the selftest/bpf root, where the test runners will look
the tool:
| $(Q)ln -sf $(if $2,..,.)/tools/build/bpftool/bootstrap/bpftool \
| $(OUTPUT)/$(if $2,$2/)bpftool
There are two problems for cross-compilation builds:
1. There is no native (cross-compilation target) of bpftool
2. The bootstrap/bpftool is never cross-compiled (by design)
Make sure that a native/cross-compiled version of bpftool is built,
and if CROSS_COMPILE is set, symlink the native/non-bootstrap version.
Acked-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20230214161253.183458-1-bjorn@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Building BPF selftests out of srctree fails with:
make: *** No rule to make target '/linux-build//ima_setup.sh', needed by 'ima_setup.sh'. Stop.
The culprit is the rule that defines convenient shorthands like
"make test_progs", which builds $(OUTPUT)/test_progs. These shorthands
make sense only for binaries that are built though; scripts that live
in the source tree do not end up in $(OUTPUT).
Therefore drop $(TEST_PROGS) and $(TEST_PROGS_EXTENDED) from the rule.
The issue exists for a while, but it became a problem only after commit
d68ae4982c ("selftests/bpf: Install all required files to run selftests"),
which added dependencies on these scripts.
Fixes: 03dcb78460 ("selftests/bpf: Add simple per-test targets to Makefile")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230208231211.283606-1-iii@linux.ibm.com
To get useful results from the Memory Sanitizer, all code running in a
process needs to be instrumented. When building tests with other
sanitizers, it's not strictly necessary, but is also helpful.
So make sure runqslower and libbpf are compiled with SAN_CFLAGS and
linked with SAN_LDFLAGS.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230210001210.395194-5-iii@linux.ibm.com
Memory Sanitizer requires passing different options to CFLAGS and
LDFLAGS: besides the mandatory -fsanitize=memory, one needs to pass
header and library paths, and passing -L to a compilation step
triggers -Wunused-command-line-argument. So introduce a separate
variable for linker flags. Use $(SAN_CFLAGS) as a default in order to
avoid complicating the ASan usage.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230210001210.395194-4-iii@linux.ibm.com
Using HOSTCC="ccache clang" breaks building the tests, since, when it's
forwarded to e.g. bpftool, the child make sees HOSTCC=ccache and
"clang" is considered a target. Fix by quoting it, and also HOSTLD and
HOSTAR for consistency.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230210001210.395194-2-iii@linux.ibm.com
Introduce xdp_features tool in order to test XDP features supported by
the NIC and match them against advertised ones.
In order to test supported/advertised XDP features, xdp_features must
run on the Device Under Test (DUT) and on a Tester device.
xdp_features opens a control TCP channel between DUT and Tester devices
to send control commands from Tester to the DUT and a UDP data channel
where the Tester sends UDP 'echo' packets and the DUT is expected to
reply back with the same packet. DUT installs multiple XDP programs on the
NIC to test XDP capabilities and reports back to the Tester some XDP stats.
Currently xdp_features supports the following XDP features:
- XDP_DROP
- XDP_ABORTED
- XDP_PASS
- XDP_TX
- XDP_REDIRECT
- XDP_NDO_XMIT
Co-developed-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/7c1af8e7e6ef0614cf32fa9e6bdaa2d8d605f859.1675245258.git.lorenzo@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When building with O=, the following error occurs:
ln: failed to create symbolic link 'no_alu32/bpftool': No such file or directory
Adjust the code to account for $(OUTPUT).
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/20230128000650.1516334-6-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When building with O=, the following linker error occurs:
clang: error: no such file or directory: 'liburandom_read.so'
Fix by adding $(OUTPUT) to the linker search path.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/20230128000650.1516334-5-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As stated in README.rst, in order to resolve errors with linker errors,
'LDLIBS=-static' should be used. Most problems will be solved by this
option, but in the case of urandom_read, this won't fix the problem. So
the Makefile is currently implemented to strip the 'static' option when
compiling the urandom_read. However, stripping this static option isn't
configured properly on $(LDLIBS) correctly, which is now causing errors
on static compilation.
# LDLIBS=-static ./vmtest.sh
ld.lld: error: attempted static link of dynamic object liburandom_read.so
clang: error: linker command failed with exit code 1 (use -v to see invocation)
make: *** [Makefile:190: /linux/tools/testing/selftests/bpf/urandom_read] Error 1
make: *** Waiting for unfinished jobs....
This commit fixes this problem by configuring the strip with $(LDLIBS).
Fixes: 68084a1364 ("selftests/bpf: Fix building bpf selftests statically")
Signed-off-by: Daniel T. Lee <danieltimlee@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230125100440.21734-1-danieltimlee@gmail.com
To be used for verification of driver implementations. Note that
the skb path is gone from the series, but I'm still keeping the
implementation for any possible future work.
$ xdp_hw_metadata <ifname>
On the other machine:
$ echo -n xdp | nc -u -q1 <target> 9091 # for AF_XDP
$ echo -n skb | nc -u -q1 <target> 9092 # for skb
Sample output:
# xdp
xsk_ring_cons__peek: 1
0x19f9090: rx_desc[0]->addr=100000000008000 addr=8100 comp_addr=8000
rx_timestamp_supported: 1
rx_timestamp: 1667850075063948829
0x19f9090: complete idx=8 addr=8000
# skb
found skb hwtstamp = 1668314052.854274681
Decoding:
# xdp
rx_timestamp=1667850075.063948829
$ date -d @1667850075
Mon Nov 7 11:41:15 AM PST 2022
$ date
Mon Nov 7 11:42:05 AM PST 2022
# skb
$ date -d @1668314052
Sat Nov 12 08:34:12 PM PST 2022
$ date
Sat Nov 12 08:37:06 PM PST 2022
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-18-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
- create new netns
- create veth pair (veTX+veRX)
- setup AF_XDP socket for both interfaces
- attach bpf to veRX
- send packet via veTX
- verify the packet has expected metadata at veRX
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-12-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Get rid of the built-in XDP program that was part of the old libbpf
code in xsk.c and replace it with an eBPF program build using the
framework by all the other bpf selftests. This will form the base for
adding more programs in later commits.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/r/20230111093526.11682-12-magnus.karlsson@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove the empty vmlinux.h if bpftool failed to dump btf info.
The empty vmlinux.h can hide real error when reading output
of make.
This is done by adding .DELETE_ON_ERROR special target in related
makefiles.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Link: https://lore.kernel.org/bpf/20221217223509.88254-3-changbin.du@gmail.com
It's become a common pattern to have a collection of small BPF programs
in one BPF object file, each representing one test case. On user-space
side of such tests we maintain a table of program names and expected
failure or success, along with optional expected verifier log message.
This works, but each set of tests reimplement this mundane code over and
over again, which is a waste of time for anyone trying to add a new set
of tests. Furthermore, it's quite error prone as it's way too easy to miss
some entries in these manually maintained test tables (as evidences by
dynptr_fail tests, in which ringbuf_release_uninit_dynptr subtest was
accidentally missed; this is fixed in next patch).
So this patch implements generic test_loader, which accepts skeleton
name and handles the rest of details: opens and loads BPF object file,
making sure each program is tested in isolation. Optionally each test
case can specify expected BPF verifier log message. In case of failure,
tester makes sure to report verifier log, but it also reports verifier
log in verbose mode unconditionally.
Now, the interesting deviation from existing custom implementations is
the use of btf_decl_tag attribute to specify expected-to-fail vs
expected-to-succeed markers and, optionally, expected log message
directly next to BPF program source code, eliminating the need to
manually create and update table of tests.
We define few macros wrapping btf_decl_tag with a convention that all
values of btf_decl_tag start with "comment:" prefix, and then utilizing
a very simple "just_some_text_tag" or "some_key_name=<value>" pattern to
define things like expected success/failure, expected verifier message,
extra verifier log level (if necessary). This approach is demonstrated
by next patch in which two existing sets of failure tests are converted.
Tester supports both expected-to-fail and expected-to-succeed programs,
though this patch set didn't convert any existing expected-to-succeed
programs yet, as existing tests couple BPF program loading with their
further execution through attach or test_prog_run. One way to allow
testing scenarios like this would be ability to specify custom callback,
executed for each successfully loaded BPF program. This is left for
follow up patches, after some more analysis of existing test cases.
This test_loader is, hopefully, a start of a test_verifier-like runner,
but integrated into test_progs infrastructure. It will allow much better
"user experience" of defining low-level verification tests that can take
advantage of all the libbpf-provided nicety features on BPF side: global
variables, declarative maps, etc. All while having a choice of defining
it in C or as BPF assembly (through __attribute__((naked)) functions and
using embedded asm), depending on what makes most sense in each
particular case. This will be explored in follow up patches as well.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221207201648.2990661-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When installing the selftests using
"make -C tools/testing/selftests install", we need to make sure
all the required files to run the selftests are installed. Let's
make sure this is the case.
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221205131618.1524337-2-daan.j.demeyer@gmail.com
When cross-compiling [1], the get_sys_includes make macro should use
the target system include path, and not the build hosts system include
path.
Make clang honor the CROSS_COMPILE triple.
[1] e.g. "ARCH=riscv CROSS_COMPILE=riscv64-linux-gnu- make"
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Link: https://lore.kernel.org/bpf/20221115182051.582962-2-bjorn@kernel.org
When cross-compiling selftests/bpf, the resolve_btfids binary end up
in a different directory, than the regular resolve_btfids
builds. Populate RESOLVE_BTFIDS for sub-make, so it can find the
binary.
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20221115182051.582962-1-bjorn@kernel.org
lld produces "fast" style build-ids by default, which is inconsistent
with ld's "sha1" style. Explicitly specify build-id style to be "sha1"
when linking liburandom_read.so the same way it is already done for
urandom_read.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20221104094016.102049-1-asavkov@redhat.com
Add a test_ringbuf_map_key test prog, borrowing heavily from extant
test_ringbuf.c. The program tries to use the result of
bpf_ringbuf_reserve as map_key, which was not possible before previouis
commits in this series. The test runner added to prog_tests/ringbuf.c
verifies that the program loads and does basic sanity checks to confirm
that it runs as expected.
Also, refactor test_ringbuf such that runners for existing test_ringbuf
and newly-added test_ringbuf_map_key are subtests of 'ringbuf' top-level
test.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Added urandom_read shared lib is missing from the list of installed
files what makes urandom_read test after `make install` or `make
gen_tar` broken.
Add the library to TEST_GEN_FILES. The names in the list do not
contain $(OUTPUT) since it's added by lib.mk code.
Fixes: 00a0fa2d7d ("selftests/bpf: Add urandom_read shared lib and USDTs")
Signed-off-by: Yauheni Kaliuta <ykaliuta@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920161409.129953-1-ykaliuta@redhat.com
Perform several tests to ensure the correct implementation of the
bpf_verify_pkcs7_signature() kfunc.
Do the tests with data signed with a generated testing key (by using
sign-file from scripts/) and with the tcp_bic.ko kernel module if it is
found in the system. The test does not fail if tcp_bic.ko is not found.
First, perform an unsuccessful signature verification without data.
Second, perform a successful signature verification with the session
keyring and a new one created for testing.
Then, ensure that permission and validation checks are done properly on the
keyring provided to bpf_verify_pkcs7_signature(), despite those checks were
deferred at the time the keyring was retrieved with bpf_lookup_user_key().
The tests expect to encounter an error if the Search permission is removed
from the keyring, or the keyring is expired.
Finally, perform a successful and unsuccessful signature verification with
the keyrings with pre-determined IDs (the last test fails because the key
is not in the platform keyring).
The test is currently in the deny list for s390x (JIT does not support
calling kernel function).
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Link: https://lore.kernel.org/r/20220920075951.929132-13-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to tools/testing/selftests/bpf/prog_tests/dynptr.c:
we declare an array of tests that we run one by one in a for loop.
Followup patches will add more similar-ish tests, so avoid a lot of copy
paste by grouping the declaration in an array.
For light skeletons, we have to rely on the offsetof() macro so we can
statically declare which program we are using.
In the libbpf case, we can rely on bpf_object__find_program_by_name().
So also change the Makefile to generate both light skeletons and normal
ones.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-2-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF object files are, in a way, the final artifact produced as part of
the ahead-of-time compilation process. That makes them somewhat special
compared to "regular" object files, which are a intermediate build
artifacts that can typically be removed safely. As such, it can make
sense to name them differently to make it easier to spot this difference
at a glance.
Among others, libbpf-bootstrap [0] has established the extension .bpf.o
for BPF object files. It seems reasonable to follow this example and
establish the same denomination for selftest build artifacts. To that
end, this change adjusts the corresponding part of the build system and
the test programs loading BPF object files to work with .bpf.o files.
[0] https://github.com/libbpf/libbpf-bootstrap
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220901222253.1199242-1-deso@posteo.net
For each hook, have a simple bpf_set_retval(bpf_get_retval) program
and make sure it loads for the hooks we want. The exceptions are
the hooks which don't propagate the error to the callers:
- sockops
- recvmsg
- getpeername
- getsockname
- cg_skb ingress and egress
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220823222555.523590-6-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recently, xsk part of libbpf was moved to selftests/bpf directory and
lives on its own because there is an AF_XDP testing application that
needs it called xdpxceiver. That name makes it a bit hard to indicate
who maintains it as there are other XDP samples in there, whereas this
one is strictly about AF_XDP.
Do s/xdpxceiver/xskxceiver so that it will be easier to figure out who
maintains it. A follow-up patch will correct MAINTAINERS file.
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220707111613.49031-2-maciej.fijalkowski@intel.com
This benchmark measures grace period latency and kthread cpu usage of
RCU Tasks Trace when many processes are creating/deleting BPF
local_storage. Intent here is to quantify improvement on these metrics
after Paul's recent RCU Tasks patches [0].
Specifically, fork 15k tasks which call a bpf prog that creates/destroys
task local_storage and sleep in a loop, resulting in many
call_rcu_tasks_trace calls.
To determine grace period latency, trace time elapsed between
rcu_tasks_trace_pregp_step and rcu_tasks_trace_postgp; for cpu usage
look at rcu_task_trace_kthread's stime in /proc/PID/stat.
On my virtualized test environment (Skylake, 8 cpus) benchmark results
demonstrate significant improvement:
BEFORE Paul's patches:
SUMMARY tasks_trace grace period latency avg 22298.551 us stddev 1302.165 us
SUMMARY ticks per tasks_trace grace period avg 2.291 stddev 0.324
AFTER Paul's patches:
SUMMARY tasks_trace grace period latency avg 16969.197 us stddev 2525.053 us
SUMMARY ticks per tasks_trace grace period avg 1.146 stddev 0.178
Note that since these patches are not in bpf-next benchmarking was done
by cherry-picking this patch onto rcu tree.
[0] https://lore.kernel.org/rcu/20220620225402.GA3842369@paulmck-ThinkPad-P17-Gen-1/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220705190018.3239050-1-davemarchevsky@fb.com
Remove deprecated xsk APIs from libbpf. But given we have selftests
relying on this, move those files (with minimal adjustments to make them
compilable) under selftests/bpf.
We also remove all the removed APIs from libbpf.map, while overall
keeping version inheritance chain, as most APIs are backwards
compatible so there is no need to reassign them as LIBBPF_1.0.0 versions.
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220627211527.2245459-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a benchmarks to demonstrate the performance cliff for local_storage
get as the number of local_storage maps increases beyond current
local_storage implementation's cache size.
"sequential get" and "interleaved get" benchmarks are added, both of
which do many bpf_task_storage_get calls on sets of task local_storage
maps of various counts, while considering a single specific map to be
'important' and counting task_storage_gets to the important map
separately in addition to normal 'hits' count of all gets. Goal here is
to mimic scenario where a particular program using one map - the
important one - is running on a system where many other local_storage
maps exist and are accessed often.
While "sequential get" benchmark does bpf_task_storage_get for map 0, 1,
..., {9, 99, 999} in order, "interleaved" benchmark interleaves 4
bpf_task_storage_gets for the important map for every 10 map gets. This
is meant to highlight performance differences when important map is
accessed far more frequently than non-important maps.
A "hashmap control" benchmark is also included for easy comparison of
standard bpf hashmap lookup vs local_storage get. The benchmark is
similar to "sequential get", but creates and uses BPF_MAP_TYPE_HASH
instead of local storage. Only one inner map is created - a hashmap
meant to hold tid -> data mapping for all tasks. Size of the hashmap is
hardcoded to my system's PID_MAX_LIMIT (4,194,304). The number of these
keys which are actually fetched as part of the benchmark is
configurable.
Addition of this benchmark is inspired by conversation with Alexei in a
previous patchset's thread [0], which highlighted the need for such a
benchmark to motivate and validate improvements to local_storage
implementation. My approach in that series focused on improving
performance for explicitly-marked 'important' maps and was rejected
with feedback to make more generally-applicable improvements while
avoiding explicitly marking maps as important. Thus the benchmark
reports both general and important-map-focused metrics, so effect of
future work on both is clear.
Regarding the benchmark results. On a powerful system (Skylake, 20
cores, 256gb ram):
Hashmap Control
===============
num keys: 10
hashmap (control) sequential get: hits throughput: 20.900 ± 0.334 M ops/s, hits latency: 47.847 ns/op, important_hits throughput: 20.900 ± 0.334 M ops/s
num keys: 1000
hashmap (control) sequential get: hits throughput: 13.758 ± 0.219 M ops/s, hits latency: 72.683 ns/op, important_hits throughput: 13.758 ± 0.219 M ops/s
num keys: 10000
hashmap (control) sequential get: hits throughput: 6.995 ± 0.034 M ops/s, hits latency: 142.959 ns/op, important_hits throughput: 6.995 ± 0.034 M ops/s
num keys: 100000
hashmap (control) sequential get: hits throughput: 4.452 ± 0.371 M ops/s, hits latency: 224.635 ns/op, important_hits throughput: 4.452 ± 0.371 M ops/s
num keys: 4194304
hashmap (control) sequential get: hits throughput: 3.043 ± 0.033 M ops/s, hits latency: 328.587 ns/op, important_hits throughput: 3.043 ± 0.033 M ops/s
Local Storage
=============
num_maps: 1
local_storage cache sequential get: hits throughput: 47.298 ± 0.180 M ops/s, hits latency: 21.142 ns/op, important_hits throughput: 47.298 ± 0.180 M ops/s
local_storage cache interleaved get: hits throughput: 55.277 ± 0.888 M ops/s, hits latency: 18.091 ns/op, important_hits throughput: 55.277 ± 0.888 M ops/s
num_maps: 10
local_storage cache sequential get: hits throughput: 40.240 ± 0.802 M ops/s, hits latency: 24.851 ns/op, important_hits throughput: 4.024 ± 0.080 M ops/s
local_storage cache interleaved get: hits throughput: 48.701 ± 0.722 M ops/s, hits latency: 20.533 ns/op, important_hits throughput: 17.393 ± 0.258 M ops/s
num_maps: 16
local_storage cache sequential get: hits throughput: 44.515 ± 0.708 M ops/s, hits latency: 22.464 ns/op, important_hits throughput: 2.782 ± 0.044 M ops/s
local_storage cache interleaved get: hits throughput: 49.553 ± 2.260 M ops/s, hits latency: 20.181 ns/op, important_hits throughput: 15.767 ± 0.719 M ops/s
num_maps: 17
local_storage cache sequential get: hits throughput: 38.778 ± 0.302 M ops/s, hits latency: 25.788 ns/op, important_hits throughput: 2.284 ± 0.018 M ops/s
local_storage cache interleaved get: hits throughput: 43.848 ± 1.023 M ops/s, hits latency: 22.806 ns/op, important_hits throughput: 13.349 ± 0.311 M ops/s
num_maps: 24
local_storage cache sequential get: hits throughput: 19.317 ± 0.568 M ops/s, hits latency: 51.769 ns/op, important_hits throughput: 0.806 ± 0.024 M ops/s
local_storage cache interleaved get: hits throughput: 24.397 ± 0.272 M ops/s, hits latency: 40.989 ns/op, important_hits throughput: 6.863 ± 0.077 M ops/s
num_maps: 32
local_storage cache sequential get: hits throughput: 13.333 ± 0.135 M ops/s, hits latency: 75.000 ns/op, important_hits throughput: 0.417 ± 0.004 M ops/s
local_storage cache interleaved get: hits throughput: 16.898 ± 0.383 M ops/s, hits latency: 59.178 ns/op, important_hits throughput: 4.717 ± 0.107 M ops/s
num_maps: 100
local_storage cache sequential get: hits throughput: 6.360 ± 0.107 M ops/s, hits latency: 157.233 ns/op, important_hits throughput: 0.064 ± 0.001 M ops/s
local_storage cache interleaved get: hits throughput: 7.303 ± 0.362 M ops/s, hits latency: 136.930 ns/op, important_hits throughput: 1.907 ± 0.094 M ops/s
num_maps: 1000
local_storage cache sequential get: hits throughput: 0.452 ± 0.010 M ops/s, hits latency: 2214.022 ns/op, important_hits throughput: 0.000 ± 0.000 M ops/s
local_storage cache interleaved get: hits throughput: 0.542 ± 0.007 M ops/s, hits latency: 1843.341 ns/op, important_hits throughput: 0.136 ± 0.002 M ops/s
Looking at the "sequential get" results, it's clear that as the
number of task local_storage maps grows beyond the current cache size
(16), there's a significant reduction in hits throughput. Note that
current local_storage implementation assigns a cache_idx to maps as they
are created. Since "sequential get" is creating maps 0..n in order and
then doing bpf_task_storage_get calls in the same order, the benchmark
is effectively ensuring that a map will not be in cache when the program
tries to access it.
For "interleaved get" results, important-map hits throughput is greatly
increased as the important map is more likely to be in cache by virtue
of being accessed far more frequently. Throughput still reduces as #
maps increases, though.
To get a sense of the overhead of the benchmark program, I
commented out bpf_task_storage_get/bpf_map_lookup_elem in
local_storage_bench.c and ran the benchmark on the same host as the
'real' run. Results:
Hashmap Control
===============
num keys: 10
hashmap (control) sequential get: hits throughput: 54.288 ± 0.655 M ops/s, hits latency: 18.420 ns/op, important_hits throughput: 54.288 ± 0.655 M ops/s
num keys: 1000
hashmap (control) sequential get: hits throughput: 52.913 ± 0.519 M ops/s, hits latency: 18.899 ns/op, important_hits throughput: 52.913 ± 0.519 M ops/s
num keys: 10000
hashmap (control) sequential get: hits throughput: 53.480 ± 1.235 M ops/s, hits latency: 18.699 ns/op, important_hits throughput: 53.480 ± 1.235 M ops/s
num keys: 100000
hashmap (control) sequential get: hits throughput: 54.982 ± 1.902 M ops/s, hits latency: 18.188 ns/op, important_hits throughput: 54.982 ± 1.902 M ops/s
num keys: 4194304
hashmap (control) sequential get: hits throughput: 50.858 ± 0.707 M ops/s, hits latency: 19.662 ns/op, important_hits throughput: 50.858 ± 0.707 M ops/s
Local Storage
=============
num_maps: 1
local_storage cache sequential get: hits throughput: 110.990 ± 4.828 M ops/s, hits latency: 9.010 ns/op, important_hits throughput: 110.990 ± 4.828 M ops/s
local_storage cache interleaved get: hits throughput: 161.057 ± 4.090 M ops/s, hits latency: 6.209 ns/op, important_hits throughput: 161.057 ± 4.090 M ops/s
num_maps: 10
local_storage cache sequential get: hits throughput: 112.930 ± 1.079 M ops/s, hits latency: 8.855 ns/op, important_hits throughput: 11.293 ± 0.108 M ops/s
local_storage cache interleaved get: hits throughput: 115.841 ± 2.088 M ops/s, hits latency: 8.633 ns/op, important_hits throughput: 41.372 ± 0.746 M ops/s
num_maps: 16
local_storage cache sequential get: hits throughput: 115.653 ± 0.416 M ops/s, hits latency: 8.647 ns/op, important_hits throughput: 7.228 ± 0.026 M ops/s
local_storage cache interleaved get: hits throughput: 138.717 ± 1.649 M ops/s, hits latency: 7.209 ns/op, important_hits throughput: 44.137 ± 0.525 M ops/s
num_maps: 17
local_storage cache sequential get: hits throughput: 112.020 ± 1.649 M ops/s, hits latency: 8.927 ns/op, important_hits throughput: 6.598 ± 0.097 M ops/s
local_storage cache interleaved get: hits throughput: 128.089 ± 1.960 M ops/s, hits latency: 7.807 ns/op, important_hits throughput: 38.995 ± 0.597 M ops/s
num_maps: 24
local_storage cache sequential get: hits throughput: 92.447 ± 5.170 M ops/s, hits latency: 10.817 ns/op, important_hits throughput: 3.855 ± 0.216 M ops/s
local_storage cache interleaved get: hits throughput: 128.844 ± 2.808 M ops/s, hits latency: 7.761 ns/op, important_hits throughput: 36.245 ± 0.790 M ops/s
num_maps: 32
local_storage cache sequential get: hits throughput: 102.042 ± 1.462 M ops/s, hits latency: 9.800 ns/op, important_hits throughput: 3.194 ± 0.046 M ops/s
local_storage cache interleaved get: hits throughput: 126.577 ± 1.818 M ops/s, hits latency: 7.900 ns/op, important_hits throughput: 35.332 ± 0.507 M ops/s
num_maps: 100
local_storage cache sequential get: hits throughput: 111.327 ± 1.401 M ops/s, hits latency: 8.983 ns/op, important_hits throughput: 1.113 ± 0.014 M ops/s
local_storage cache interleaved get: hits throughput: 131.327 ± 1.339 M ops/s, hits latency: 7.615 ns/op, important_hits throughput: 34.302 ± 0.350 M ops/s
num_maps: 1000
local_storage cache sequential get: hits throughput: 101.978 ± 0.563 M ops/s, hits latency: 9.806 ns/op, important_hits throughput: 0.102 ± 0.001 M ops/s
local_storage cache interleaved get: hits throughput: 141.084 ± 1.098 M ops/s, hits latency: 7.088 ns/op, important_hits throughput: 35.430 ± 0.276 M ops/s
Adjusting for overhead, latency numbers for "hashmap control" and
"sequential get" are:
hashmap_control_1k: ~53.8ns
hashmap_control_10k: ~124.2ns
hashmap_control_100k: ~206.5ns
sequential_get_1: ~12.1ns
sequential_get_10: ~16.0ns
sequential_get_16: ~13.8ns
sequential_get_17: ~16.8ns
sequential_get_24: ~40.9ns
sequential_get_32: ~65.2ns
sequential_get_100: ~148.2ns
sequential_get_1000: ~2204ns
Clearly demonstrating a cliff.
In the discussion for v1 of this patch, Alexei noted that local_storage
was 2.5x faster than a large hashmap when initially implemented [1]. The
benchmark results show that local_storage is 5-10x faster: a
long-running BPF application putting some pid-specific info into a
hashmap for each pid it sees will probably see on the order of 10-100k
pids. Bench numbers for hashmaps of this size are ~10x slower than
sequential_get_16, but as the number of local_storage maps grows far
past local_storage cache size the performance advantage shrinks and
eventually reverses.
When running the benchmarks it may be necessary to bump 'open files'
ulimit for a successful run.
[0]: https://lore.kernel.org/all/20220420002143.1096548-1-davemarchevsky@fb.com
[1]: https://lore.kernel.org/bpf/20220511173305.ftldpn23m4ski3d3@MBP-98dd607d3435.dhcp.thefacebook.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20220620222554.270578-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
LLVM's lld linker doesn't have a universal architecture support (e.g.,
it definitely doesn't work on s390x), so be safe and force lld for
urandom_read and liburandom_read.so only on x86 architectures.
This should fix s390x CI runs.
Fixes: 3e6fe5ce4d ("libbpf: Fix internal USDT address translation logic for shared libraries")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220617045512.1339795-1-andrii@kernel.org
This commit adds selftests for the new BPF helpers:
bpf_tcp_raw_{gen,check}_syncookie_ipv{4,6}.
xdp_synproxy_kern.c is a BPF program that generates SYN cookies on
allowed TCP ports and sends SYNACKs to clients, accelerating synproxy
iptables module.
xdp_synproxy.c is a userspace control application that allows to
configure the following options in runtime: list of allowed ports, MSS,
window scale, TTL.
A selftest is added to prog_tests that leverages the above programs to
test the functionality of the new helpers.
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://lore.kernel.org/r/20220615134847.3753567-5-maximmi@nvidia.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Perform the same virtual address to file offset translation that libbpf
is doing for executable ELF binaries also for shared libraries.
Currently libbpf is making a simplifying and sometimes wrong assumption
that for shared libraries relative virtual addresses inside ELF are
always equal to file offsets.
Unfortunately, this is not always the case with LLVM's lld linker, which
now by default generates quite more complicated ELF segments layout.
E.g., for liburandom_read.so from selftests/bpf, here's an excerpt from
readelf output listing ELF segments (a.k.a. program headers):
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x0005e4 0x0005e4 R 0x1000
LOAD 0x0005f0 0x00000000000015f0 0x00000000000015f0 0x000160 0x000160 R E 0x1000
LOAD 0x000750 0x0000000000002750 0x0000000000002750 0x000210 0x000210 RW 0x1000
LOAD 0x000960 0x0000000000003960 0x0000000000003960 0x000028 0x000029 RW 0x1000
Compare that to what is generated by GNU ld (or LLVM lld's with extra
-znoseparate-code argument which disables this cleverness in the name of
file size reduction):
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000550 0x000550 R 0x1000
LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x000131 0x000131 R E 0x1000
LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x0000ac 0x0000ac R 0x1000
LOAD 0x002dc0 0x0000000000003dc0 0x0000000000003dc0 0x000262 0x000268 RW 0x1000
You can see from the first example above that for executable (Flg == "R E")
PT_LOAD segment (LOAD #2), Offset doesn't match VirtAddr columns.
And it does in the second case (GNU ld output).
This is important because all the addresses, including USDT specs,
operate in a virtual address space, while kernel is expecting file
offsets when performing uprobe attach. So such mismatches have to be
properly taken care of and compensated by libbpf, which is what this
patch is fixing.
Also patch clarifies few function and variable names, as well as updates
comments to reflect this important distinction (virtaddr vs file offset)
and to ephasize that shared libraries are not all that different from
executables in this regard.
This patch also changes selftests/bpf Makefile to force urand_read and
liburand_read.so to be built with Clang and LLVM's lld (and explicitly
request this ELF file size optimization through -znoseparate-code linker
parameter) to validate libbpf logic and ensure regressions don't happen
in the future. I've bundled these selftests changes together with libbpf
changes to keep the above description tied with both libbpf and
selftests changes.
Fixes: 74cc6311ce ("libbpf: Add USDT notes parsing and resolution logic")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220616055543.3285835-1-andrii@kernel.org
Add benchmark for hash_map to reproduce the worst case
that non-stop update when map's free is zero.
Just like this:
./run_bench_bpf_hashmap_full_update.sh
Setting up benchmark 'bpf-hashmap-ful-update'...
Benchmark 'bpf-hashmap-ful-update' started.
1:hash_map_full_perf 555830 events per sec
...
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20220610023308.93798-3-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When build bpf test and install it to another folder, e.g.
make -j10 install -C tools/testing/selftests/ TARGETS="bpf" \
SKIP_TARGETS="" INSTALL_PATH=/tmp/kselftests
The ima_setup.sh is missed in target folder, which makes test_ima failed.
Fix it by adding ima_setup.sh to TEST_PROGS_EXTENDED.
Fixes: 34b82d3ac1 ("bpf: Add a selftest for bpf_ima_inode_hash")
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220516040020.653291-1-liuhangbin@gmail.com
bpf selftests can no longer be built with CFLAGS=-static with
liburandom_read.so and its dependent target.
Filter out -static for liburandom_read.so and its dependent target.
When building statically, this leaves urandom_read relying on
system-wide shared libraries.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220514002115.1376033-1-yosryahmed@google.com
Prevent "classic" and light skeleton generation rules from stomping on
each other's toes due to the use of the same <obj>.linked{1,2,3}.o
naming pattern. There is no coordination and synchronizataion between
.skel.h and .lskel.h rules, so they can easily overwrite each other's
intermediate object files, leading to errors like:
/bin/sh: line 1: 170928 Bus error (core dumped)
/data/users/andriin/linux/tools/testing/selftests/bpf/tools/sbin/bpftool gen skeleton
/data/users/andriin/linux/tools/testing/selftests/bpf/test_ksyms_weak.linked3.o
name test_ksyms_weak
> /data/users/andriin/linux/tools/testing/selftests/bpf/test_ksyms_weak.skel.h
make: *** [Makefile:507: /data/users/andriin/linux/tools/testing/selftests/bpf/test_ksyms_weak.skel.h] Error 135
make: *** Deleting file '/data/users/andriin/linux/tools/testing/selftests/bpf/test_ksyms_weak.skel.h'
Fix by using different suffix for light skeleton rule.
Fixes: c48e51c8b0 ("bpf: selftests: Add selftests for module kfunc support")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220509004148.1801791-2-andrii@kernel.org
Extend urandom_read helper binary to include USDTs of 4 combinations:
semaphore/semaphoreless (refcounted and non-refcounted) and based in
executable or shared library. We also extend urandom_read with ability
to report it's own PID to parent process and wait for parent process to
ready itself up for tracing urandom_read. We utilize popen() and
underlying pipe properties for proper signaling.
Once urandom_read is ready, we add few tests to validate that libbpf's
USDT attachment handles all the above combinations of semaphore (or lack
of it) and static or shared library USDTs. Also, we validate that libbpf
handles shared libraries both with PID filter and without one (i.e., -1
for PID argument).
Having the shared library case tested with and without PID is important
because internal logic differs on kernels that don't support BPF
cookies. On such older kernels, attaching to USDTs in shared libraries
without specifying concrete PID doesn't work in principle, because it's
impossible to determine shared library's load address to derive absolute
IPs for uprobe attachments. Without absolute IPs, it's impossible to
perform correct look up of USDT spec based on uprobe's absolute IP (the
only kind available from BPF at runtime). This is not the problem on
newer kernels with BPF cookie as we don't need IP-to-ID lookup because
BPF cookie value *is* spec ID.
So having those two situations as separate subtests is good because
libbpf CI is able to test latest selftests against old kernels (e.g.,
4.9 and 5.5), so we'll be able to disable PID-less shared lib attachment
for old kernels, but will still leave PID-specific one enabled to validate
this legacy logic is working correctly.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/bpf/20220404234202.331384-8-andrii@kernel.org
Add semaphore-based USDT to test_progs itself and write basic tests to
valicate both auto-attachment and manual attachment logic, as well as
BPF-side functionality.
Also add subtests to validate that libbpf properly deduplicates USDT
specs and handles spec overflow situations correctly, as well as proper
"rollback" of partially-attached multi-spec USDT.
BPF-side of selftest intentionally consists of two files to validate
that usdt.bpf.h header can be included from multiple source code files
that are subsequently linked into final BPF object file without causing
any symbol duplication or other issues. We are validating that __weak
maps and bpf_usdt_xxx() API functions defined in usdt.bpf.h do work as
intended.
USDT selftests utilize sys/sdt.h header that on Ubuntu systems comes
from systemtap-sdt-devel package. But to simplify everyone's life,
including CI but especially casual contributors to bpf/bpf-next that
are trying to build selftests, I've checked in sys/sdt.h header from [0]
directly. This way it will work on all architectures and distros without
having to figure it out for every relevant combination and adding any
extra implicit package dependencies.
[0] https://sourceware.org/git?p=systemtap.git;a=blob_plain;f=includes/sys/sdt.h;h=ca0162b4dc57520b96638c8ae79ad547eb1dd3a1;hb=HEAD
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/bpf/20220404234202.331384-7-andrii@kernel.org
This patch changes the selftests/bpf Makefile to also generate
a subskel.h for every skel.h it would have normally generated.
Separately, it also introduces a new subskeleton test which tests
library objects, externs, weak symbols, kconfigs, and user maps.
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/1bd24956940bbbfe169bb34f7f87b11df52ef011.1647473511.git.delyank@fb.com