Use instrument_atomic_read_write() for atomic RMW ops.
Cc: Will Deacon <will@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: <linux-arch@vger.kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This switches atomic-instrumented.h to use the generic instrumentation
wrappers provided by instrumented.h.
No functional change intended.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prefer __always_inline for atomic wrappers. When building for size
(CC_OPTIMIZE_FOR_SIZE), some compilers appear to be less inclined to
inline even relatively small static inline functions that are assumed to
be inlinable such as atomic ops. This can cause problems, for example in
UACCESS regions.
By using __always_inline, we let the real implementation and not the
wrapper determine the final inlining preference.
For x86 tinyconfig we observe:
- vmlinux baseline: 1316204
- vmlinux with patch: 1315988 (-216 bytes)
This came up when addressing UACCESS warnings with CC_OPTIMIZE_FOR_SIZE
in the KCSAN runtime:
http://lkml.kernel.org/r/58708908-84a0-0a81-a836-ad97e33dbb62@infradead.org
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This adds KCSAN instrumentation to atomic-instrumented.h.
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
We currently check the atomic headers at build-time to ensure they
haven't been modified directly, and these checks require regenerating
the headers in full. As this takes a few seconds, even when
parallelized, this is too slow to run for every kernel build.
Instead, we can generate a hash of each header as we generate them,
which we can cheaply check at build time (~0.16s for all headers).
This patch does so, updating headers with their hashes using the new
gen-atomics.sh script. As some users apparently build the kernel wihout
coreutils, lacking sha1sum, the checks are skipped in this case.
Presumably, most developers have a working coreutils installation.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: anders.roxell@linaro.org
Cc: linux-kernel@vger.kernel.rg
Cc: naresh.kamboju@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As a step towards ensuring the atomic* APIs are consistent, let's switch
to wrappers generated by gen-atomic-instrumented.h, using the same table
used to generate the fallbacks and atomic-long wrappers.
These are checked in rather than generated with Kbuild, since:
* This allows inspection of the atomics with git grep and ctags on a
pristine tree, which Linus strongly prefers being able to do.
* The fallbacks are not affected by machine details or configuration
options, so it is not necessary to regenerate them to take these into
account.
* These are included by files required *very* early in the build process
(e.g. for generating bounds.h), and we'd rather not complicate the
top-level Kbuild file with dependencies.
Generating the atomic headers means that the instrumented wrappers will
remain in sync with the rest of the atomic APIs, and we gain all the
ordering variants of each atomic without having to manually expanded
them all.
The KASAN checks are automatically generated based on the function
parameters defined in atomics.tbl. Note that try_cmpxchg() now correctly
treats 'old' as a parameter that may be written to, and not only read as
the hand-written instrumentation assumed.
Other than the change to try_cmpxchg(), existing code should not be
affected by this patch. The patch introduces instrumentation for all
optional atomics (and ordering variants), along with the ifdeffery this
requires, enabling other architectures to make use of the instrumented
atomics.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: catalin.marinas@arm.com
Cc: linuxdrivers@attotech.com
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Link: http://lkml.kernel.org/r/20180904104830.2975-5-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently don't instrument cmpxchg_double() and
cmpxchg_double_local() due to compilation issues reported in the past,
which are supposedly related to GCC bug 72873 [1], reported when GCC 7
was not yet released. This bug only applies to x86-64, and does not
apply to other architectures.
While the test case for GCC bug 72873 triggers issues with released
versions of GCC, the instrumented kernel code compiles fine for all
configurations I have tried, and it is unclear how the two cases
are/were related.
As we can't reproduce the kernel build failures, let's instrument
cmpxchg_double*() again. We can revisit the issue if build failures
reappear.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andy.shevchenko@gmail.com
Cc: aryabinin@virtuozzo.com
Cc: catalin.marinas@arm.com
Cc: glider@google.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: parri.andrea@gmail.com
Cc: peter@hurleysoftware.com
Link: http://lkml.kernel.org/r/20180716113017.3909-6-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we define some fairly verbose wrappers for the cmpxchg()
family so that we can pass a pointer and size into kasan_check_write().
The wrappers duplicate the size-switching logic necessary in arch code,
and only work for scalar types. On some architectures, (cmp)xchg are
used on non-scalar types, and thus the instrumented wrappers need to be
able to handle this.
We could take the type-punning logic from {READ,WRITE}_ONCE(), but this
makes the wrappers even more verbose, and requires several local
variables in the macros.
Instead, let's simplify the wrappers into simple macros which:
* snapshot the pointer into a single local variable, called __ai_ptr to
avoid conflicts with variables in the scope of the caller.
* call kasan_check_write() on __ai_ptr.
* invoke the relevant arch_*() function, passing the original arguments,
bar __ai_ptr being substituted for ptr.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andy.shevchenko@gmail.com
Cc: arnd@arndb.de
Cc: aryabinin@virtuozzo.com
Cc: catalin.marinas@arm.com
Cc: glider@google.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: parri.andrea@gmail.com
Cc: peter@hurleysoftware.com
Link: http://lkml.kernel.org/r/20180716113017.3909-4-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The conditional inc/dec ops differ for atomic_t and atomic64_t:
- atomic_inc_unless_positive() is optional for atomic_t, and doesn't exist for atomic64_t.
- atomic_dec_unless_negative() is optional for atomic_t, and doesn't exist for atomic64_t.
- atomic_dec_if_positive is optional for atomic_t, and is mandatory for atomic64_t.
Let's make these consistently optional for both. At the same time, let's
clean up the existing fallbacks to use atomic_try_cmpxchg().
The instrumented atomics are updated accordingly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-18-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many of the inc/dec ops are mandatory, but for most architectures inc/dec are
simply trivial wrappers around their corresponding add/sub ops.
Let's make all the inc/dec ops optional, so that we can get rid of these
boilerplate wrappers.
The instrumented atomics are updated accordingly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-17-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some of the atomics return the result of a test applied after the atomic
operation, and almost all architectures implement these as trivial
wrappers around the underlying atomic. Specifically:
* <atomic>_inc_and_test(v) is (<atomic>_inc_return(v) == 0)
* <atomic>_dec_and_test(v) is (<atomic>_dec_return(v) == 0)
* <atomic>_sub_and_test(i, v) is (<atomic>_sub_return(i, v) == 0)
* <atomic>_add_negative(i, v) is (<atomic>_add_return(i, v) < 0)
Rather than have these definitions duplicated in all architectures, with
minor inconsistencies in formatting and documentation, let's make these
operations optional, with default fallbacks as above. Implementations
must now provide a preprocessor symbol.
The instrumented atomics are updated accordingly.
Both x86 and m68k have custom implementations, which are left as-is,
given preprocessor symbols to avoid being overridden.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-16-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Architectures with atomic64_fetch_add_unless() provide a preprocessor
symbol if they do so, and all other architectures have trivial C
implementations of atomic64_add_unless() which are near-identical.
Let's unify the trivial definitions of atomic64_fetch_add_unless() in
<linux/atomic.h>, so that we always have both
atomic64_fetch_add_unless() and atomic64_add_unless() with less
boilerplate code.
This means that atomic64_add_unless() is always implemented in core
code, and the instrumented atomics are updated accordingly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-15-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently all architectures must implement atomic_fetch_add_unless(),
with common code providing atomic_add_unless(). Architectures must also
implement atomic64_add_unless() directly, with no corresponding
atomic64_fetch_add_unless().
This divergence is unfortunate, and means that the APIs for atomic_t,
atomic64_t, and atomic_long_t differ.
In preparation for unifying things, with architectures providing
atomic64_fetch_add_unless, this patch adds a generic
atomic64_add_unless() which will use atomic64_fetch_add_unless(). The
instrumented atomics are updated to take this case into account.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Albert Ou <albert@sifive.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Link: https://lore.kernel.org/lkml/20180621121321.4761-8-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several architectures these have a near-identical implementation based
on atomic_read() and atomic_cmpxchg() which we can instead define in
<linux/atomic.h>, so let's do so, using something close to the existing
x86 implementation with try_cmpxchg().
Where an architecture provides its own atomic_fetch_add_unless(), it
must define a preprocessor symbol for it. The instrumented atomics are
updated accordingly.
Note that arch/arc's existing atomic_fetch_add_unless() had redundant
barriers, as these are already present in its atomic_cmpxchg()
implementation.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Link: https://lore.kernel.org/lkml/20180621121321.4761-7-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We define a trivial fallback for atomic_inc_not_zero(), but don't do
the same for atomic64_inc_not_zero(), leading most architectures to
define the same boilerplate.
Let's add a fallback in <linux/atomic.h>, and remove the redundant
implementations. Note that atomic64_add_unless() is always defined in
<linux/atomic.h>, and promotes its arguments to the requisite types, so
we need not do this explicitly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-6-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some of the atomics return a status value, which is a boolean value
describing whether the operation was performed. To make it clear that
this is a boolean value, let's update the common fallbacks to return
bool, fixing up the return values and comments likewise.
At the same time, let's simplify the description of the operations in
their respective comments.
The instrumented atomics and generic atomic64 implementation are updated
accordingly.
Note that atomic64_dec_if_positive() doesn't follow the usual test op
pattern, and returns the would-be decremented value. This is not
changed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-5-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While __atomic_add_unless() was originally intended as a building-block
for atomic_add_unless(), it's now used in a number of places around the
kernel. It's the only common atomic operation named __atomic*(), rather
than atomic_*(), and for consistency it would be better named
atomic_fetch_add_unless().
This lack of consistency is slightly confusing, and gets in the way of
scripting atomics. Given that, let's clean things up and promote it to
an official part of the atomics API, in the form of
atomic_fetch_add_unless().
This patch converts definitions and invocations over to the new name,
including the instrumented version, using the following script:
----
git grep -w __atomic_add_unless | while read line; do
sed -i '{s/\<__atomic_add_unless\>/atomic_fetch_add_unless/}' "${line%%:*}";
done
git grep -w __arch_atomic_add_unless | while read line; do
sed -i '{s/\<__arch_atomic_add_unless\>/arch_atomic_fetch_add_unless/}' "${line%%:*}";
done
----
Note that we do not have atomic{64,_long}_fetch_add_unless(), which will
be introduced by later patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-2-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comments are factored out from the code changes to make them
easier to read. Add them separately to explain some non-obvious
aspects.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/cc595efc644bb905407012d82d3eb8bac3368e7a.1517246437.git.dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KASAN uses compiler instrumentation to intercept all memory accesses. But it does
not see memory accesses done in assembly code. One notable user of assembly code
is atomic operations. Frequently, for example, an atomic reference decrement is
the last access to an object and a good candidate for a racy use-after-free.
Add manual KASAN checks to atomic operations.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>,
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>,
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/2fa6e7f0210fd20fe404e5b67e6e9213af2b69a1.1517246437.git.dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>