The XDP_REDIRECT implementations for maps and non-maps are fairly
similar, but obviously need to take different code paths depending on
if the target is using a map or not. Today, the redirect targets for
XDP either uses a map, or is based on ifindex.
Here, the map type and id are added to bpf_redirect_info, instead of
the actual map. Map type, map item/ifindex, and the map_id (if any) is
passed to xdp_do_redirect().
For ifindex-based redirect, used by the bpf_redirect() XDP BFP helper,
a special map type/id are used. Map type of UNSPEC together with map id
equal to INT_MAX has the special meaning of an ifindex based
redirect. Note that valid map ids are 1 inclusive, INT_MAX exclusive
([1,INT_MAX[).
In addition to making the code easier to follow, using explicit type
and id in bpf_redirect_info has a slight positive performance impact
by avoiding a pointer indirection for the map type lookup, and instead
use the cacheline for bpf_redirect_info.
Since the actual map is not passed via bpf_redirect_info anymore, the
map lookup is only done in the BPF helper. This means that the
bpf_clear_redirect_map() function can be removed. The actual map item
is RCU protected.
The bpf_redirect_info flags member is not used by XDP, and not
read/written any more. The map member is only written to when
required/used, and not unconditionally.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210308112907.559576-3-bjorn.topel@gmail.com
Currently the bpf_redirect_map() implementation dispatches to the
correct map-lookup function via a switch-statement. To avoid the
dispatching, this change adds bpf_redirect_map() as a map
operation. Each map provides its bpf_redirect_map() version, and
correct function is automatically selected by the BPF verifier.
A nice side-effect of the code movement is that the map lookup
functions are now local to the map implementation files, which removes
one additional function call.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210308112907.559576-2-bjorn.topel@gmail.com
Introduce __xdp_build_skb_from_frame utility routine to build
the skb from xdp_frame. Rely on __xdp_build_skb_from_frame in
cpumap code.
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/4f9f4c6b3dd3933770c617eb6689dbc0c6e25863.1610475660.git.lorenzo@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Do not use rlimit-based memory accounting for cpumap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-21-guro@fb.com
We got slightly different patches removing a double word
in a comment in net/ipv4/raw.c - picked the version from net.
Simple conflict in drivers/net/ethernet/ibm/ibmvnic.c. Use cached
values instead of VNIC login response buffer (following what
commit 507ebe6444 ("ibmvnic: Fix use-after-free of VNIC login
response buffer") did).
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The functions bq_enqueue(), bq_flush_to_queue(), and bq_xmit_all() in
{cpu,dev}map.c always return zero. Changing the return type from int
to void makes the code easier to follow.
Suggested-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200901083928.6199-1-bjorn.topel@gmail.com
Some properties of the inner map is used in the verification time.
When an inner map is inserted to an outer map at runtime,
bpf_map_meta_equal() is currently used to ensure those properties
of the inserting inner map stays the same as the verification
time.
In particular, the current bpf_map_meta_equal() checks max_entries which
turns out to be too restrictive for most of the maps which do not use
max_entries during the verification time. It limits the use case that
wants to replace a smaller inner map with a larger inner map. There are
some maps do use max_entries during verification though. For example,
the map_gen_lookup in array_map_ops uses the max_entries to generate
the inline lookup code.
To accommodate differences between maps, the map_meta_equal is added
to bpf_map_ops. Each map-type can decide what to check when its
map is used as an inner map during runtime.
Also, some map types cannot be used as an inner map and they are
currently black listed in bpf_map_meta_alloc() in map_in_map.c.
It is not unusual that the new map types may not aware that such
blacklist exists. This patch enforces an explicit opt-in
and only allows a map to be used as an inner map if it has
implemented the map_meta_equal ops. It is based on the
discussion in [1].
All maps that support inner map has its map_meta_equal points
to bpf_map_meta_equal in this patch. A later patch will
relax the max_entries check for most maps. bpf_types.h
counts 28 map types. This patch adds 23 ".map_meta_equal"
by using coccinelle. -5 for
BPF_MAP_TYPE_PROG_ARRAY
BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE
BPF_MAP_TYPE_STRUCT_OPS
BPF_MAP_TYPE_ARRAY_OF_MAPS
BPF_MAP_TYPE_HASH_OF_MAPS
The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc()
is moved such that the same error is returned.
[1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com
Introduce XDP_REDIRECT support for eBPF programs attached to cpumap
entries.
This patch has been tested on Marvell ESPRESSObin using a modified
version of xdp_redirect_cpu sample in order to attach a XDP program
to CPUMAP entries to perform a redirect on the mvneta interface.
In particular the following scenario has been tested:
rq (cpu0) --> mvneta - XDP_REDIRECT (cpu0) --> CPUMAP - XDP_REDIRECT (cpu1) --> mvneta
$./xdp_redirect_cpu -p xdp_cpu_map0 -d eth0 -c 1 -e xdp_redirect \
-f xdp_redirect_kern.o -m tx_port -r eth0
tx: 285.2 Kpps rx: 285.2 Kpps
Attaching a simple XDP program on eth0 to perform XDP_TX gives
comparable results:
tx: 288.4 Kpps rx: 288.4 Kpps
Co-developed-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/2cf8373a731867af302b00c4ff16c122630c4980.1594734381.git.lorenzo@kernel.org
Introduce the capability to attach an eBPF program to cpumap entries.
The idea behind this feature is to add the possibility to define on
which CPU run the eBPF program if the underlying hw does not support
RSS. Current supported verdicts are XDP_DROP and XDP_PASS.
This patch has been tested on Marvell ESPRESSObin using xdp_redirect_cpu
sample available in the kernel tree to identify possible performance
regressions. Results show there are no observable differences in
packet-per-second:
$./xdp_redirect_cpu --progname xdp_cpu_map0 --dev eth0 --cpu 1
rx: 354.8 Kpps
rx: 356.0 Kpps
rx: 356.8 Kpps
rx: 356.3 Kpps
rx: 356.6 Kpps
rx: 356.6 Kpps
rx: 356.7 Kpps
rx: 355.8 Kpps
rx: 356.8 Kpps
rx: 356.8 Kpps
Co-developed-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/5c9febdf903d810b3415732e5cd98491d7d9067a.1594734381.git.lorenzo@kernel.org
As it has been already done for devmap, introduce 'struct bpf_cpumap_val'
to formalize the expected values that can be passed in for a CPUMAP.
Update cpumap code to use the struct.
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/754f950674665dae6139c061d28c1d982aaf4170.1594734381.git.lorenzo@kernel.org
Commit 77361825bb ("bpf: cpumap use ptr_ring_consume_batched") changed
away from using single frame ptr_ring dequeue (__ptr_ring_consume) to
consume a batched, but it uses a locked version, which as the comment
explain isn't needed.
Change to use the non-locked version __ptr_ring_consume_batched.
Fixes: 77361825bb ("bpf: cpumap use ptr_ring_consume_batched")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/a9c7d06f9a009e282209f0c8c7b2c5d9b9ad60b9.1594734381.git.lorenzo@kernel.org
Set map_btf_name and map_btf_id for all map types so that map fields can
be accessed by bpf programs.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/a825f808f22af52b018dbe82f1c7d29dab5fc978.1592600985.git.rdna@fb.com
In order to use standard 'xdp' prefix, rename convert_to_xdp_frame
utility routine in xdp_convert_buff_to_frame and replace all the
occurrences
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/6344f739be0d1a08ab2b9607584c4d5478c8c083.1590698295.git.lorenzo@kernel.org
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();
The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.
'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.
That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
Knowing the memory size backing the packet/xdp_frame data area, and
knowing it already have reserved room for skb_shared_info, simplifies
using build_skb significantly.
With this change we no-longer lie about the SKB truesize, but more
importantly a significant larger skb_tailroom is now provided, e.g. when
drivers uses a full PAGE_SIZE. This extra tailroom (in linear area) can be
used by the network stack when coalescing SKBs (e.g. in skb_try_coalesce,
see TCP cases where tcp_queue_rcv() can 'eat' skb).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/158945337822.97035.13557959180460986059.stgit@firesoul
When the kernel is built with CONFIG_DEBUG_PER_CPU_MAPS, the cpumap code
can trigger a spurious warning if CONFIG_CPUMASK_OFFSTACK is also set. This
happens because in this configuration, NR_CPUS can be larger than
nr_cpumask_bits, so the initial check in cpu_map_alloc() is not sufficient
to guard against hitting the warning in cpumask_check().
Fix this by explicitly checking the supplied key against the
nr_cpumask_bits variable before calling cpu_possible().
Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reported-by: Xiumei Mu <xmu@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Xiumei Mu <xmu@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200416083120.453718-1-toke@redhat.com
The cpumap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __cpu_map_flush()
and cpu_map_alloc().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-7-bjorn.topel@gmail.com
After the RCU flavor consolidation [1], call_rcu() and
synchronize_rcu() waits for preempt-disable regions (NAPI) in addition
to the read-side critical sections. As a result of this, the cleanup
code in cpumap can be simplified
* There is no longer a need to flush in __cpu_map_entry_free, since we
know that this has been done when the call_rcu() callback is
triggered.
* When freeing the map, there is no need to explicitly wait for a
flush. It's guaranteed to be done after the synchronize_rcu() call
in cpu_map_free().
[1] https://lwn.net/Articles/777036/
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-3-bjorn.topel@gmail.com
The socket map uses a linked list instead of a bitmap to keep track of
which entries to flush. Do the same for devmap and cpumap, as this means we
don't have to care about the map index when enqueueing things into the
map (and so we can cache the map lookup).
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When converting an xdp_frame into an SKB, and sending this into the network
stack, then the underlying XDP memory model need to release associated
resources, because the network stack don't have callbacks for XDP memory
models. The only memory model that needs this is page_pool, when a driver
use the DMA-mapping feature.
Introduce page_pool_release_page(), which basically does the same as
page_pool_unmap_page(). Add xdp_release_frame() as the XDP memory model
interface for calling it, if the memory model match MEM_TYPE_PAGE_POOL, to
save the function call overhead for others. Have cpumap call
xdp_release_frame() before xdp_scrub_frame().
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on 1 normalized pattern(s):
released under terms in gpl version 2 see copying
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 5 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531081035.689962394@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.
Let's unify these checks by moving them into bpf_map_charge_init().
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.
Currently the following design is used:
1) .alloc() callback optionally checks if the allocation will likely
succeed using bpf_map_precharge_memlock()
2) .alloc() performs actual allocations
3) .alloc() callback calculates map cost and sets map.memory.pages
4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
and performs actual charging; in case of failure the map is
destroyed
<map is in use>
1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
performs uncharge and releases the user
2) .map_free() callback releases the memory
The scheme can be simplified and made more robust:
1) .alloc() calculates map cost and calls bpf_map_charge_init()
2) bpf_map_charge_init() sets map.memory.user and performs actual
charge
3) .alloc() performs actual allocations
<map is in use>
1) .map_free() callback releases the memory
2) bpf_map_charge_finish() performs uncharge and releases the user
The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.
In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.
The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A lot of the performance gain comes from this patch.
While analysing performance overhead it was found that the largest CPU
stalls were caused when touching the struct page area. It is first read with
a READ_ONCE from build_skb_around via page_is_pfmemalloc(), and when freed
written by page_frag_free() call.
Measurements show that the prefetchw (W) variant operation is needed to
achieve the performance gain. We believe this optimization it two fold,
first the W-variant saves one step in the cache-coherency protocol, and
second it helps us to avoid the non-temporal prefetch HW optimizations and
bring this into all cache-levels. It might be worth investigating if
prefetch into L2 will have the same benefit.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As cpumap now batch consume xdp_frame's from the ptr_ring, it knows how many
SKBs it need to allocate. Thus, lets bulk allocate these SKBs via
kmem_cache_alloc_bulk() API, and use the previously introduced function
build_skb_around().
Notice that the flag __GFP_ZERO asks the slab/slub allocator to clear the
memory for us. This does clear a larger area than needed, but my micro
benchmarks on Intel CPUs show that this is slightly faster due to being a
cacheline aligned area is cleared for the SKBs. (For SLUB allocator, there
is a future optimization potential, because SKBs will with high probability
originate from same page. If we can find/identify continuous memory areas
then the Intel CPU memset rep stos will have a real performance gain.)
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move ptr_ring dequeue outside loop, that allocate SKBs and calls network
stack, as these operations that can take some time. The ptr_ring is a
communication channel between CPUs, where we want to reduce/limit any
cacheline bouncing.
Do a concentrated bulk dequeue via ptr_ring_consume_batched, to shorten the
period and times the remote cacheline in ptr_ring is read
Batch size 8 is both to (1) limit BH-disable period, and (2) consume one
cacheline on 64-bit archs. After reducing the BH-disable section further
then we can consider changing this, while still thinking about L1 cacheline
size being active.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We want to avoid leaking pointer info from xdp_frame (that is placed in
top of frame) like commit 6dfb970d3d ("xdp: avoid leaking info stored in
frame data on page reuse"), and followup commit 97e19cce05 ("bpf:
reserve xdp_frame size in xdp headroom") that reserve this headroom.
These changes also affected how cpumap constructed SKBs, as xdpf->headroom
size changed, the skb data starting point were in-effect shifted with 32
bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size
calculation also included xdpf->headroom which were reduced by same amount.
A bug was introduced in commit 77ea5f4cbe ("bpf/cpumap: make sure
frame_size for build_skb is aligned if headroom isn't"), where the
xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This
round-up to find the frame_size is in principle still correct as it does
not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e),
but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes
limit. This cause skb_shared_info to spill into next frame. It is a little
hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as
far as I calculate. This does happen in practise for TCP streams when
skb_try_coalesce() kicks in.
KASAN can be used to detect these wrong memory accesses, I've seen:
BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760
BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250
Driver veth also construct a SKB from xdp_frame in this way, but is not
affected, as it doesn't reserve/deduct the room (used by xdp_frame) from
the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(),
and allows SKB to use this area.
The fix in this patch is to do like veth and instead allow SKB to (re)use
the area occupied by xdp_frame, by clearing via xdp_scrub_frame(). (This
does kill the idea of the SKB being able to access (mem) info from this
area, but I guess it was a bad idea anyhow, and it was already killed by
the veth changes.)
Fixes: 77ea5f4cbe ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The frame_size passed to build_skb must be aligned, else it is
possible that the embedded struct skb_shared_info gets unaligned.
For correctness make sure that xdpf->headroom in included in the
alignment. No upstream drivers can hit this, as all XDP drivers provide
an aligned headroom. This was discovered when playing with implementing
XDP support for mvneta, which have a 2 bytes DSA header, and this
Marvell ARM64 platform didn't like doing atomic operations on an
unaligned skb_shinfo(skb)->dataref addresses.
Fixes: 1c601d829a ("bpf: cpumap xdp_buff to skb conversion and allocation")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Commits 109980b894 ("bpf: don't select potentially stale ri->map
from buggy xdp progs") and 7c30013133 ("bpf: fix ri->map_owner
pointer on bpf_prog_realloc") tried to mitigate that buggy programs
using bpf_redirect_map() helper call do not leave stale maps behind.
Idea was to add a map_owner cookie into the per CPU struct redirect_info
which was set to prog->aux by the prog making the helper call as a
proof that the map is not stale since the prog is implicitly holding
a reference to it. This owner cookie could later on get compared with
the program calling into BPF whether they match and therefore the
redirect could proceed with processing the map safely.
In (obvious) hindsight, this approach breaks down when tail calls are
involved since the original caller's prog->aux pointer does not have
to match the one from one of the progs out of the tail call chain,
and therefore the xdp buffer will be dropped instead of redirected.
A way around that would be to fix the issue differently (which also
allows to remove related work in fast path at the same time): once
the life-time of a redirect map has come to its end we use it's map
free callback where we need to wait on synchronize_rcu() for current
outstanding xdp buffers and remove such a map pointer from the
redirect info if found to be present. At that time no program is
using this map anymore so we simply invalidate the map pointers to
NULL iff they previously pointed to that instance while making sure
that the redirect path only reads out the map once.
Fixes: 97f91a7cf0 ("bpf: add bpf_redirect_map helper routine")
Fixes: 109980b894 ("bpf: don't select potentially stale ri->map from buggy xdp progs")
Reported-by: Sebastiano Miano <sebastiano.miano@polito.it>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-08-13
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add driver XDP support for veth. This can be used in conjunction with
redirect of another XDP program e.g. sitting on NIC so the xdp_frame
can be forwarded to the peer veth directly without modification,
from Toshiaki.
2) Add a new BPF map type REUSEPORT_SOCKARRAY and prog type SK_REUSEPORT
in order to provide more control and visibility on where a SO_REUSEPORT
sk should be located, and the latter enables to directly select a sk
from the bpf map. This also enables map-in-map for application migration
use cases, from Martin.
3) Add a new BPF helper bpf_skb_ancestor_cgroup_id() that returns the id
of cgroup v2 that is the ancestor of the cgroup associated with the
skb at the ancestor_level, from Andrey.
4) Implement BPF fs map pretty-print support based on BTF data for regular
hash table and LRU map, from Yonghong.
5) Decouple the ability to attach BTF for a map from the key and value
pretty-printer in BPF fs, and enable further support of BTF for maps for
percpu and LPM trie, from Daniel.
6) Implement a better BPF sample of using XDP's CPU redirect feature for
load balancing SKB processing to remote CPU. The sample implements the
same XDP load balancing as Suricata does which is symmetric hash based
on IP and L4 protocol, from Jesper.
7) Revert adding NULL pointer check with WARN_ON_ONCE() in __xdp_return()'s
critical path as it is ensured that the allocator is present, from Björn.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit a26ca7c982 ("bpf: btf: Add pretty print support to
the basic arraymap") and 699c86d6ec ("bpf: btf: add pretty
print for hash/lru_hash maps") enabled support for BTF and
dumping via BPF fs for array and hash/lru map. However, both
can be decoupled from each other such that regular BPF maps
can be supported for attaching BTF key/value information,
while not all maps necessarily need to dump via map_seq_show_elem()
callback.
The basic sanity check which is a prerequisite for all maps
is that key/value size has to match in any case, and some maps
can have extra checks via map_check_btf() callback, e.g.
probing certain types or indicating no support in general. With
that we can also enable retrieving BTF info for per-cpu map
types and lpm.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
When removing a cpumap entry, a number of syncronization steps happen.
Eventually the teardown code __cpu_map_entry_free is invoked from/via
call_rcu.
The teardown code __cpu_map_entry_free() flushes remaining xdp_frames,
by invoking bq_flush_to_queue, which calls xdp_return_frame_rx_napi().
The issues is that the teardown code is not running in the RX NAPI
code path. Thus, it is not allowed to invoke the NAPI variant of
xdp_return_frame.
This bug was found and triggered by using the --stress-mode option to
the samples/bpf program xdp_redirect_cpu. It is hard to trigger,
because the ptr_ring have to be full and cpumap bulk queue max
contains 8 packets, and a remote CPU is racing to empty the ptr_ring
queue.
Fixes: 389ab7f01a ("xdp: introduce xdp_return_frame_rx_napi")
Tested-by: Jean-Tsung Hsiao <jhsiao@redhat.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When sending an xdp_frame through xdp_do_redirect call, then error
cases can happen where the xdp_frame needs to be dropped, and
returning an -errno code isn't sufficient/possible any-longer
(e.g. for cpumap case). This is already fully supported, by simply
calling xdp_return_frame.
This patch is an optimization, which provides xdp_return_frame_rx_napi,
which is a faster variant for these error cases. It take advantage of
the protection provided by XDP RX running under NAPI protection.
This change is mostly relevant for drivers using the page_pool
allocator as it can take advantage of this. (Tested with mlx5).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Changing API xdp_return_frame() to take struct xdp_frame as argument,
seems like a natural choice. But there are some subtle performance
details here that needs extra care, which is a deliberate choice.
When de-referencing xdp_frame on a remote CPU during DMA-TX
completion, result in the cache-line is change to "Shared"
state. Later when the page is reused for RX, then this xdp_frame
cache-line is written, which change the state to "Modified".
This situation already happens (naturally) for, virtio_net, tun and
cpumap as the xdp_frame pointer is the queued object. In tun and
cpumap, the ptr_ring is used for efficiently transferring cache-lines
(with pointers) between CPUs. Thus, the only option is to
de-referencing xdp_frame.
It is only the ixgbe driver that had an optimization, in which it can
avoid doing the de-reference of xdp_frame. The driver already have
TX-ring queue, which (in case of remote DMA-TX completion) have to be
transferred between CPUs anyhow. In this data area, we stored a
struct xdp_mem_info and a data pointer, which allowed us to avoid
de-referencing xdp_frame.
To compensate for this, a prefetchw is used for telling the cache
coherency protocol about our access pattern. My benchmarks show that
this prefetchw is enough to compensate the ixgbe driver.
V7: Adjust for commit d9314c474d ("i40e: add support for XDP_REDIRECT")
V8: Adjust for commit bd658dda42 ("net/mlx5e: Separate dma base address
and offset in dma_sync call")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The generic xdp_frame format, was inspired by the cpumap own internal
xdp_pkt format. It is now time to convert it over to the generic
xdp_frame format. The cpumap needs one extra field dev_rx.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce an xdp_return_frame API, and convert over cpumap as
the first user, given it have queued XDP frame structure to leverage.
V3: Cleanup and remove C99 style comments, pointed out by Alex Duyck.
V6: Remove comment that id will be added later (Req by Alex Duyck)
V8: Rename enum mem_type to xdp_mem_type (found by kbuild test robot)
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There're several implications after commit 0bf7800f17 ("ptr_ring:
try vmalloc() when kmalloc() fails") with the using of vmalloc() since
can't allow GFP_ATOMIC but mandate GFP_KERNEL. This will lead a WARN
since cpumap try to call with GFP_ATOMIC. Fortunately, entry
allocation of cpumap can only be done through syscall path which means
GFP_ATOMIC is not necessary, so fixing this by replacing GFP_ATOMIC
with GFP_KERNEL.
Reported-by: syzbot+1a240cdb1f4cc88819df@syzkaller.appspotmail.com
Fixes: 0bf7800f17 ("ptr_ring: try vmalloc() when kmalloc() fails")
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: akpm@linux-foundation.org
Cc: dhowells@redhat.com
Cc: hannes@cmpxchg.org
Signed-off-by: Jason Wang <jasowang@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Fixes the following sparse warnings:
kernel/bpf/cpumap.c:146:6: warning:
symbol '__cpu_map_queue_destructor' was not declared. Should it be static?
kernel/bpf/cpumap.c:225:16: warning:
symbol 'cpu_map_build_skb' was not declared. Should it be static?
kernel/bpf/cpumap.c:340:26: warning:
symbol '__cpu_map_entry_alloc' was not declared. Should it be static?
kernel/bpf/cpumap.c:398:6: warning:
symbol '__cpu_map_entry_free' was not declared. Should it be static?
kernel/bpf/cpumap.c:441:6: warning:
symbol '__cpu_map_entry_replace' was not declared. Should it be static?
kernel/bpf/cpumap.c:454:5: warning:
symbol 'cpu_map_delete_elem' was not declared. Should it be static?
kernel/bpf/cpumap.c:467:5: warning:
symbol 'cpu_map_update_elem' was not declared. Should it be static?
kernel/bpf/cpumap.c:505:6: warning:
symbol 'cpu_map_free' was not declared. Should it be static?
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
All map types reimplement the field-by-field copy of union bpf_attr
members into struct bpf_map. Add a helper to perform this operation.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Discovered that the compiler laid-out asm code in suboptimal way
when studying perf report during benchmarking of cpumap. Help
the compiler by the marking unlikely code paths.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
As pointed out by Michael, commit 1c601d829a ("bpf: cpumap xdp_buff
to skb conversion and allocation") contains a classical example of the
potential lost wake-up problem.
We need to recheck the condition __ptr_ring_empty() after changing
current->state to TASK_INTERRUPTIBLE, this avoids a race between
wake_up_process() and schedule(). After this, a race with
wake_up_process() will simply change the state to TASK_RUNNING, and
the schedule() call not really put us to sleep.
Fixes: 1c601d829a ("bpf: cpumap xdp_buff to skb conversion and allocation")
Reported-by: "Michael S. Tsirkin" <mst@redhat.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds two tracepoint to the cpumap. One for the enqueue side
trace_xdp_cpumap_enqueue() and one for the kthread dequeue side
trace_xdp_cpumap_kthread().
To mitigate the tracepoint overhead, these are invoked during the
enqueue/dequeue bulking phases, thus amortizing the cost.
The obvious use-cases are for debugging and monitoring. The
non-intuitive use-case is using these as a feedback loop to know the
system load. One can imagine auto-scaling by reducing, adding or
activating more worker CPUs on demand.
V4: tracepoint remove time_limit info, instead add sched info
V8: intro struct bpf_cpu_map_entry members cpu+map_id in this patch
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes cpumap functional, by adding SKB allocation and
invoking the network stack on the dequeuing CPU.
For constructing the SKB on the remote CPU, the xdp_buff in converted
into a struct xdp_pkt, and it mapped into the top headroom of the
packet, to avoid allocating separate mem. For now, struct xdp_pkt is
just a cpumap internal data structure, with info carried between
enqueue to dequeue.
If a driver doesn't have enough headroom it is simply dropped, with
return code -EOVERFLOW. This will be picked up the xdp tracepoint
infrastructure, to allow users to catch this.
V2: take into account xdp->data_meta
V4:
- Drop busypoll tricks, keeping it more simple.
- Skip RPS and Generic-XDP-recursive-reinjection, suggested by Alexei
V5: correct RCU read protection around __netif_receive_skb_core.
V6: Setting TASK_RUNNING vs TASK_INTERRUPTIBLE based on talk with Rik van Riel
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>