The reada_lock in struct btrfs_device was only initialised, and not
actually used. That's good because there's another lock also called
reada_lock in the btrfs_fs_info that was quite heavily used. Remove
this one.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before rbio_orig_end_io() goes to free rbio, rbio may get merged with
more bios from other rbios and rbio->bio_list becomes non-empty,
in that case, these newly merged bios don't end properly.
Once unlock_stripe() is done, rbio->bio_list will not be updated any
more and we can call bio_endio() on all queued bios.
It should only happen in error-out cases, the normal path of recover
and full stripe write have already set RBIO_RMW_LOCKED_BIT to disable
merge before doing IO, so rbio_orig_end_io() called by them doesn't
have the above issue.
Reported-by: Jérôme Carretero <cJ-ko@zougloub.eu>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since raid6 recover tries all possible combinations of failed stripes,
- when raid6 rebuild algorithm is used, i.e. raid6_datap_recov() and
raid6_2data_recov(), it may change the in-memory content of failed
stripes, if such a raid bio is cached, a later raid write rmw or recover
can steal @stripe_pages from it instead of reading from disks, such that
it carries the wrong content to do write rmw or recovery and ends up
with corruption or recovery failures.
- when raid5 rebuild algorithm is used, i.e. xor, raid bio can be cached
because the only failed stripe which contains @rbio->bio_pages gets
modified, others remain the same so that their in-memory content is
consistent with their on-disk content.
This adds a check to skip caching rbio if using raid6 recover.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Bio iterated by set_bio_pages_uptodate() is raid56 internal one, so it
will never be a BIO_CLONED bio, and since this is called by end_io
functions, bio->bi_iter.bi_size is zero, we mustn't use
bio_for_each_segment() as that is a no-op if bi_size is zero.
Fixes: 6592e58c6b ("Btrfs: fix write corruption due to bio cloning on raid5/6")
Cc: <stable@vger.kernel.org> # v4.12-rc6+
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no function named btrfs_get_inode_index_count.
Explanation for magic number index_cnt=2 in btrfs_new_inode() is
actually located in btrfs_set_inode_index_count().
So replace 'btrfs_get_inode_index_count' in the comment by
'btrfs_set_inode_index_count'.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not used outside of extent-tree so there is no reason to not be
static.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We call btrfs_free_stale_device() only when we alloc a new struct
btrfs_device (ret=1), so move it closer to where we alloc the new
device. Also drop the comments.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've noticed that the updated item checker stack consumption increased
dramatically in 542f5385e20cf97447 ("btrfs: tree-checker: Add checker
for dir item")
tree-checker.c:check_leaf +552 (176 -> 728)
The array is 255 bytes long, dynamic allocation would slow down the
sanity checks so it's more reasonable to keep it on-stack. Moving the
variable to the scope of use reduces the stack usage again
tree-checker.c:check_leaf -264 (728 -> 464)
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
gcc-8 reports:
fs/btrfs/ioctl.c: In function 'btrfs_ioctl':
./include/linux/string.h:245:9: warning: '__builtin_strncpy' specified
bound 1024 equals destination size [-Wstringop-truncation]
We need one less byte or call strlcpy() to make it a nul-terminated
string. This is done on the next line anyway, but we want to avoid the
warning.
Signed-off-by: Xiongfeng Wang <xiongfeng.wang@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
It appears from the original commit [1] that there isn't any design
specific reason not to fail the mount instead of just warning. This
patch will change it to fail.
[1]
commit 319e4d0661
btrfs: Enhance super validation check
Fixes: 319e4d0661 ("btrfs: Enhance super validation check")
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs-progs uses super flag bit BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34).
So just define that in kernel so that we know its been used.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've avoided data losing raid profile when doing balance, but it
turns out that deleting a device could also result in the same
problem.
Say we have 3 disks, and they're created with '-d raid1' profile.
- We have chunk P (the only data chunk on the empty btrfs).
- Suppose that chunk P's two raid1 copies reside in disk A and disk B.
- Now, 'btrfs device remove disk B'
btrfs_rm_device()
-> btrfs_shrink_device()
-> btrfs_relocate_chunk() #relocate any chunk on disk B
to other places.
- Chunk P will be removed and a new chunk will be created to hold
those data, but as chunk P is the only one holding raid1 profile,
after it goes away, the new chunk will be created as single profile
which is our default profile.
This fixes the problem by creating an empty data chunk before
relocating the data chunk.
Metadata/System chunk are supposed to have non-zero bytes all the time
so their raid profile is preserved.
Reported-by: James Alandt <James.Alandt@wdc.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For a fallocate's zero range operation that targets a range with an end
that is not aligned to the sector size, we can end up not updating the
inode's i_size. This happens when the last page of the range maps to an
unwritten (prealloc) extent and before that last page we have either a
hole or a written extent. This is because in this scenario we relied
on a call to btrfs_prealloc_file_range() to update the inode's i_size,
however it can only update the i_size to the "down aligned" end of the
range.
Example:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ xfs_io -f -c "pwrite -S 0xff 0 428K" /mnt/foobar
$ xfs_io -c "falloc -k 428K 4K" /mnt/foobar
$ xfs_io -c "fzero 0 430K" /mnt/foobar
$ du --bytes /mnt/foobar
438272 /mnt/foobar
The inode's i_size was left as 428Kb (438272 bytes) when it should have
been updated to 430Kb (440320 bytes).
Fix this by always updating the inode's i_size explicitly after zeroing
the range.
Fixes: ba6d5887946ff86d93dc ("Btrfs: add support for fallocate's zero range operation")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During a buffered IO write, we can have an extent state that we got when
we locked the range (if the range starts at an offset lower than eof), so
always pass it to btrfs_dirty_pages() so that setting the delalloc bit
in the range does not need to do a full search in the inode's io tree,
saving time and reducing the amount of time we hold the io tree's lock.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This implements support the zero range operation of fallocate. For now
at least it's as simple as possible while reusing most of the existing
fallocate and hole punching infrastructure.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since fail stripe index in rbio would be used to decide which
algorithm reconstruction would be run, we cannot merge rbios if
their's fail striped indexes are different, otherwise, one of the two
reconstructions would fail.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Given the above
'
if (last->operation != cur->operation)
return 0;
',
it's guaranteed that two operations are same.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Assign ret = -EINVAL where it is actually required.
Remove { } around single line if else code.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_device::scrub_device is not a device which is being scrubbed,
but it holds the scrub context, so rename to reflect the same. No
functional changes here.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no other consumer for btrfs_handle_error() other than
__btrfs_handle_fs_error(), further this function quite small.
Merge it into its parent.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_handle_fs_error() sets BTRFS_FS_STATE_ERROR, and calls
btrfs_handle_error() so no need to check if the BTRFS_FS_STATE_ERROR
is set in btrfs_handle_error(). And there is no other user of
btrfs_handle_error() as well.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a scenario that can end up with rebuild process failing to
return good content, i.e.
suppose that all disks can be read without problems and if the content
that was read out doesn't match its checksum, currently for raid6
btrfs at most retries twice,
- the 1st retry is to rebuild with all other stripes, it'll eventually
be a raid5 xor rebuild,
- if the 1st fails, the 2nd retry will deliberately fail parity p so
that it will do raid6 style rebuild,
however, the chances are that another non-parity stripe content also
has something corrupted, so that the above retries are not able to
return correct content, and users will think of this as data loss.
More seriouly, if the loss happens on some important internal btree
roots, it could refuse to mount.
This extends btrfs to do more retries and each retry fails only one
stripe. Since raid6 can tolerate 2 disk failures, if there is one
more failure besides the failure on which we're recovering, this can
always work.
The worst case is to retry as many times as the number of raid6 disks,
but given the fact that such a scenario is really rare in practice,
it's still acceptable.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid6 corruption is that,
suppose that all disks can be read without problems and if the content
that was read out doesn't match its checksum, currently for raid6
btrfs at most retries twice,
- the 1st retry is to rebuild with all other stripes, it'll eventually
be a raid5 xor rebuild,
- if the 1st fails, the 2nd retry will deliberately fail parity p so
that it will do raid6 style rebuild,
however, the chances are that another non-parity stripe content also
has something corrupted, so that the above retries are not able to
return correct content.
We've fixed normal reads to rebuild raid6 correctly with more retries
in Patch "Btrfs: make raid6 rebuild retry more"[1], this is to fix
scrub to do the exactly same rebuild process.
[1]: https://patchwork.kernel.org/patch/10091755/
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update btrfs_check_rw_degradable() to check against the given device if
its lost.
We can use this function to know if the volume is going to be in
degraded mode OR failed state, when the given device fails. Which is
needed when we are handling the device failed state.
A preparatory patch does not affect the flow as such.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
[ enhance comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass either GFP_NOFS or GFP_KERNEL now, so we can sink the
parameter to the function, though we lose some of the slightly better
semantics of GFP_KERNEL in some places, it's worth cleaning up the
callchains.
Signed-off-by: David Sterba <dsterba@suse.com>
There's only one instance where we pass different gfp mask to
unlock_extent_cached. Add a separate helper for that and then we can
drop the gfp parameter from unlock_extent_cached.
Signed-off-by: David Sterba <dsterba@suse.com>
Recent patches reworking the mount path left some unused parameters. We
pass a vfsmount to mount_subvol, the flags and data (ie. mount options)
have been already applied and we will not need them.
Signed-off-by: David Sterba <dsterba@suse.com>
Long ago, commit edf24abe51 ("btrfs: sanity mount option parsing and
early mount code") split the btrfs_parse_options() into two parts
(btrfs_parse_early_options() and btrfs_parse_options()). As a result,
btrfs_parse_optins no longer gets called twice and is the last one to
parse mount option string. Therefore there is no need to dup it.
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In fact nobody is waiting on @wait's waitqueue, it can be safely
removed.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio is not referenced after it has been submitted and the endio is
going to consume the sole reference on successful submission. On error,
the callers of __btrfs_submit_dio_bio do invoke bio_put so we don't
leak it either.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio is never referenced after it has been submitted so there is no
point in getting an extra reference.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio that is passsed is the newly created repair bio which already
has a reference count of 1, which is going to be consumed by the
endio routine on successful submission. On error the handler also
calls bio_put.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
bio_get/set is necessary only if the bio is going to be referenced
following submissions. In the code paths where such calls are made
we don't really need them since the bio is referenced only if
btrfs_map_bio returns an error. And this function can return an error
prior to submission only. So referencing the bio is safe. Furthermore
we do call bio_endio which will consume the last reference. So let's
remove the redundant calls.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As it's a single instance and local to the file, we don't need to pass
it as an argument.
Reviewed-by: Timofey Titovets <nefelim4ag@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The callback is trivial and we don't need the abstraction for our
purposes. Let's open code it.
Reviewed-by: Timofey Titovets <nefelim4ag@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The callback is trivial and we don't need the abstraction for our
purposes. Let's open code it and also make the array types explicit.
Reviewed-by: Timofey Titovets <nefelim4ag@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove unused arg 'holder' from parse_subvol_options(), which has been
forgotten to be cleaned in the commit b99beb110e2d ("btrfs: split
parse_early_options() in two").
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since setup_root_args() is not used anymore, just remove it.
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now parse_early_options() is used by both btrfs_mount() and
btrfs_mount_root(). However, the former only needs subvol related part
and the latter needs the others.
Therefore extract the subvol related parts from parse_early_options() and
move it to new parse function (parse_subvol_options()).
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Cleanup btrfs_mount() by using btrfs_mount_root(). This avoids getting
btrfs_mount() called twice in mount path.
Old btrfs_mount() will do:
0. VFS layer calls vfs_kern_mount() with registered file_system_type
(for btrfs, btrfs_fs_type). btrfs_mount() is called on the way.
1. btrfs_parse_early_options() parses "subvolid=" mount option and set the
value to subvol_objectid. Otherwise, subvol_objectid has the initial
value of 0
2. check subvol_objectid is 5 or not. Assume this time id is not 5, then
btrfs_mount() returns by calling mount_subvol()
3. In mount_subvol(), original mount options are modified to contain
"subvolid=0" in setup_root_args(). Then, vfs_kern_mount() is called with
btrfs_fs_type and new options
4. btrfs_mount() is called again
5. btrfs_parse_early_options() parses "subvolid=0" and set 5 (instead of 0)
to subvol_objectid
6. check subvol_objectid is 5 or not. This time id is 5 and mount_subvol()
is not called. btrfs_mount() finishes mounting a root
7. (in mount_subvol()) with using a return vale of vfs_kern_mount(), it
calls mount_subtree()
8. return subvolume's dentry
Reusing the same file_system_type (and btrfs_mount()) for vfs_kern_mount()
is the cause of complication.
Instead, new btrfs_mount() will do:
1. parse subvol id related options for later use in mount_subvol()
2. mount device's root by calling vfs_kern_mount() with
btrfs_root_fs_type, which is not registered to VFS by
register_filesystem(). As a result, btrfs_mount_root() is called
3. return by calling mount_subvol()
The code of 2. is moved from the first part of mount_subvol().
The semantics of device holder changes from btrfs_fs_type to
btrfs_root_fs_type and has to be used in all contexts. Otherwise we'd
get wrong results when mount and dev scan would not check the same
thing. (this has been found indendently and the fix is folded into this
patch)
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ fold the btrfs_control_ioctl fixup, extend the comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add btrfs_mount_root() and new file_system_type for preparation of cleanup
of btrfs_mount(). Code path is not changed yet.
btrfs_mount_root() is almost the same as current btrfs_mount(), but doesn't
have subvolume related part.
Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Functions called from extent_write_cache_pages used void* as generic
callback data, but all of them convert it to extent_page_data, or use it
directly.
Signed-off-by: David Sterba <dsterba@suse.com>
The function extent_write_cache_pages is modelled after
write_cache_pages which is a generic interface and the writepage
parameter makes sense there. In btrfs we know exactly which callback
we're going to use, so we can pass it directly.
Signed-off-by: David Sterba <dsterba@suse.com>
flush_epd_write_bio is same as flush_write_bio, no point having two such
functions. Merge them to flush_write_bio. The 'noinline' attribute is
removed as it does not have any meaning.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently there are 2 function doing binary search on btrfs nodes:
bin_search and btrfs_bin_search. The latter being a simple wrapper for
the former. So eliminate the wrapper and just rename bin_search to
btrfs_bin_search. No functional changes
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree argument passed to extent_write_full_page is referenced from
the page being passed to the same function. Since we already have
enough information to get the reference, remove the function parameter.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is called only from submit_compressed_extents and the
io tree being passed is always that of the inode. But we are also
passing the inode, so just move getting the io tree pointer in
extent_write_locked_range to simplify the signature.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code was added in 492bb6deee ("Btrfs: Hold a reference on bios
during submit_bio, add some extra bio checks"). However, holding a
reference on a bio is necessary only if it's going to be referenced
after the submit_bio returns and the bio is completed. In this
particular instance this is not the case so there is no need to hold
an extra reference since we directly return.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When modifying a tree where the root is at BTRFS_MAX_LEVEL - 1 then
the level variable is going to be 7 (this is the max height of the
tree). On the other hand btrfs_cow_block is always called with
"level + 1" as an index into the nodes and slots arrays. This leads to
an out of bounds access. Admittdely this will be benign since an OOB
access of the nodes array will likely read the 0th element from the
slots array, which in this case is going to be 0 (since we start CoW at
the top of the tree). The OOB access into the slots array in turn will
read the 0th and 1st values of the locks array, which would both be 0
at the time. However, this benign behavior relies on the fact that the
path being passed hasn't been initialised, if it has already been used to
query a btree then it could potentially have populated the nodes/slots arrays.
Fix it by explicitly checking if we are at level 7 (the maximum allowed
index in nodes/slots arrays) and explicitly call the CoW routine with
NULL for parent's node/slot.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Fixes-coverity-id: 711515
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These duplicate includes have been found with scripts/checkincludes.pl but
they have been removed manually to avoid removing false positives.
Signed-off-by: Pravin Shedge <pravin.shedge4linux@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function was introduced by 247e743cbe ("Btrfs: Use async helpers
to deal with pages that have been improperly dirtied") and it didn't do
any error handling then. This function might very well fail in ENOMEM
situation, yet it's not handled, this could lead to inconsistent state.
So let's handle the failure by setting the mapping error bit.
Cc: stable@vger.kernel.org
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several places opencoding this conversion, add a helper now
that we have 3 compression algorithms.
Signed-off-by: David Sterba <dsterba@suse.com>
Before returning hole_em in btrfs_get_fiemap_extent we check if it's different
than null. However, by the time this null check is triggered we already know
hole_em is not null because it means it points to the em we found and it
has already been dereferenced.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
trans was statically assigned to NULL and this never changed over the
course of btrfs_get_extent. So remove any code which checks whether
trans != NULL and just hardcode the fact trans is always NULL.
Resolves-coverity-id: 112806
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The return value of sizeof() is of type size_t, so we must print it
using the %z format modifier rather than %l to avoid this warning
on some architectures:
fs/btrfs/tree-checker.c: In function 'check_dir_item':
fs/btrfs/tree-checker.c:273:50: error: format '%lu' expects argument of type 'long unsigned int', but argument 5 has type 'u32' {aka 'unsigned int'} [-Werror=format=]
Fixes: 005887f2e3e0 ("btrfs: tree-checker: Add checker for dir item")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This changes to use struct completion directly and removes 'struct
scrub_bio_ret' along with the code using it.
This struct is used to get the return value from bio, but the caller can
access bio to get the return value directly and is holding a reference
on it so it won't go away underneath us and can be removed safely.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The defined wait is not used anywhere.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to call extent_range_clear_dirty_for_io()
on compression range to prevent application from changing
page content, while pages compressing.
extent_range_clear_dirty_for_io() runs on each loop iteration,
"(end - start)" can be much (up to 1024 times) bigger
then compression range (BTRFS_MAX_UNCOMPRESSED).
The start pointer is advanced each time we manage to compress part of
the range. The end pointer does not change so we could redirty the
remaining parts repeatedly.
Fix that behaviour by call extent_range_clear_dirty_for_io()
only once, the first time it happens.
This is the safest but probably not the best behaviour. Previous
iterations of the patch tried to redirty only the range that we were not
able to compress. This has been refused by David for safety reasons, the
writeout callchain is complex and there could be some path that relies
on redirtying the entire unwritten range.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance changelog, the history and safety concerns, add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Slowest part of heuristic for now is kernel heap sort()
It's can take up to 55% of runtime on sorting bucket items.
As sorting will always call on most data sets to get correctly
byte_core_set_size, the only way to speed up heuristic, is to
speed up sort on bucket.
Add a general radix_sort function.
Radix sort require 2 buffers, one full size of input array
and one for store counters (jump addresses).
That increase usage per heuristic workspace +1KiB
8KiB + 1KiB -> 8KiB + 2KiB
That is LSD Radix, i use 4 bit as a base for calculating,
to make counters array acceptable small (16 elements * 8 byte).
That Radix sort implementation have several points to adjust,
I added him to make radix sort general usable in kernel,
like heap sort, if needed.
Performance tested in userspace copy of heuristic code,
throughput:
- average <-> random data: ~3500 MiB/s - heap sort
- average <-> random data: ~6000 MiB/s - radix sort
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
[ coding style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::is_tgtdev_for_dev_replace.
Instead of that declare btrfs_device::dev_state
BTRFS_DEV_STATE_FLUSH_SENT and use the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::is_tgtdev_for_dev_replace.
Instead of that declare btrfs_device::dev_state
BTRFS_DEV_STATE_MISSING and use the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::missing. Instead of that
declare btrfs_device::dev_state BTRFS_DEV_STATE_MISSING and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by : Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::in_fs_metadata. Instead of
that declare device state BTRFS_DEV_STATE_IN_FS_METADATA and use
the bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently device state is being managed by each individual int
variable such as struct btrfs_device::writeable. Instead of that
declare device state BTRFS_DEV_STATE_WRITEABLE and use the
bit operations.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ whitespace adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch creates a helper function to get either the rcu device path
or missing.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ rename to btrfs_dev_name, switch to if/else ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can query the bdev directly when needed at btrfs_discard_extent()
so drop btrfs_device::can_discard.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function update_share_count is local to the source and does
not need to be in global scope, so make it static.
Cleans up sparse warning:
fs/btrfs/backref.c:219:6: warning: symbol 'update_share_count' was not
declared. Should it be static?
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9036c10208 ("Btrfs: update hole handling v2") added the
FLAG_VACANCY to denote holes, however there was already a consistent way
of flagging extents which represent hole - ->block_start =
EXTENT_MAP_HOLE. And also the only place where this flag is checked is
in the fiemap code, but the block_start value is also checked and every
other place in the filesystem detects holes by using block_start
value's. So remove the extra flag. This survived a full xfstest run.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is no longer used outside of extent-tree.c.
Make it static.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
* ZSTD_inBuffer in_buf
* ZSTD_outBuffer out_buf
are used in all functions to pass the compression parameters and the
local variables consume some space. We can move them to the workspace
and reduce the stack consumption:
zstd.c:zstd_decompress -24 (136 -> 112)
zstd.c:zstd_decompress_bio -24 (144 -> 120)
zstd.c:zstd_compress_pages -24 (264 -> 240)
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are now 20 bytes of holes, we can reduce that to 4 by minor
changes. Moving 'aborted' to the status and flags is also more logical,
similar for num_dirty_bgs. The size goes from 432 to 416.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Recent updates to the structure left some holes, reorder the types so
the packing is tight. The size goes from 112 to 104 on 64bit.
Signed-off-by: David Sterba <dsterba@suse.com>
The use_count is a reference counter, we can use the refcount_t type,
though we don't use the atomicity. This is not a performance critical
code and we could catch the underflows. The type is changed from long,
but the number of references will fit an int.
Signed-off-by: David Sterba <dsterba@suse.com>
Last user was removed in a monster commit a22285a6a3
("Btrfs: Integrate metadata reservation with start_transaction") in
2010.
Signed-off-by: David Sterba <dsterba@suse.com>
The semantics of adding_csums matches bool, 'short' was most likely used
to save space in a698d0755a ("Btrfs: add a type field for the
transaction handle").
Signed-off-by: David Sterba <dsterba@suse.com>
Due to new_inline logic, the create == 0 is always true at this
point in the code, so the create != 0 branch can be removed.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace hardcoded numeric argument values for inode_only with the
constants defined for that use.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The maximum size of a checksum buffer is known, BTRFS_CSUM_SIZE, and we
don't have to allocate it dynamically. This code path is not used at all
as we have only the crc32c and use an on-stack buffer already.
Signed-off-by: David Sterba <dsterba@suse.com>
Setting plug can merge adjacent IOs before dispatching IOs to the disk
driver.
Without plug, it'd not be a problem for single disk usecases, but for
multiple disks using raid profile, a large IO can be split to several
IOs of stripe length, and plug can be helpful to bring them together
for each disk so that we can save several disk access.
Moreover, fsync issues synchronous writes, so plug can really take
effect.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes, create btrfs_open_one_device() from
__btrfs_open_devices(). This is a preparatory work to add dynamic
device scan.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ minor whitespace fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes. This helps to move the entire section into
a new function.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is in preparation to move a section of code in __btrfs_open_devices()
into a new function so that it can be reused. As we set seeding if any of
the device is having SB flag BTRFS_SUPER_FLAG_SEEDING, so do it in the
device list loop itself. No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With gcc-4.1.2:
fs/btrfs/ref-verify.c: In function ‘btrfs_build_ref_tree’:
fs/btrfs/ref-verify.c:1017: warning: ‘root’ is used uninitialized in this function
The variable is indeed passed uninitialized, but it is never used by the
callee. However, not all versions of gcc are smart enough to notice.
Hence remove the unused parameter from walk_up_tree() to silence the
compiler warning.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass btrfs_get_extent_fiemap and get_extent_skip_holes
itself is used only as a fiemap helper.
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass btrfs_get_extent_fiemap and we don't expect anything
else in the context of extent_fiemap.
Signed-off-by: David Sterba <dsterba@suse.com>
Previous patches cleaned up all places where
extent_page_data::get_extent was set and it was btrfs_get_extent all the
time, so we can simply call that instead.
This also reduces size of extent_page_data by 8 bytes which has positive
effect on stack consumption on various functions on the write out path.
Signed-off-by: David Sterba <dsterba@suse.com>