Граф коммитов

131 Коммитов

Автор SHA1 Сообщение Дата
Tom Rix d91e15a21d sched/topology: Make sched_energy_mutex,update static
smatch reports
kernel/sched/topology.c:212:1: warning:
  symbol 'sched_energy_mutex' was not declared. Should it be static?
kernel/sched/topology.c:213:6: warning:
  symbol 'sched_energy_update' was not declared. Should it be static?

These variables are only used in topology.c, so should be static

Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230314144818.1453523-1-trix@redhat.com
2023-03-22 10:10:57 +01:00
Linus Torvalds 5b7c4cabbb Networking changes for 6.3.
Core
 ----
 
  - Add dedicated kmem_cache for typical/small skb->head, avoid having
    to access struct page at kfree time, and improve memory use.
 
  - Introduce sysctl to set default RPS configuration for new netdevs.
 
  - Define Netlink protocol specification format which can be used
    to describe messages used by each family and auto-generate parsers.
    Add tools for generating kernel data structures and uAPI headers.
 
  - Expose all net/core sysctls inside netns.
 
  - Remove 4s sleep in netpoll if carrier is instantly detected on boot.
 
  - Add configurable limit of MDB entries per port, and port-vlan.
 
  - Continue populating drop reasons throughout the stack.
 
  - Retire a handful of legacy Qdiscs and classifiers.
 
 Protocols
 ---------
 
  - Support IPv4 big TCP (TSO frames larger than 64kB).
 
  - Add IP_LOCAL_PORT_RANGE socket option, to control local port range
    on socket by socket basis.
 
  - Track and report in procfs number of MPTCP sockets used.
 
  - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP
    path manager.
 
  - IPv6: don't check net.ipv6.route.max_size and rely on garbage
    collection to free memory (similarly to IPv4).
 
  - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).
 
  - ICMP: add per-rate limit counters.
 
  - Add support for user scanning requests in ieee802154.
 
  - Remove static WEP support.
 
  - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
    reporting.
 
  - WiFi 7 EHT channel puncturing support (client & AP).
 
 BPF
 ---
 
  - Add a rbtree data structure following the "next-gen data structure"
    precedent set by recently added linked list, that is, by using
    kfunc + kptr instead of adding a new BPF map type.
 
  - Expose XDP hints via kfuncs with initial support for RX hash and
    timestamp metadata.
 
  - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key
    to better support decap on GRE tunnel devices not operating
    in collect metadata.
 
  - Improve x86 JIT's codegen for PROBE_MEM runtime error checks.
 
  - Remove the need for trace_printk_lock for bpf_trace_printk
    and bpf_trace_vprintk helpers.
 
  - Extend libbpf's bpf_tracing.h support for tracing arguments of
    kprobes/uprobes and syscall as a special case.
 
  - Significantly reduce the search time for module symbols
    by livepatch and BPF.
 
  - Enable cpumasks to be used as kptrs, which is useful for tracing
    programs tracking which tasks end up running on which CPUs in
    different time intervals.
 
  - Add support for BPF trampoline on s390x and riscv64.
 
  - Add capability to export the XDP features supported by the NIC.
 
  - Add __bpf_kfunc tag for marking kernel functions as kfuncs.
 
  - Add cgroup.memory=nobpf kernel parameter option to disable BPF
    memory accounting for container environments.
 
 Netfilter
 ---------
 
  - Remove the CLUSTERIP target. It has been marked as obsolete
    for years, and we still have WARN splats wrt. races of
    the out-of-band /proc interface installed by this target.
 
  - Add 'destroy' commands to nf_tables. They are identical to
    the existing 'delete' commands, but do not return an error if
    the referenced object (set, chain, rule...) did not exist.
 
 Driver API
 ----------
 
  - Improve cpumask_local_spread() locality to help NICs set the right
    IRQ affinity on AMD platforms.
 
  - Separate C22 and C45 MDIO bus transactions more clearly.
 
  - Introduce new DCB table to control DSCP rewrite on egress.
 
  - Support configuration of Physical Layer Collision Avoidance (PLCA)
    Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
    shared medium Ethernet.
 
  - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
    preemption of low priority frames by high priority frames.
 
  - Add support for controlling MACSec offload using netlink SET.
 
  - Rework devlink instance refcounts to allow registration and
    de-registration under the instance lock. Split the code into multiple
    files, drop some of the unnecessarily granular locks and factor out
    common parts of netlink operation handling.
 
  - Add TX frame aggregation parameters (for USB drivers).
 
  - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
    messages with notifications for debug.
 
  - Allow offloading of UDP NEW connections via act_ct.
 
  - Add support for per action HW stats in TC.
 
  - Support hardware miss to TC action (continue processing in SW from
    a specific point in the action chain).
 
  - Warn if old Wireless Extension user space interface is used with
    modern cfg80211/mac80211 drivers. Do not support Wireless Extensions
    for Wi-Fi 7 devices at all. Everyone should switch to using nl80211
    interface instead.
 
  - Improve the CAN bit timing configuration. Use extack to return error
    messages directly to user space, update the SJW handling, including
    the definition of a new default value that will benefit CAN-FD
    controllers, by increasing their oscillator tolerance.
 
 New hardware / drivers
 ----------------------
 
  - Ethernet:
    - nVidia BlueField-3 support (control traffic driver)
    - Ethernet support for imx93 SoCs
    - Motorcomm yt8531 gigabit Ethernet PHY
    - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
    - Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
    - Amlogic gxl MDIO mux
 
  - WiFi:
    - RealTek RTL8188EU (rtl8xxxu)
    - Qualcomm Wi-Fi 7 devices (ath12k)
 
  - CAN:
    - Renesas R-Car V4H
 
 Drivers
 -------
 
  - Bluetooth:
    - Set Per Platform Antenna Gain (PPAG) for Intel controllers.
 
  - Ethernet NICs:
    - Intel (1G, igc):
      - support TSN / Qbv / packet scheduling features of i226 model
    - Intel (100G, ice):
      - use GNSS subsystem instead of TTY
      - multi-buffer XDP support
      - extend support for GPIO pins to E823 devices
    - nVidia/Mellanox:
      - update the shared buffer configuration on PFC commands
      - implement PTP adjphase function for HW offset control
      - TC support for Geneve and GRE with VF tunnel offload
      - more efficient crypto key management method
      - multi-port eswitch support
    - Netronome/Corigine:
      - add DCB IEEE support
      - support IPsec offloading for NFP3800
    - Freescale/NXP (enetc):
      - enetc: support XDP_REDIRECT for XDP non-linear buffers
      - enetc: improve reconfig, avoid link flap and waiting for idle
      - enetc: support MAC Merge layer
    - Other NICs:
      - sfc/ef100: add basic devlink support for ef100
      - ionic: rx_push mode operation (writing descriptors via MMIO)
      - bnxt: use the auxiliary bus abstraction for RDMA
      - r8169: disable ASPM and reset bus in case of tx timeout
      - cpsw: support QSGMII mode for J721e CPSW9G
      - cpts: support pulse-per-second output
      - ngbe: add an mdio bus driver
      - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
      - r8152: handle devices with FW with NCM support
      - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
      - virtio-net: support multi buffer XDP
      - virtio/vsock: replace virtio_vsock_pkt with sk_buff
      - tsnep: XDP support
 
  - Ethernet high-speed switches:
    - nVidia/Mellanox (mlxsw):
      - add support for latency TLV (in FW control messages)
    - Microchip (sparx5):
      - separate explicit and implicit traffic forwarding rules, make
        the implicit rules always active
      - add support for egress DSCP rewrite
      - IS0 VCAP support (Ingress Classification)
      - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS etc.)
      - ES2 VCAP support (Egress Access Control)
      - support for Per-Stream Filtering and Policing (802.1Q, 8.6.5.1)
 
  - Ethernet embedded switches:
    - Marvell (mv88e6xxx):
      - add MAB (port auth) offload support
      - enable PTP receive for mv88e6390
    - NXP (ocelot):
      - support MAC Merge layer
      - support for the the vsc7512 internal copper phys
    - Microchip:
      - lan9303: convert to PHYLINK
      - lan966x: support TC flower filter statistics
      - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
      - lan937x: support Credit Based Shaper configuration
      - ksz9477: support Energy Efficient Ethernet
    - other:
      - qca8k: convert to regmap read/write API, use bulk operations
      - rswitch: Improve TX timestamp accuracy
 
  - Intel WiFi (iwlwifi):
    - EHT (Wi-Fi 7) rate reporting
    - STEP equalizer support: transfer some STEP (connection to radio
      on platforms with integrated wifi) related parameters from the
      BIOS to the firmware.
 
  - Qualcomm 802.11ax WiFi (ath11k):
    - IPQ5018 support
    - Fine Timing Measurement (FTM) responder role support
    - channel 177 support
 
  - MediaTek WiFi (mt76):
    - per-PHY LED support
    - mt7996: EHT (Wi-Fi 7) support
    - Wireless Ethernet Dispatch (WED) reset support
    - switch to using page pool allocator
 
  - RealTek WiFi (rtw89):
    - support new version of Bluetooth co-existance
 
  - Mobile:
    - rmnet: support TX aggregation.
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmP1VIYACgkQMUZtbf5S
 IrvsChAApz0rNL/sPKxXTEfxZ1tN7D3sYxYKQPomxvl5BV+MvicrLddJy3KmzEFK
 nnJNO3nuRNuH422JQ/ylZ4mGX1opa6+5QJb0UINImXUI7Fm8HHBIuPGkv7d5CheZ
 7JexFqjPJXUy9nPyh1Rra+IA9AcRd2U7jeGEZR38wb99bHJQj5Bzdk20WArEB0el
 n44aqg49LXH71bSeXRz77x5SjkwVtYiccQxLcnmTbjLU2xVraLvI2J+wAhHnVXWW
 9lrU1+V4Ex2Xcd1xR0L0cHeK+meP1TrPRAeF+JDpVI3a/zJiE7cZjfHdG/jH5xWl
 leZJqghVozrZQNtewWWO7XhUFhMDgFu3W/1vNLjSHPZEqaz1JpM67J1+ql6s63l4
 LMWoXbcYZz+SL9ZRCoPkbGue/5fKSHv8/Jl9Sh58+eTS+c/zgN8uFGRNFXLX1+EP
 n8uvt985PxMd6x1+dHumhOUzxnY4Sfi1vjitSunTsNFQ3Cmp4SO0IfBVJWfLUCuC
 xz5hbJGJJbSpvUsO+HWyCg83E5OWghRE/Onpt2jsQSZCrO9HDg4FRTEf3WAMgaqc
 edb5KfbRZPTJQM08gWdluXzSk1nw3FNP2tXW4XlgUrEbjb+fOk0V9dQg2gyYTxQ1
 Nhvn8ZQPi6/GMMELHAIPGmmW1allyOGiAzGlQsv8EmL+OFM6WDI=
 =xXhC
 -----END PGP SIGNATURE-----

Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:
 "Core:

   - Add dedicated kmem_cache for typical/small skb->head, avoid having
     to access struct page at kfree time, and improve memory use.

   - Introduce sysctl to set default RPS configuration for new netdevs.

   - Define Netlink protocol specification format which can be used to
     describe messages used by each family and auto-generate parsers.
     Add tools for generating kernel data structures and uAPI headers.

   - Expose all net/core sysctls inside netns.

   - Remove 4s sleep in netpoll if carrier is instantly detected on
     boot.

   - Add configurable limit of MDB entries per port, and port-vlan.

   - Continue populating drop reasons throughout the stack.

   - Retire a handful of legacy Qdiscs and classifiers.

  Protocols:

   - Support IPv4 big TCP (TSO frames larger than 64kB).

   - Add IP_LOCAL_PORT_RANGE socket option, to control local port range
     on socket by socket basis.

   - Track and report in procfs number of MPTCP sockets used.

   - Support mixing IPv4 and IPv6 flows in the in-kernel MPTCP path
     manager.

   - IPv6: don't check net.ipv6.route.max_size and rely on garbage
     collection to free memory (similarly to IPv4).

   - Support Penultimate Segment Pop (PSP) flavor in SRv6 (RFC8986).

   - ICMP: add per-rate limit counters.

   - Add support for user scanning requests in ieee802154.

   - Remove static WEP support.

   - Support minimal Wi-Fi 7 Extremely High Throughput (EHT) rate
     reporting.

   - WiFi 7 EHT channel puncturing support (client & AP).

  BPF:

   - Add a rbtree data structure following the "next-gen data structure"
     precedent set by recently added linked list, that is, by using
     kfunc + kptr instead of adding a new BPF map type.

   - Expose XDP hints via kfuncs with initial support for RX hash and
     timestamp metadata.

   - Add BPF_F_NO_TUNNEL_KEY extension to bpf_skb_set_tunnel_key to
     better support decap on GRE tunnel devices not operating in collect
     metadata.

   - Improve x86 JIT's codegen for PROBE_MEM runtime error checks.

   - Remove the need for trace_printk_lock for bpf_trace_printk and
     bpf_trace_vprintk helpers.

   - Extend libbpf's bpf_tracing.h support for tracing arguments of
     kprobes/uprobes and syscall as a special case.

   - Significantly reduce the search time for module symbols by
     livepatch and BPF.

   - Enable cpumasks to be used as kptrs, which is useful for tracing
     programs tracking which tasks end up running on which CPUs in
     different time intervals.

   - Add support for BPF trampoline on s390x and riscv64.

   - Add capability to export the XDP features supported by the NIC.

   - Add __bpf_kfunc tag for marking kernel functions as kfuncs.

   - Add cgroup.memory=nobpf kernel parameter option to disable BPF
     memory accounting for container environments.

  Netfilter:

   - Remove the CLUSTERIP target. It has been marked as obsolete for
     years, and we still have WARN splats wrt races of the out-of-band
     /proc interface installed by this target.

   - Add 'destroy' commands to nf_tables. They are identical to the
     existing 'delete' commands, but do not return an error if the
     referenced object (set, chain, rule...) did not exist.

  Driver API:

   - Improve cpumask_local_spread() locality to help NICs set the right
     IRQ affinity on AMD platforms.

   - Separate C22 and C45 MDIO bus transactions more clearly.

   - Introduce new DCB table to control DSCP rewrite on egress.

   - Support configuration of Physical Layer Collision Avoidance (PLCA)
     Reconciliation Sublayer (RS) (802.3cg-2019). Modern version of
     shared medium Ethernet.

   - Support for MAC Merge layer (IEEE 802.3-2018 clause 99). Allowing
     preemption of low priority frames by high priority frames.

   - Add support for controlling MACSec offload using netlink SET.

   - Rework devlink instance refcounts to allow registration and
     de-registration under the instance lock. Split the code into
     multiple files, drop some of the unnecessarily granular locks and
     factor out common parts of netlink operation handling.

   - Add TX frame aggregation parameters (for USB drivers).

   - Add a new attr TCA_EXT_WARN_MSG to report TC (offload) warning
     messages with notifications for debug.

   - Allow offloading of UDP NEW connections via act_ct.

   - Add support for per action HW stats in TC.

   - Support hardware miss to TC action (continue processing in SW from
     a specific point in the action chain).

   - Warn if old Wireless Extension user space interface is used with
     modern cfg80211/mac80211 drivers. Do not support Wireless
     Extensions for Wi-Fi 7 devices at all. Everyone should switch to
     using nl80211 interface instead.

   - Improve the CAN bit timing configuration. Use extack to return
     error messages directly to user space, update the SJW handling,
     including the definition of a new default value that will benefit
     CAN-FD controllers, by increasing their oscillator tolerance.

  New hardware / drivers:

   - Ethernet:
      - nVidia BlueField-3 support (control traffic driver)
      - Ethernet support for imx93 SoCs
      - Motorcomm yt8531 gigabit Ethernet PHY
      - onsemi NCN26000 10BASE-T1S PHY (with support for PLCA)
      - Microchip LAN8841 PHY (incl. cable diagnostics and PTP)
      - Amlogic gxl MDIO mux

   - WiFi:
      - RealTek RTL8188EU (rtl8xxxu)
      - Qualcomm Wi-Fi 7 devices (ath12k)

   - CAN:
      - Renesas R-Car V4H

  Drivers:

   - Bluetooth:
      - Set Per Platform Antenna Gain (PPAG) for Intel controllers.

   - Ethernet NICs:
      - Intel (1G, igc):
         - support TSN / Qbv / packet scheduling features of i226 model
      - Intel (100G, ice):
         - use GNSS subsystem instead of TTY
         - multi-buffer XDP support
         - extend support for GPIO pins to E823 devices
      - nVidia/Mellanox:
         - update the shared buffer configuration on PFC commands
         - implement PTP adjphase function for HW offset control
         - TC support for Geneve and GRE with VF tunnel offload
         - more efficient crypto key management method
         - multi-port eswitch support
      - Netronome/Corigine:
         - add DCB IEEE support
         - support IPsec offloading for NFP3800
      - Freescale/NXP (enetc):
         - support XDP_REDIRECT for XDP non-linear buffers
         - improve reconfig, avoid link flap and waiting for idle
         - support MAC Merge layer
      - Other NICs:
         - sfc/ef100: add basic devlink support for ef100
         - ionic: rx_push mode operation (writing descriptors via MMIO)
         - bnxt: use the auxiliary bus abstraction for RDMA
         - r8169: disable ASPM and reset bus in case of tx timeout
         - cpsw: support QSGMII mode for J721e CPSW9G
         - cpts: support pulse-per-second output
         - ngbe: add an mdio bus driver
         - usbnet: optimize usbnet_bh() by avoiding unnecessary queuing
         - r8152: handle devices with FW with NCM support
         - amd-xgbe: support 10Mbps, 2.5GbE speeds and rx-adaptation
         - virtio-net: support multi buffer XDP
         - virtio/vsock: replace virtio_vsock_pkt with sk_buff
         - tsnep: XDP support

   - Ethernet high-speed switches:
      - nVidia/Mellanox (mlxsw):
         - add support for latency TLV (in FW control messages)
      - Microchip (sparx5):
         - separate explicit and implicit traffic forwarding rules, make
           the implicit rules always active
         - add support for egress DSCP rewrite
         - IS0 VCAP support (Ingress Classification)
         - IS2 VCAP filters (protos, L3 addrs, L4 ports, flags, ToS
           etc.)
         - ES2 VCAP support (Egress Access Control)
         - support for Per-Stream Filtering and Policing (802.1Q,
           8.6.5.1)

   - Ethernet embedded switches:
      - Marvell (mv88e6xxx):
         - add MAB (port auth) offload support
         - enable PTP receive for mv88e6390
      - NXP (ocelot):
         - support MAC Merge layer
         - support for the the vsc7512 internal copper phys
      - Microchip:
         - lan9303: convert to PHYLINK
         - lan966x: support TC flower filter statistics
         - lan937x: PTP support for KSZ9563/KSZ8563 and LAN937x
         - lan937x: support Credit Based Shaper configuration
         - ksz9477: support Energy Efficient Ethernet
      - other:
         - qca8k: convert to regmap read/write API, use bulk operations
         - rswitch: Improve TX timestamp accuracy

   - Intel WiFi (iwlwifi):
      - EHT (Wi-Fi 7) rate reporting
      - STEP equalizer support: transfer some STEP (connection to radio
        on platforms with integrated wifi) related parameters from the
        BIOS to the firmware.

   - Qualcomm 802.11ax WiFi (ath11k):
      - IPQ5018 support
      - Fine Timing Measurement (FTM) responder role support
      - channel 177 support

   - MediaTek WiFi (mt76):
      - per-PHY LED support
      - mt7996: EHT (Wi-Fi 7) support
      - Wireless Ethernet Dispatch (WED) reset support
      - switch to using page pool allocator

   - RealTek WiFi (rtw89):
      - support new version of Bluetooth co-existance

   - Mobile:
      - rmnet: support TX aggregation"

* tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1872 commits)
  page_pool: add a comment explaining the fragment counter usage
  net: ethtool: fix __ethtool_dev_mm_supported() implementation
  ethtool: pse-pd: Fix double word in comments
  xsk: add linux/vmalloc.h to xsk.c
  sefltests: netdevsim: wait for devlink instance after netns removal
  selftest: fib_tests: Always cleanup before exit
  net/mlx5e: Align IPsec ASO result memory to be as required by hardware
  net/mlx5e: TC, Set CT miss to the specific ct action instance
  net/mlx5e: Rename CHAIN_TO_REG to MAPPED_OBJ_TO_REG
  net/mlx5: Refactor tc miss handling to a single function
  net/mlx5: Kconfig: Make tc offload depend on tc skb extension
  net/sched: flower: Support hardware miss to tc action
  net/sched: flower: Move filter handle initialization earlier
  net/sched: cls_api: Support hardware miss to tc action
  net/sched: Rename user cookie and act cookie
  sfc: fix builds without CONFIG_RTC_LIB
  sfc: clean up some inconsistent indentings
  net/mlx4_en: Introduce flexible array to silence overflow warning
  net: lan966x: Fix possible deadlock inside PTP
  net/ulp: Remove redundant ->clone() test in inet_clone_ulp().
  ...
2023-02-21 18:24:12 -08:00
Yury Norov 01bb11ad82 sched/topology: fix KASAN warning in hop_cmp()
Despite that prev_hop is used conditionally on cur_hop
is not the first hop, it's initialized unconditionally.

Because initialization implies dereferencing, it might happen
that the code dereferences uninitialized memory, which has been
spotted by KASAN. Fix it by reorganizing hop_cmp() logic.

Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Fixes: cd7f55359c ("sched: add sched_numa_find_nth_cpu()")
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Link: https://lore.kernel.org/r/Y+7avK6V9SyAWsXi@yury-laptop/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-20 11:45:33 -08:00
Valentin Schneider 9feae65845 sched/topology: Introduce sched_numa_hop_mask()
Tariq has pointed out that drivers allocating IRQ vectors would benefit
from having smarter NUMA-awareness - cpumask_local_spread() only knows
about the local node and everything outside is in the same bucket.

sched_domains_numa_masks is pretty much what we want to hand out (a cpumask
of CPUs reachable within a given distance budget), introduce
sched_numa_hop_mask() to export those cpumasks.

Link: http://lore.kernel.org/r/20220728191203.4055-1-tariqt@nvidia.com
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-07 18:20:00 -08:00
Yury Norov cd7f55359c sched: add sched_numa_find_nth_cpu()
The function finds Nth set CPU in a given cpumask starting from a given
node.

Leveraging the fact that each hop in sched_domains_numa_masks includes the
same or greater number of CPUs than the previous one, we can use binary
search on hops instead of linear walk, which makes the overall complexity
of O(log n) in terms of number of cpumask_weight() calls.

Signed-off-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Tariq Toukan <tariqt@nvidia.com>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Peter Lafreniere <peter@n8pjl.ca>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-07 18:20:00 -08:00
Bing Huang ef90cf2281 sched/topology: Add __init for sched_init_domains()
sched_init_domains() is only used in initialization

Signed-off-by: Bing Huang <huangbing@kylinos.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230105014943.9857-1-huangbing775@126.com
2023-01-05 11:42:13 +01:00
Bing Huang 9a5322db46 sched/topology: Add __init for init_defrootdomain
init_defrootdomain is only used in initialization

Signed-off-by: Bing Huang <huangbing@kylinos.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20221118034208.267330-1-huangbing775@126.com
2022-12-27 12:52:09 +01:00
Mel Gorman 026b98a93b sched/numa: Adjust imb_numa_nr to a better approximation of memory channels
For a single LLC per node, a NUMA imbalance is allowed up until 25%
of CPUs sharing a node could be active. One intent of the cut-off is
to avoid an imbalance of memory channels but there is no topological
information based on active memory channels. Furthermore, there can
be differences between nodes depending on the number of populated
DIMMs.

A cut-off of 25% was arbitrary but generally worked. It does have a severe
corner cases though when an parallel workload is using 25% of all available
CPUs over-saturates memory channels. This can happen due to the initial
forking of tasks that get pulled more to one node after early wakeups
(e.g. a barrier synchronisation) that is not quickly corrected by the
load balancer. The LB may fail to act quickly as the parallel tasks are
considered to be poor migrate candidates due to locality or cache hotness.

On a range of modern Intel CPUs, 12.5% appears to be a better cut-off
assuming all memory channels are populated and is used as the new cut-off
point. A minimum of 1 is specified to allow a communicating pair to
remain local even for CPUs with low numbers of cores. For modern AMDs,
there are multiple LLCs and are not affected.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220520103519.1863-5-mgorman@techsingularity.net
2022-06-13 10:30:00 +02:00
Zhen Ni 8a0441415b sched: Move energy_aware sysctls to topology.c
move energy_aware sysctls to topology.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:44 -07:00
Ingo Molnar ccacfe56d7 Merge branch 'sched/fast-headers' into sched/core
Merge the scheduler build speedup of the fast-headers tree.

Cumulative scheduler (kernel/sched/) build time speedup on a
Linux distribution's config, which enables all scheduler features,
compared to the vanilla kernel:

      _____________________________________________________________________________
     |
     |  Vanilla kernel (v5.13-rc7):
     |_____________________________________________________________________________
     |
     |  Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
     |
     |   126,975,564,374      instructions              #    1.45  insn per cycle           ( +-  0.00% )
     |    87,637,847,671      cycles                    #    3.959 GHz                      ( +-  0.30% )
     |         22,136.96 msec cpu-clock                 #    7.499 CPUs utilized            ( +-  0.29% )
     |
     |            2.9520 +- 0.0169 seconds time elapsed  ( +-  0.57% )
     |_____________________________________________________________________________
     |
     |  Patched kernel:
     |_____________________________________________________________________________
     |
     | Performance counter stats for 'make -j96 kernel/sched/' (3 runs):
     |
     |    50,420,496,914      instructions              #    1.47  insn per cycle           ( +-  0.00% )
     |    34,234,322,038      cycles                    #    3.946 GHz                      ( +-  0.31% )
     |          8,675.81 msec cpu-clock                 #    3.053 CPUs utilized            ( +-  0.45% )
     |
     |            2.8420 +- 0.0181 seconds time elapsed  ( +-  0.64% )
     |_____________________________________________________________________________

    Summary:

      - CPU time used to build the scheduler dropped by -60.9%, a reduction
        from 22.1 clock-seconds to 8.7 clock-seconds.

      - Wall-clock time to build the scheduler dropped by -3.9%, a reduction
        from 2.95 seconds to 2.84 seconds.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-15 09:05:05 +01:00
K Prateek Nayak 7f434dff76 sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
While investigating the sparse warning reported by the LKP bot [1],
observed that we have a redundant variable "top" in the function
build_sched_domains that was introduced in the recent commit
e496132ebe ("sched/fair: Adjust the allowed NUMA imbalance when
SD_NUMA spans multiple LLCs")

The existing variable "sd" suffices which allows us to remove the
redundant variable "top" while annotating the other variable "top_p"
with the "__rcu" annotation to silence the sparse warning.

[1] https://lore.kernel.org/lkml/202202170853.9vofgC3O-lkp@intel.com/

Fixes: e496132ebe ("sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20220218162743.1134-1-kprateek.nayak@amd.com
2022-03-08 16:08:40 +01:00
Ingo Molnar 801c141955 sched/headers: Introduce kernel/sched/build_utility.c and build multiple .c files there
Collect all utility functionality source code files into a single kernel/sched/build_utility.c file,
via #include-ing the .c files:

    kernel/sched/clock.c
    kernel/sched/completion.c
    kernel/sched/loadavg.c
    kernel/sched/swait.c
    kernel/sched/wait_bit.c
    kernel/sched/wait.c

CONFIG_CPU_FREQ:
    kernel/sched/cpufreq.c

CONFIG_CPU_FREQ_GOV_SCHEDUTIL:
    kernel/sched/cpufreq_schedutil.c

CONFIG_CGROUP_CPUACCT:
    kernel/sched/cpuacct.c

CONFIG_SCHED_DEBUG:
    kernel/sched/debug.c

CONFIG_SCHEDSTATS:
    kernel/sched/stats.c

CONFIG_SMP:
   kernel/sched/cpupri.c
   kernel/sched/stop_task.c
   kernel/sched/topology.c

CONFIG_SCHED_CORE:
   kernel/sched/core_sched.c

CONFIG_PSI:
   kernel/sched/psi.c

CONFIG_MEMBARRIER:
   kernel/sched/membarrier.c

CONFIG_CPU_ISOLATION:
   kernel/sched/isolation.c

CONFIG_SCHED_AUTOGROUP:
   kernel/sched/autogroup.c

The goal is to amortize the 60+ KLOC header bloat from over a dozen build units into
a single build unit.

The build time of build_utility.c also roughly matches the build time of core.c and
fair.c - allowing better load-balancing of scheduler-only rebuilds.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
2022-02-23 10:58:33 +01:00
Frederic Weisbecker 04d4e665a6 sched/isolation: Use single feature type while referring to housekeeping cpumask
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
2022-02-16 15:57:55 +01:00
Huang Ying 0fb3978b0a sched/numa: Fix NUMA topology for systems with CPU-less nodes
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.

For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,

[000h 0000   4]                    Signature : "SLIT"    [System Locality Information Table]
[004h 0004   4]                 Table Length : 0000042C
[008h 0008   1]                     Revision : 01
[009h 0009   1]                     Checksum : 59
[00Ah 0010   6]                       Oem ID : "XXXX"
[010h 0016   8]                 Oem Table ID : "XXXXXXX"
[018h 0024   4]                 Oem Revision : 00000001
[01Ch 0028   4]              Asl Compiler ID : "INTL"
[020h 0032   4]        Asl Compiler Revision : 20091013

[024h 0036   8]                   Localities : 0000000000000004
[02Ch 0044   4]                 Locality   0 : 0A 15 11 1C
[030h 0048   4]                 Locality   1 : 15 0A 1C 11
[034h 0052   4]                 Locality   2 : 11 1C 0A 1C
[038h 0056   4]                 Locality   3 : 1C 11 1C 0A

While the `numactl -H` output is as follows,

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node   0   1   2   3
  0:  10  21  17  28
  1:  21  10  28  17
  2:  17  28  10  28
  3:  28  17  28  10

In this system, there are only 2 sockets.  In each memory controller,
both DRAM and PMEM DIMMs are installed.  Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex.  Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3.  And the whole system appears to be a glueless mesh NUMA
topology type.  But it's definitely not, there is even no CPU in node 3.

This isn't a practical problem now yet.  Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot.  So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT.  And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in.  And there's no CPU in the
PMEM nodes.  But it appears better to fix this to make the code more
robust.

To test the potential problem.  We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()).  With that, the NUMA parameters
identified by scheduler is as follows,

sched_numa_topology_type:	NUMA_GLUELESS_MESH
sched_domains_numa_levels:	4
sched_max_numa_distance:	28

To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified.  Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.

With the patch, the NUMA parameters identified for the example system
above is as follows,

sched_numa_topology_type:	NUMA_DIRECT
sched_domains_numa_levels:	2
sched_max_numa_distance:	21

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
2022-02-16 15:57:53 +01:00
Yury Norov 1087ad4e3f sched: replace cpumask_weight with cpumask_empty where appropriate
In some places, kernel/sched code calls cpumask_weight() to check if
any bit of a given cpumask is set. We can do it more efficiently with
cpumask_empty() because cpumask_empty() stops traversing the cpumask as
soon as it finds first set bit, while cpumask_weight() counts all bits
unconditionally.

Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220210224933.379149-23-yury.norov@gmail.com
2022-02-16 15:57:53 +01:00
Mel Gorman e496132ebe sched/fair: Adjust the allowed NUMA imbalance when SD_NUMA spans multiple LLCs
Commit 7d2b5dd0bc ("sched/numa: Allow a floating imbalance between NUMA
nodes") allowed an imbalance between NUMA nodes such that communicating
tasks would not be pulled apart by the load balancer. This works fine when
there is a 1:1 relationship between LLC and node but can be suboptimal
for multiple LLCs if independent tasks prematurely use CPUs sharing cache.

Zen* has multiple LLCs per node with local memory channels and due to
the allowed imbalance, it's far harder to tune some workloads to run
optimally than it is on hardware that has 1 LLC per node. This patch
allows an imbalance to exist up to the point where LLCs should be balanced
between nodes.

On a Zen3 machine running STREAM parallelised with OMP to have on instance
per LLC the results and without binding, the results are

                            5.17.0-rc0             5.17.0-rc0
                               vanilla       sched-numaimb-v6
MB/sec copy-16    162596.94 (   0.00%)   580559.74 ( 257.05%)
MB/sec scale-16   136901.28 (   0.00%)   374450.52 ( 173.52%)
MB/sec add-16     157300.70 (   0.00%)   564113.76 ( 258.62%)
MB/sec triad-16   151446.88 (   0.00%)   564304.24 ( 272.61%)

STREAM can use directives to force the spread if the OpenMP is new
enough but that doesn't help if an application uses threads and
it's not known in advance how many threads will be created.

Coremark is a CPU and cache intensive benchmark parallelised with
threads. When running with 1 thread per core, the vanilla kernel
allows threads to contend on cache. With the patch;

                               5.17.0-rc0             5.17.0-rc0
                                  vanilla       sched-numaimb-v5
Min       Score-16   368239.36 (   0.00%)   389816.06 (   5.86%)
Hmean     Score-16   388607.33 (   0.00%)   427877.08 *  10.11%*
Max       Score-16   408945.69 (   0.00%)   481022.17 (  17.62%)
Stddev    Score-16    15247.04 (   0.00%)    24966.82 ( -63.75%)
CoeffVar  Score-16        3.92 (   0.00%)        5.82 ( -48.48%)

It can also make a big difference for semi-realistic workloads
like specjbb which can execute arbitrary numbers of threads without
advance knowledge of how they should be placed. Even in cases where
the average performance is neutral, the results are more stable.

                               5.17.0-rc0             5.17.0-rc0
                                  vanilla       sched-numaimb-v6
Hmean     tput-1      71631.55 (   0.00%)    73065.57 (   2.00%)
Hmean     tput-8     582758.78 (   0.00%)   556777.23 (  -4.46%)
Hmean     tput-16   1020372.75 (   0.00%)  1009995.26 (  -1.02%)
Hmean     tput-24   1416430.67 (   0.00%)  1398700.11 (  -1.25%)
Hmean     tput-32   1687702.72 (   0.00%)  1671357.04 (  -0.97%)
Hmean     tput-40   1798094.90 (   0.00%)  2015616.46 *  12.10%*
Hmean     tput-48   1972731.77 (   0.00%)  2333233.72 (  18.27%)
Hmean     tput-56   2386872.38 (   0.00%)  2759483.38 (  15.61%)
Hmean     tput-64   2909475.33 (   0.00%)  2925074.69 (   0.54%)
Hmean     tput-72   2585071.36 (   0.00%)  2962443.97 (  14.60%)
Hmean     tput-80   2994387.24 (   0.00%)  3015980.59 (   0.72%)
Hmean     tput-88   3061408.57 (   0.00%)  3010296.16 (  -1.67%)
Hmean     tput-96   3052394.82 (   0.00%)  2784743.41 (  -8.77%)
Hmean     tput-104  2997814.76 (   0.00%)  2758184.50 (  -7.99%)
Hmean     tput-112  2955353.29 (   0.00%)  2859705.09 (  -3.24%)
Hmean     tput-120  2889770.71 (   0.00%)  2764478.46 (  -4.34%)
Hmean     tput-128  2871713.84 (   0.00%)  2750136.73 (  -4.23%)
Stddev    tput-1       5325.93 (   0.00%)     2002.53 (  62.40%)
Stddev    tput-8       6630.54 (   0.00%)    10905.00 ( -64.47%)
Stddev    tput-16     25608.58 (   0.00%)     6851.16 (  73.25%)
Stddev    tput-24     12117.69 (   0.00%)     4227.79 (  65.11%)
Stddev    tput-32     27577.16 (   0.00%)     8761.05 (  68.23%)
Stddev    tput-40     59505.86 (   0.00%)     2048.49 (  96.56%)
Stddev    tput-48    168330.30 (   0.00%)    93058.08 (  44.72%)
Stddev    tput-56    219540.39 (   0.00%)    30687.02 (  86.02%)
Stddev    tput-64    121750.35 (   0.00%)     9617.36 (  92.10%)
Stddev    tput-72    223387.05 (   0.00%)    34081.13 (  84.74%)
Stddev    tput-80    128198.46 (   0.00%)    22565.19 (  82.40%)
Stddev    tput-88    136665.36 (   0.00%)    27905.97 (  79.58%)
Stddev    tput-96    111925.81 (   0.00%)    99615.79 (  11.00%)
Stddev    tput-104   146455.96 (   0.00%)    28861.98 (  80.29%)
Stddev    tput-112    88740.49 (   0.00%)    58288.23 (  34.32%)
Stddev    tput-120   186384.86 (   0.00%)    45812.03 (  75.42%)
Stddev    tput-128    78761.09 (   0.00%)    57418.48 (  27.10%)

Similarly, for embarassingly parallel problems like NPB-ep, there are
improvements due to better spreading across LLC when the machine is not
fully utilised.

                              vanilla       sched-numaimb-v6
Min       ep.D       31.79 (   0.00%)       26.11 (  17.87%)
Amean     ep.D       31.86 (   0.00%)       26.17 *  17.86%*
Stddev    ep.D        0.07 (   0.00%)        0.05 (  24.41%)
CoeffVar  ep.D        0.22 (   0.00%)        0.20 (   7.97%)
Max       ep.D       31.93 (   0.00%)       26.21 (  17.91%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.net
2022-02-11 23:30:08 +01:00
Linus Torvalds 512b7931ad Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "257 patches.

  Subsystems affected by this patch series: scripts, ocfs2, vfs, and
  mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
  gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
  pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
  memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
  vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
  cleanups, kfence, and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
  mm/damon: remove return value from before_terminate callback
  mm/damon: fix a few spelling mistakes in comments and a pr_debug message
  mm/damon: simplify stop mechanism
  Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
  Docs/admin-guide/mm/damon/start: simplify the content
  Docs/admin-guide/mm/damon/start: fix a wrong link
  Docs/admin-guide/mm/damon/start: fix wrong example commands
  mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
  mm/damon: remove unnecessary variable initialization
  Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
  mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
  selftests/damon: support watermarks
  mm/damon/dbgfs: support watermarks
  mm/damon/schemes: activate schemes based on a watermarks mechanism
  tools/selftests/damon: update for regions prioritization of schemes
  mm/damon/dbgfs: support prioritization weights
  mm/damon/vaddr,paddr: support pageout prioritization
  mm/damon/schemes: prioritize regions within the quotas
  mm/damon/selftests: support schemes quotas
  mm/damon/dbgfs: support quotas of schemes
  ...
2021-11-06 14:08:17 -07:00
Geert Uytterhoeven 61bb6cd2f7 mm: move node_reclaim_distance to fix NUMA without SMP
Patch series "Fix NUMA without SMP".

SuperH is the only architecture which still supports NUMA without SMP,
for good reasons (various memories scattered around the address space,
each with varying latencies).

This series fixes two build errors due to variables and functions used
by the NUMA code being provided by SMP-only source files or sections.

This patch (of 2):

If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig):

    sh4-linux-gnu-ld: mm/page_alloc.o: in function `get_page_from_freelist':
    page_alloc.c:(.text+0x2c24): undefined reference to `node_reclaim_distance'

Fix this by moving the declaration of node_reclaim_distance from an
SMP-only to a generic file.

Link: https://lkml.kernel.org/r/cover.1631781495.git.geert+renesas@glider.be
Link: https://lkml.kernel.org/r/6432666a648dde85635341e6c918cee97c97d264.1631781495.git.geert+renesas@glider.be
Fixes: a55c7454a8 ("sched/topology: Improve load balancing on AMD EPYC systems")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Cc: Rich Felker <dalias@libc.org>
Cc: Gon Solo <gonsolo@gmail.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Vincent Guittot e60b56e46b sched/fair: Wait before decaying max_newidle_lb_cost
Decay max_newidle_lb_cost only when it has not been updated for a while
and ensure to not decay a recently changed value.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-4-vincent.guittot@linaro.org
2021-10-31 11:11:38 +01:00
Sebastian Andrzej Siewior da6ff09943 sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
The push-IPI logic for RT tasks expects to be invoked from hardirq
context. One reason is that a RT task on the remote CPU would block the
softirq processing on PREEMPT_RT and so avoid pulling / balancing the RT
tasks as intended.

Annotate root_domain::rto_push_work as IRQ_WORK_HARD_IRQ.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211006111852.1514359-2-bigeasy@linutronix.de
2021-10-15 11:25:16 +02:00
Barry Song 778c558f49 sched: Add cluster scheduler level in core and related Kconfig for ARM64
This patch adds scheduler level for clusters and automatically enables
the load balance among clusters. It will directly benefit a lot of
workload which loves more resources such as memory bandwidth, caches.

Testing has widely been done in two different hardware configurations of
Kunpeng920:

 24 cores in one NUMA(6 clusters in each NUMA node);
 32 cores in one NUMA(8 clusters in each NUMA node)

Workload is running on either one NUMA node or four NUMA nodes, thus,
this can estimate the effect of cluster spreading w/ and w/o NUMA load
balance.

* Stream benchmark:

4threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     29929.64 (   0.00%)    32932.68 (  10.03%)
MB/sec scale    29861.10 (   0.00%)    32710.58 (   9.54%)
MB/sec add      27034.42 (   0.00%)    32400.68 (  19.85%)
MB/sec triad    27225.26 (   0.00%)    31965.36 (  17.41%)

6threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     40330.24 (   0.00%)    42377.68 (   5.08%)
MB/sec scale    40196.42 (   0.00%)    42197.90 (   4.98%)
MB/sec add      37427.00 (   0.00%)    41960.78 (  12.11%)
MB/sec triad    37841.36 (   0.00%)    42513.64 (  12.35%)

12threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     52639.82 (   0.00%)    53818.04 (   2.24%)
MB/sec scale    52350.30 (   0.00%)    53253.38 (   1.73%)
MB/sec add      53607.68 (   0.00%)    55198.82 (   2.97%)
MB/sec triad    54776.66 (   0.00%)    56360.40 (   2.89%)

Thus, it could help memory-bound workload especially under medium load.
Similar improvement is also seen in lkp-pbzip2:

* lkp-pbzip2 benchmark

2-96 threads (on 4NUMA * 24cores = 96cores)
                  lkp-pbzip2              lkp-pbzip2
                  w/o patch               w/ patch
Hmean     tput-2   11062841.57 (   0.00%)  11341817.51 *   2.52%*
Hmean     tput-5   26815503.70 (   0.00%)  27412872.65 *   2.23%*
Hmean     tput-8   41873782.21 (   0.00%)  43326212.92 *   3.47%*
Hmean     tput-12  61875980.48 (   0.00%)  64578337.51 *   4.37%*
Hmean     tput-21 105814963.07 (   0.00%) 111381851.01 *   5.26%*
Hmean     tput-30 150349470.98 (   0.00%) 156507070.73 *   4.10%*
Hmean     tput-48 237195937.69 (   0.00%) 242353597.17 *   2.17%*
Hmean     tput-79 360252509.37 (   0.00%) 362635169.23 *   0.66%*
Hmean     tput-96 394571737.90 (   0.00%) 400952978.48 *   1.62%*

2-24 threads (on 1NUMA * 24cores = 24cores)
                 lkp-pbzip2               lkp-pbzip2
                 w/o patch                w/ patch
Hmean     tput-2   11071705.49 (   0.00%)  11296869.10 *   2.03%*
Hmean     tput-4   20782165.19 (   0.00%)  21949232.15 *   5.62%*
Hmean     tput-6   30489565.14 (   0.00%)  33023026.96 *   8.31%*
Hmean     tput-8   40376495.80 (   0.00%)  42779286.27 *   5.95%*
Hmean     tput-12  61264033.85 (   0.00%)  62995632.78 *   2.83%*
Hmean     tput-18  86697139.39 (   0.00%)  86461545.74 (  -0.27%)
Hmean     tput-24 104854637.04 (   0.00%) 104522649.46 *  -0.32%*

In the case of 6 threads and 8 threads, we see the greatest performance
improvement.

Similar improvement can be seen on lkp-pixz though the improvement is
smaller:

* lkp-pixz benchmark

2-24 threads lkp-pixz (on 1NUMA * 24cores = 24cores)
                  lkp-pixz               lkp-pixz
                  w/o patch              w/ patch
Hmean     tput-2   6486981.16 (   0.00%)  6561515.98 *   1.15%*
Hmean     tput-4  11645766.38 (   0.00%) 11614628.43 (  -0.27%)
Hmean     tput-6  15429943.96 (   0.00%) 15957350.76 *   3.42%*
Hmean     tput-8  19974087.63 (   0.00%) 20413746.98 *   2.20%*
Hmean     tput-12 28172068.18 (   0.00%) 28751997.06 *   2.06%*
Hmean     tput-18 39413409.54 (   0.00%) 39896830.55 *   1.23%*
Hmean     tput-24 49101815.85 (   0.00%) 49418141.47 *   0.64%*

* SPECrate benchmark

4,8,16 copies mcf_r(on 1NUMA * 32cores = 32cores)
		Base     	 	Base
		Run Time   	 	Rate
		-------  	 	---------
4 Copies	w/o 580 (w/ 570)       	w/o 11.1 (w/ 11.3)
8 Copies	w/o 647 (w/ 605)       	w/o 20.0 (w/ 21.4, +7%)
16 Copies	w/o 844 (w/ 844)       	w/o 30.6 (w/ 30.6)

32 Copies(on 4NUMA * 32 cores = 128cores)
[w/o patch]
                 Base     Base        Base
Benchmarks       Copies  Run Time     Rate
--------------- -------  ---------  ---------
500.perlbench_r      32        584       87.2  *
502.gcc_r            32        503       90.2  *
505.mcf_r            32        745       69.4  *
520.omnetpp_r        32       1031       40.7  *
523.xalancbmk_r      32        597       56.6  *
525.x264_r            1         --            CE
531.deepsjeng_r      32        336      109    *
541.leela_r          32        556       95.4  *
548.exchange2_r      32        513      163    *
557.xz_r             32        530       65.2  *
 Est. SPECrate2017_int_base              80.3

[w/ patch]
                  Base     Base        Base
Benchmarks       Copies  Run Time     Rate
--------------- -------  ---------  ---------
500.perlbench_r      32        580      87.8 (+0.688%)  *
502.gcc_r            32        477      95.1 (+5.432%)  *
505.mcf_r            32        644      80.3 (+13.574%) *
520.omnetpp_r        32        942      44.6 (+9.58%)   *
523.xalancbmk_r      32        560      60.4 (+6.714%%) *
525.x264_r            1         --           CE
531.deepsjeng_r      32        337      109  (+0.000%) *
541.leela_r          32        554      95.6 (+0.210%) *
548.exchange2_r      32        515      163  (+0.000%) *
557.xz_r             32        524      66.0 (+1.227%) *
 Est. SPECrate2017_int_base              83.7 (+4.062%)

On the other hand, it is slightly helpful to CPU-bound tasks like
kernbench:

* 24-96 threads kernbench (on 4NUMA * 24cores = 96cores)
                     kernbench              kernbench
                     w/o cluster            w/ cluster
Min       user-24    12054.67 (   0.00%)    12024.19 (   0.25%)
Min       syst-24     1751.51 (   0.00%)     1731.68 (   1.13%)
Min       elsp-24      600.46 (   0.00%)      598.64 (   0.30%)
Min       user-48    12361.93 (   0.00%)    12315.32 (   0.38%)
Min       syst-48     1917.66 (   0.00%)     1892.73 (   1.30%)
Min       elsp-48      333.96 (   0.00%)      332.57 (   0.42%)
Min       user-96    12922.40 (   0.00%)    12921.17 (   0.01%)
Min       syst-96     2143.94 (   0.00%)     2110.39 (   1.56%)
Min       elsp-96      211.22 (   0.00%)      210.47 (   0.36%)
Amean     user-24    12063.99 (   0.00%)    12030.78 *   0.28%*
Amean     syst-24     1755.20 (   0.00%)     1735.53 *   1.12%*
Amean     elsp-24      601.60 (   0.00%)      600.19 (   0.23%)
Amean     user-48    12362.62 (   0.00%)    12315.56 *   0.38%*
Amean     syst-48     1921.59 (   0.00%)     1894.95 *   1.39%*
Amean     elsp-48      334.10 (   0.00%)      332.82 *   0.38%*
Amean     user-96    12925.27 (   0.00%)    12922.63 (   0.02%)
Amean     syst-96     2146.66 (   0.00%)     2122.20 *   1.14%*
Amean     elsp-96      211.96 (   0.00%)      211.79 (   0.08%)

Note this patch isn't an universal win, it might hurt those workload
which can benefit from packing. Though tasks which want to take
advantages of lower communication latency of one cluster won't
necessarily been packed in one cluster while kernel is not aware of
clusters, they have some chance to be randomly packed. But this
patch will make them more likely spread.

Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-10-15 11:25:16 +02:00
Yicong Yang f9ec6fea20 sched/topology: Remove unused numa_distance in cpu_attach_domain()
numa_distance in cpu_attach_domain() is introduced in
commit b5b217346d ("sched/topology: Warn when NUMA diameter > 2")
to warn user when NUMA diameter > 2 as we'll misrepresent
the scheduler topology structures at that time. This is
fixed by Barry in commit 585b6d2723 ("sched/topology: fix the issue
groups don't span domain->span for NUMA diameter > 2") and
numa_distance is unused now. So remove it.

Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20210915063158.80639-1-yangyicong@hisilicon.com
2021-10-14 13:09:58 +02:00
Ricardo Neri 16d364ba6e sched/topology: Introduce sched_group::flags
There exist situations in which the load balance needs to know the
properties of the CPUs in a scheduling group. When using asymmetric
packing, for instance, the load balancer needs to know not only the
state of dst_cpu but also of its SMT siblings, if any.

Use the flags of the child scheduling domains to initialize scheduling
group flags. This will reflect the properties of the CPUs in the
group.

A subsequent changeset will make use of these new flags. No functional
changes are introduced.

Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-3-ricardo.neri-calderon@linux.intel.com
2021-10-05 15:52:00 +02:00
Valentin Schneider 0083242c93 sched/topology: Skip updating masks for non-online nodes
The scheduler currently expects NUMA node distances to be stable from
init onwards, and as a consequence builds the related data structures
once-and-for-all at init (see sched_init_numa()).

Unfortunately, on some architectures node distance is unreliable for
offline nodes and may very well change upon onlining.

Skip over offline nodes during sched_init_numa(). Track nodes that have
been onlined at least once, and trigger a build of a node's NUMA masks
when it is first onlined post-init.

Reported-by: Geetika Moolchandani <Geetika.Moolchandani1@ibm.com>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210818074333.48645-1-srikar@linux.vnet.ibm.com
2021-08-20 12:32:57 +02:00
Beata Michalska c744dc4ab5 sched/topology: Rework CPU capacity asymmetry detection
Currently the CPU capacity asymmetry detection, performed through
asym_cpu_capacity_level, tries to identify the lowest topology level
at which the highest CPU capacity is being observed, not necessarily
finding the level at which all possible capacity values are visible
to all CPUs, which might be bit problematic for some possible/valid
asymmetric topologies i.e.:

DIE      [                                ]
MC       [                       ][       ]

CPU       [0] [1] [2] [3] [4] [5]  [6] [7]
Capacity  |.....| |.....| |.....|  |.....|
	     L	     M       B        B

Where:
 arch_scale_cpu_capacity(L) = 512
 arch_scale_cpu_capacity(M) = 871
 arch_scale_cpu_capacity(B) = 1024

In this particular case, the asymmetric topology level will point
at MC, as all possible CPU masks for that level do cover the CPU
with the highest capacity. It will work just fine for the first
cluster, not so much for the second one though (consider the
find_energy_efficient_cpu which might end up attempting the energy
aware wake-up for a domain that does not see any asymmetry at all)

Rework the way the capacity asymmetry levels are being detected,
allowing to point to the lowest topology level (for a given CPU), where
full set of available CPU capacities is visible to all CPUs within given
domain. As a result, the per-cpu sd_asym_cpucapacity might differ across
the domains. This will have an impact on EAS wake-up placement in a way
that it might see different range of CPUs to be considered, depending on
the given current and target CPUs.

Additionally, those levels, where any range of asymmetry (not
necessarily full) is being detected will get identified as well.
The selected asymmetric topology level will be denoted by
SD_ASYM_CPUCAPACITY_FULL sched domain flag whereas the 'sub-levels'
would receive the already used SD_ASYM_CPUCAPACITY flag. This allows
maintaining the current behaviour for asymmetric topologies, with
misfit migration operating correctly on lower levels, if applicable,
as any asymmetry is enough to trigger the misfit migration.
The logic there relies on the SD_ASYM_CPUCAPACITY flag and does not
relate to the full asymmetry level denoted by the sd_asym_cpucapacity
pointer.

Detecting the CPU capacity asymmetry is being based on a set of
available CPU capacities for all possible CPUs. This data is being
generated upon init and updated once CPU topology changes are being
detected (through arch_update_cpu_topology). As such, any changes
to identified CPU capacities (like initializing cpufreq) need to be
explicitly advertised by corresponding archs to trigger rebuilding
the data.

Additional -dflags- parameter, used when building sched domains, has
been removed as well, as the asymmetry flags are now being set directly
in sd_init.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20210603140627.8409-3-beata.michalska@arm.com
2021-06-24 09:07:51 +02:00
Peter Zijlstra 5cb9eaa3d2 sched: Wrap rq::lock access
In preparation of playing games with rq->lock, abstract the thing
using an accessor.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
2021-05-12 11:43:26 +02:00
Peter Zijlstra 9406415f46 sched/debug: Rename the sched_debug parameter to sched_verbose
CONFIG_SCHED_DEBUG is the build-time Kconfig knob, the boot param
sched_debug and the /debug/sched/debug_enabled knobs control the
sched_debug_enabled variable, but what they really do is make
SCHED_DEBUG more verbose, so rename the lot.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-04-17 13:22:44 +02:00
Peter Zijlstra 3b87f136f8 sched,debug: Convert sysctl sched_domains to debugfs
Stop polluting sysctl, move to debugfs for SCHED_DEBUG stuff.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/YHgB/s4KCBQ1ifdm@hirez.programming.kicks-ass.net
2021-04-16 17:06:35 +02:00
Barry Song 0a2b65c03e sched/topology: Remove redundant cpumask_and() in init_overlap_sched_group()
mask is built in build_balance_mask() by for_each_cpu(i, sg_span), so
it must be a subset of sched_group_span(sg).

So the cpumask_and() call is redundant - remove it.

[ mingo: Adjusted the changelog a bit. ]

Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lore.kernel.org/r/20210325023140.23456-1-song.bao.hua@hisilicon.com
2021-03-25 11:41:23 +01:00
Ingo Molnar 3b03706fa6 sched: Fix various typos
Fix ~42 single-word typos in scheduler code comments.

We have accumulated a few fun ones over the years. :-)

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
2021-03-22 00:11:52 +01:00
Barry Song 585b6d2723 sched/topology: fix the issue groups don't span domain->span for NUMA diameter > 2
As long as NUMA diameter > 2, building sched_domain by sibling's child
domain will definitely create a sched_domain with sched_group which will
span out of the sched_domain:

               +------+         +------+        +-------+       +------+
               | node |  12     |node  | 20     | node  |  12   |node  |
               |  0   +---------+1     +--------+ 2     +-------+3     |
               +------+         +------+        +-------+       +------+

domain0        node0            node1            node2          node3

domain1        node0+1          node0+1          node2+3        node2+3
                                                 +
domain2        node0+1+2                         |
             group: node0+1                      |
               group:node2+3 <-------------------+

when node2 is added into the domain2 of node0, kernel is using the child
domain of node2's domain2, which is domain1(node2+3). Node 3 is outside
the span of the domain including node0+1+2.

This will make load_balance() run based on screwed avg_load and group_type
in the sched_group spanning out of the sched_domain, and it also makes
select_task_rq_fair() pick an idle CPU outside the sched_domain.

Real servers which suffer from this problem include Kunpeng920 and 8-node
Sun Fire X4600-M2, at least.

Here we move to use the *child* domain of the *child* domain of node2's
domain2 as the new added sched_group. At the same, we re-use the lower
level sgc directly.
               +------+         +------+        +-------+       +------+
               | node |  12     |node  | 20     | node  |  12   |node  |
               |  0   +---------+1     +--------+ 2     +-------+3     |
               +------+         +------+        +-------+       +------+

domain0        node0            node1          +- node2          node3
                                               |
domain1        node0+1          node0+1        | node2+3        node2+3
                                               |
domain2        node0+1+2                       |
             group: node0+1                    |
               group:node2 <-------------------+

While the lower level sgc is re-used, this patch only changes the remote
sched_groups for those sched_domains playing grandchild trick, therefore,
sgc->next_update is still safe since it's only touched by CPUs that have
the group span as local group. And sgc->imbalance is also safe because
sd_parent remains the same in load_balance and LB only tries other CPUs
from the local group.
Moreover, since local groups are not touched, they are still getting
roughly equal size in a TL. And should_we_balance() only matters with
local groups, so the pull probability of those groups are still roughly
equal.

Tested by the below topology:
qemu-system-aarch64  -M virt -nographic \
 -smp cpus=8 \
 -numa node,cpus=0-1,nodeid=0 \
 -numa node,cpus=2-3,nodeid=1 \
 -numa node,cpus=4-5,nodeid=2 \
 -numa node,cpus=6-7,nodeid=3 \
 -numa dist,src=0,dst=1,val=12 \
 -numa dist,src=0,dst=2,val=20 \
 -numa dist,src=0,dst=3,val=22 \
 -numa dist,src=1,dst=2,val=22 \
 -numa dist,src=2,dst=3,val=12 \
 -numa dist,src=1,dst=3,val=24 \
 -m 4G -cpu cortex-a57 -kernel arch/arm64/boot/Image

w/o patch, we get lots of "groups don't span domain->span":
[    0.802139] CPU0 attaching sched-domain(s):
[    0.802193]  domain-0: span=0-1 level=MC
[    0.802443]   groups: 0:{ span=0 cap=1013 }, 1:{ span=1 cap=979 }
[    0.802693]   domain-1: span=0-3 level=NUMA
[    0.802731]    groups: 0:{ span=0-1 cap=1992 }, 2:{ span=2-3 cap=1943 }
[    0.802811]    domain-2: span=0-5 level=NUMA
[    0.802829]     groups: 0:{ span=0-3 cap=3935 }, 4:{ span=4-7 cap=3937 }
[    0.802881] ERROR: groups don't span domain->span
[    0.803058]     domain-3: span=0-7 level=NUMA
[    0.803080]      groups: 0:{ span=0-5 mask=0-1 cap=5843 }, 6:{ span=4-7 mask=6-7 cap=4077 }
[    0.804055] CPU1 attaching sched-domain(s):
[    0.804072]  domain-0: span=0-1 level=MC
[    0.804096]   groups: 1:{ span=1 cap=979 }, 0:{ span=0 cap=1013 }
[    0.804152]   domain-1: span=0-3 level=NUMA
[    0.804170]    groups: 0:{ span=0-1 cap=1992 }, 2:{ span=2-3 cap=1943 }
[    0.804219]    domain-2: span=0-5 level=NUMA
[    0.804236]     groups: 0:{ span=0-3 cap=3935 }, 4:{ span=4-7 cap=3937 }
[    0.804302] ERROR: groups don't span domain->span
[    0.804520]     domain-3: span=0-7 level=NUMA
[    0.804546]      groups: 0:{ span=0-5 mask=0-1 cap=5843 }, 6:{ span=4-7 mask=6-7 cap=4077 }
[    0.804677] CPU2 attaching sched-domain(s):
[    0.804687]  domain-0: span=2-3 level=MC
[    0.804705]   groups: 2:{ span=2 cap=934 }, 3:{ span=3 cap=1009 }
[    0.804754]   domain-1: span=0-3 level=NUMA
[    0.804772]    groups: 2:{ span=2-3 cap=1943 }, 0:{ span=0-1 cap=1992 }
[    0.804820]    domain-2: span=0-5 level=NUMA
[    0.804836]     groups: 2:{ span=0-3 mask=2-3 cap=3991 }, 4:{ span=0-1,4-7 mask=4-5 cap=5985 }
[    0.804944] ERROR: groups don't span domain->span
[    0.805108]     domain-3: span=0-7 level=NUMA
[    0.805134]      groups: 2:{ span=0-5 mask=2-3 cap=5899 }, 6:{ span=0-1,4-7 mask=6-7 cap=6125 }
[    0.805223] CPU3 attaching sched-domain(s):
[    0.805232]  domain-0: span=2-3 level=MC
[    0.805249]   groups: 3:{ span=3 cap=1009 }, 2:{ span=2 cap=934 }
[    0.805319]   domain-1: span=0-3 level=NUMA
[    0.805336]    groups: 2:{ span=2-3 cap=1943 }, 0:{ span=0-1 cap=1992 }
[    0.805383]    domain-2: span=0-5 level=NUMA
[    0.805399]     groups: 2:{ span=0-3 mask=2-3 cap=3991 }, 4:{ span=0-1,4-7 mask=4-5 cap=5985 }
[    0.805458] ERROR: groups don't span domain->span
[    0.805605]     domain-3: span=0-7 level=NUMA
[    0.805626]      groups: 2:{ span=0-5 mask=2-3 cap=5899 }, 6:{ span=0-1,4-7 mask=6-7 cap=6125 }
[    0.805712] CPU4 attaching sched-domain(s):
[    0.805721]  domain-0: span=4-5 level=MC
[    0.805738]   groups: 4:{ span=4 cap=984 }, 5:{ span=5 cap=924 }
[    0.805787]   domain-1: span=4-7 level=NUMA
[    0.805803]    groups: 4:{ span=4-5 cap=1908 }, 6:{ span=6-7 cap=2029 }
[    0.805851]    domain-2: span=0-1,4-7 level=NUMA
[    0.805867]     groups: 4:{ span=4-7 cap=3937 }, 0:{ span=0-3 cap=3935 }
[    0.805915] ERROR: groups don't span domain->span
[    0.806108]     domain-3: span=0-7 level=NUMA
[    0.806130]      groups: 4:{ span=0-1,4-7 mask=4-5 cap=5985 }, 2:{ span=0-3 mask=2-3 cap=3991 }
[    0.806214] CPU5 attaching sched-domain(s):
[    0.806222]  domain-0: span=4-5 level=MC
[    0.806240]   groups: 5:{ span=5 cap=924 }, 4:{ span=4 cap=984 }
[    0.806841]   domain-1: span=4-7 level=NUMA
[    0.806866]    groups: 4:{ span=4-5 cap=1908 }, 6:{ span=6-7 cap=2029 }
[    0.806934]    domain-2: span=0-1,4-7 level=NUMA
[    0.806953]     groups: 4:{ span=4-7 cap=3937 }, 0:{ span=0-3 cap=3935 }
[    0.807004] ERROR: groups don't span domain->span
[    0.807312]     domain-3: span=0-7 level=NUMA
[    0.807386]      groups: 4:{ span=0-1,4-7 mask=4-5 cap=5985 }, 2:{ span=0-3 mask=2-3 cap=3991 }
[    0.807686] CPU6 attaching sched-domain(s):
[    0.807710]  domain-0: span=6-7 level=MC
[    0.807750]   groups: 6:{ span=6 cap=1017 }, 7:{ span=7 cap=1012 }
[    0.807840]   domain-1: span=4-7 level=NUMA
[    0.807870]    groups: 6:{ span=6-7 cap=2029 }, 4:{ span=4-5 cap=1908 }
[    0.807952]    domain-2: span=0-1,4-7 level=NUMA
[    0.807985]     groups: 6:{ span=4-7 mask=6-7 cap=4077 }, 0:{ span=0-5 mask=0-1 cap=5843 }
[    0.808045] ERROR: groups don't span domain->span
[    0.808257]     domain-3: span=0-7 level=NUMA
[    0.808571]      groups: 6:{ span=0-1,4-7 mask=6-7 cap=6125 }, 2:{ span=0-5 mask=2-3 cap=5899 }
[    0.808848] CPU7 attaching sched-domain(s):
[    0.808860]  domain-0: span=6-7 level=MC
[    0.808880]   groups: 7:{ span=7 cap=1012 }, 6:{ span=6 cap=1017 }
[    0.808953]   domain-1: span=4-7 level=NUMA
[    0.808974]    groups: 6:{ span=6-7 cap=2029 }, 4:{ span=4-5 cap=1908 }
[    0.809034]    domain-2: span=0-1,4-7 level=NUMA
[    0.809055]     groups: 6:{ span=4-7 mask=6-7 cap=4077 }, 0:{ span=0-5 mask=0-1 cap=5843 }
[    0.809128] ERROR: groups don't span domain->span
[    0.810361]     domain-3: span=0-7 level=NUMA
[    0.810400]      groups: 6:{ span=0-1,4-7 mask=6-7 cap=5961 }, 2:{ span=0-5 mask=2-3 cap=5903 }

w/ patch, we don't get "groups don't span domain->span" any more:
[    1.486271] CPU0 attaching sched-domain(s):
[    1.486820]  domain-0: span=0-1 level=MC
[    1.500924]   groups: 0:{ span=0 cap=980 }, 1:{ span=1 cap=994 }
[    1.515717]   domain-1: span=0-3 level=NUMA
[    1.515903]    groups: 0:{ span=0-1 cap=1974 }, 2:{ span=2-3 cap=1989 }
[    1.516989]    domain-2: span=0-5 level=NUMA
[    1.517124]     groups: 0:{ span=0-3 cap=3963 }, 4:{ span=4-5 cap=1949 }
[    1.517369]     domain-3: span=0-7 level=NUMA
[    1.517423]      groups: 0:{ span=0-5 mask=0-1 cap=5912 }, 6:{ span=4-7 mask=6-7 cap=4054 }
[    1.520027] CPU1 attaching sched-domain(s):
[    1.520097]  domain-0: span=0-1 level=MC
[    1.520184]   groups: 1:{ span=1 cap=994 }, 0:{ span=0 cap=980 }
[    1.520429]   domain-1: span=0-3 level=NUMA
[    1.520487]    groups: 0:{ span=0-1 cap=1974 }, 2:{ span=2-3 cap=1989 }
[    1.520687]    domain-2: span=0-5 level=NUMA
[    1.520744]     groups: 0:{ span=0-3 cap=3963 }, 4:{ span=4-5 cap=1949 }
[    1.520948]     domain-3: span=0-7 level=NUMA
[    1.521038]      groups: 0:{ span=0-5 mask=0-1 cap=5912 }, 6:{ span=4-7 mask=6-7 cap=4054 }
[    1.522068] CPU2 attaching sched-domain(s):
[    1.522348]  domain-0: span=2-3 level=MC
[    1.522606]   groups: 2:{ span=2 cap=1003 }, 3:{ span=3 cap=986 }
[    1.522832]   domain-1: span=0-3 level=NUMA
[    1.522885]    groups: 2:{ span=2-3 cap=1989 }, 0:{ span=0-1 cap=1974 }
[    1.523043]    domain-2: span=0-5 level=NUMA
[    1.523092]     groups: 2:{ span=0-3 mask=2-3 cap=4037 }, 4:{ span=4-5 cap=1949 }
[    1.523302]     domain-3: span=0-7 level=NUMA
[    1.523352]      groups: 2:{ span=0-5 mask=2-3 cap=5986 }, 6:{ span=0-1,4-7 mask=6-7 cap=6102 }
[    1.523748] CPU3 attaching sched-domain(s):
[    1.523774]  domain-0: span=2-3 level=MC
[    1.523825]   groups: 3:{ span=3 cap=986 }, 2:{ span=2 cap=1003 }
[    1.524009]   domain-1: span=0-3 level=NUMA
[    1.524086]    groups: 2:{ span=2-3 cap=1989 }, 0:{ span=0-1 cap=1974 }
[    1.524281]    domain-2: span=0-5 level=NUMA
[    1.524331]     groups: 2:{ span=0-3 mask=2-3 cap=4037 }, 4:{ span=4-5 cap=1949 }
[    1.524534]     domain-3: span=0-7 level=NUMA
[    1.524586]      groups: 2:{ span=0-5 mask=2-3 cap=5986 }, 6:{ span=0-1,4-7 mask=6-7 cap=6102 }
[    1.524847] CPU4 attaching sched-domain(s):
[    1.524873]  domain-0: span=4-5 level=MC
[    1.524954]   groups: 4:{ span=4 cap=958 }, 5:{ span=5 cap=991 }
[    1.525105]   domain-1: span=4-7 level=NUMA
[    1.525153]    groups: 4:{ span=4-5 cap=1949 }, 6:{ span=6-7 cap=2006 }
[    1.525368]    domain-2: span=0-1,4-7 level=NUMA
[    1.525428]     groups: 4:{ span=4-7 cap=3955 }, 0:{ span=0-1 cap=1974 }
[    1.532726]     domain-3: span=0-7 level=NUMA
[    1.532811]      groups: 4:{ span=0-1,4-7 mask=4-5 cap=6003 }, 2:{ span=0-3 mask=2-3 cap=4037 }
[    1.534125] CPU5 attaching sched-domain(s):
[    1.534159]  domain-0: span=4-5 level=MC
[    1.534303]   groups: 5:{ span=5 cap=991 }, 4:{ span=4 cap=958 }
[    1.534490]   domain-1: span=4-7 level=NUMA
[    1.534572]    groups: 4:{ span=4-5 cap=1949 }, 6:{ span=6-7 cap=2006 }
[    1.534734]    domain-2: span=0-1,4-7 level=NUMA
[    1.534783]     groups: 4:{ span=4-7 cap=3955 }, 0:{ span=0-1 cap=1974 }
[    1.536057]     domain-3: span=0-7 level=NUMA
[    1.536430]      groups: 4:{ span=0-1,4-7 mask=4-5 cap=6003 }, 2:{ span=0-3 mask=2-3 cap=3896 }
[    1.536815] CPU6 attaching sched-domain(s):
[    1.536846]  domain-0: span=6-7 level=MC
[    1.536934]   groups: 6:{ span=6 cap=1005 }, 7:{ span=7 cap=1001 }
[    1.537144]   domain-1: span=4-7 level=NUMA
[    1.537262]    groups: 6:{ span=6-7 cap=2006 }, 4:{ span=4-5 cap=1949 }
[    1.537553]    domain-2: span=0-1,4-7 level=NUMA
[    1.537613]     groups: 6:{ span=4-7 mask=6-7 cap=4054 }, 0:{ span=0-1 cap=1805 }
[    1.537872]     domain-3: span=0-7 level=NUMA
[    1.537998]      groups: 6:{ span=0-1,4-7 mask=6-7 cap=6102 }, 2:{ span=0-5 mask=2-3 cap=5845 }
[    1.538448] CPU7 attaching sched-domain(s):
[    1.538505]  domain-0: span=6-7 level=MC
[    1.538586]   groups: 7:{ span=7 cap=1001 }, 6:{ span=6 cap=1005 }
[    1.538746]   domain-1: span=4-7 level=NUMA
[    1.538798]    groups: 6:{ span=6-7 cap=2006 }, 4:{ span=4-5 cap=1949 }
[    1.539048]    domain-2: span=0-1,4-7 level=NUMA
[    1.539111]     groups: 6:{ span=4-7 mask=6-7 cap=4054 }, 0:{ span=0-1 cap=1805 }
[    1.539571]     domain-3: span=0-7 level=NUMA
[    1.539610]      groups: 6:{ span=0-1,4-7 mask=6-7 cap=6102 }, 2:{ span=0-5 mask=2-3 cap=5845 }

Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Meelis Roos <mroos@linux.ee>
Link: https://lkml.kernel.org/r/20210224030944.15232-1-song.bao.hua@hisilicon.com
2021-03-06 12:40:22 +01:00
Dietmar Eggemann 71e5f6644f sched/topology: Fix sched_domain_topology_level alloc in sched_init_numa()
Commit "sched/topology: Make sched_init_numa() use a set for the
deduplicating sort" allocates 'i + nr_levels (level)' instead of
'i + nr_levels + 1' sched_domain_topology_level.

This led to an Oops (on Arm64 juno with CONFIG_SCHED_DEBUG):

sched_init_domains
  build_sched_domains()
    __free_domain_allocs()
      __sdt_free() {
	...
        for_each_sd_topology(tl)
	  ...
          sd = *per_cpu_ptr(sdd->sd, j); <--
	  ...
      }

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Barry Song <song.bao.hua@hisilicon.com>
Link: https://lkml.kernel.org/r/6000e39e-7d28-c360-9cd6-8798fd22a9bf@arm.com
2021-02-17 14:08:05 +01:00
Valentin Schneider 620a6dc407 sched/topology: Make sched_init_numa() use a set for the deduplicating sort
The deduplicating sort in sched_init_numa() assumes that the first line in
the distance table contains all unique values in the entire table. I've
been trying to pen what this exactly means for the topology, but it's not
straightforward. For instance, topology.c uses this example:

  node   0   1   2   3
    0:  10  20  20  30
    1:  20  10  20  20
    2:  20  20  10  20
    3:  30  20  20  10

  0 ----- 1
  |     / |
  |   /   |
  | /     |
  2 ----- 3

Which works out just fine. However, if we swap nodes 0 and 1:

  1 ----- 0
  |     / |
  |   /   |
  | /     |
  2 ----- 3

we get this distance table:

  node   0  1  2  3
    0:  10 20 20 20
    1:  20 10 20 30
    2:  20 20 10 20
    3:  20 30 20 10

Which breaks the deduplicating sort (non-representative first line). In
this case this would just be a renumbering exercise, but it so happens that
we can have a deduplicating sort that goes through the whole table in O(n²)
at the extra cost of a temporary memory allocation (i.e. any form of set).

The ACPI spec (SLIT) mentions distances are encoded on 8 bits. Following
this, implement the set as a 256-bits bitmap. Should this not be
satisfactory (i.e. we want to support 32-bit values), then we'll have to go
for some other sparse set implementation.

This has the added benefit of letting us allocate just the right amount of
memory for sched_domains_numa_distance[], rather than an arbitrary
(nr_node_ids + 1).

Note: DT binding equivalent (distance-map) decodes distances as 32-bit
values.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210122123943.1217-2-valentin.schneider@arm.com
2021-01-27 17:26:42 +01:00
Ionela Voinescu fa50e2b452 sched/topology: Condition EAS enablement on FIE support
In order to make accurate predictions across CPUs and for all performance
states, Energy Aware Scheduling (EAS) needs frequency-invariant load
tracking signals.

EAS task placement aims to minimize energy consumption, and does so in
part by limiting the search space to only CPUs with the highest spare
capacity (CPU capacity - CPU utilization) in their performance domain.
Those candidates are the placement choices that will keep frequency at
its lowest possible and therefore save the most energy.

But without frequency invariance, a CPU's utilization is relative to the
CPU's current performance level, and not relative to its maximum
performance level, which determines its capacity. As a result, it will
fail to correctly indicate any potential spare capacity obtained by an
increase in a CPU's performance level. Therefore, a non-invariant
utilization signal would render the EAS task placement logic invalid.

Now that we properly report support for the Frequency Invariance Engine
(FIE) through arch_scale_freq_invariant() for arm and arm64 systems,
while also ensuring a re-evaluation of the EAS use conditions for
possible invariance status change, we can assert this is the case when
initializing EAS. Warn and bail out otherwise.

Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201027180713.7642-4-ionela.voinescu@arm.com
2020-11-19 11:25:47 +01:00
Ionela Voinescu 31f6a8c0a4 sched/topology,schedutil: Wrap sched domains rebuild
Add the rebuild_sched_domains_energy() function to wrap the functionality
that rebuilds the scheduling domains if any of the Energy Aware Scheduling
(EAS) initialisation conditions change. This functionality is used when
schedutil is added or removed or when EAS is enabled or disabled
through the sched_energy_aware sysctl.

Therefore, create a single function that is used in both these cases and
that can be later reused.

Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Quentin Perret <qperret@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20201027180713.7642-2-ionela.voinescu@arm.com
2020-11-19 11:25:47 +01:00
Valentin Schneider b5b217346d sched/topology: Warn when NUMA diameter > 2
NUMA topologies where the shortest path between some two nodes requires
three or more hops (i.e. diameter > 2) end up being misrepresented in the
scheduler topology structures.

This is currently detected when booting a kernel with CONFIG_SCHED_DEBUG=y
+ sched_debug on the cmdline, although this will only yield a warning about
sched_group spans not matching sched_domain spans:

  ERROR: groups don't span domain->span

Add an explicit warning for that case, triggered regardless of
CONFIG_SCHED_DEBUG, and decorate it with an appropriate comment.

The topology described in the comment can be booted up on QEMU by appending
the following to your usual QEMU incantation:

    -smp cores=4 \
    -numa node,cpus=0,nodeid=0 -numa node,cpus=1,nodeid=1, \
    -numa node,cpus=2,nodeid=2, -numa node,cpus=3,nodeid=3, \
    -numa dist,src=0,dst=1,val=20, -numa dist,src=0,dst=2,val=30, \
    -numa dist,src=0,dst=3,val=40, -numa dist,src=1,dst=2,val=20, \
    -numa dist,src=1,dst=3,val=30, -numa dist,src=2,dst=3,val=20

A somewhat more realistic topology (6-node mesh) with the same affliction
can be conjured with:

    -smp cores=6 \
    -numa node,cpus=0,nodeid=0 -numa node,cpus=1,nodeid=1, \
    -numa node,cpus=2,nodeid=2, -numa node,cpus=3,nodeid=3, \
    -numa node,cpus=4,nodeid=4, -numa node,cpus=5,nodeid=5, \
    -numa dist,src=0,dst=1,val=20, -numa dist,src=0,dst=2,val=30, \
    -numa dist,src=0,dst=3,val=40, -numa dist,src=0,dst=4,val=30, \
    -numa dist,src=0,dst=5,val=20, \
    -numa dist,src=1,dst=2,val=20, -numa dist,src=1,dst=3,val=30, \
    -numa dist,src=1,dst=4,val=20, -numa dist,src=1,dst=5,val=30, \
    -numa dist,src=2,dst=3,val=20, -numa dist,src=2,dst=4,val=30, \
    -numa dist,src=2,dst=5,val=40, \
    -numa dist,src=3,dst=4,val=20, -numa dist,src=3,dst=5,val=30, \
    -numa dist,src=4,dst=5,val=20

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/lkml/jhjtux5edo2.mognet@arm.com
2020-11-19 11:25:46 +01:00
Peng Liu 26762423a2 sched/deadline: Optimize sched_dl_global_validate()
Under CONFIG_SMP, dl_bw is per root domain, but not per CPU.
When checking or updating dl_bw, currently iterating every CPU is
overdoing, just need iterate each root domain once.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/78d21ee792cc48ff79e8cd62a5f26208463684d6.1602171061.git.iwtbavbm@gmail.com
2020-10-29 11:00:28 +01:00
Linus Torvalds edaa5ddf38 Scheduler changes for v5.10:
- Reorganize & clean up the SD* flags definitions and add a bunch
    of sanity checks. These new checks caught quite a few bugs or at
    least inconsistencies, resulting in another set of patches.
 
  - Rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
 
  - Add a new tracepoint to improve CPU capacity tracking
 
  - Improve overloaded SMP system load-balancing behavior
 
  - Tweak SMT balancing
 
  - Energy-aware scheduling updates
 
  - NUMA balancing improvements
 
  - Deadline scheduler fixes and improvements
 
  - CPU isolation fixes
 
  - Misc cleanups, simplifications and smaller optimizations.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EWRERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hV8A/7BB0nt/zYVZ8Z3Di8V0b9hMtr0d1xtRM5
 ZAvg4hcZl/fVgobFndxBw6KdlK8lSce9Mcq+bTTWeD46CS13cK5Vrpiaf7x7Q00P
 m8YHeYEH13ME0pbBrhDoRCR4XzfXukzjkUl7LiyrTekAvRUtFikJ/uKl8MeJtYGZ
 gANEkadqforxUW0v45iUEGepmCWAl8hSlSMb2mDKsVhw4DFMD+px0EBmmA0VDqjE
 e0rkh6dEoUVNqlic2KoaXULld1rLg1xiaOcLUbTAXnucfhmuv5p/H11AC4ABuf+s
 7d0zLrLEfZrcLJkthYxfMHs7DYMtARiQM9Db/a5hAq9Af4Z2bvvVAaHt3gCGvkV1
 llB6BB2yWCki9Qv7oiGOAhANnyJHG/cU4r6WwMuHdlYi4dFT/iN5qkOMUL1IrDgi
 a6ZzvECChXBeisQXHSlMd8Y5O+j0gRvDR7E18z2q0/PlmO8PGJq4w34mEWveWIg3
 LaVF16bmvaARuNFJTQH/zaHhjqVQANSMx5OIv9swp0OkwvQkw21ICYHG0YxfzWCr
 oa/FESEpOL9XdYp8UwMPI0bmVIsEfx79pmDMF3zInYTpJpwMUhV2yjHE8uYVMqEf
 7U8rZv7gdbZ2us38Gjf2l73hY+recp/GrgZKnk0R98OUeMk1l/iVP6dwco6ITUV5
 czGmKlIB1ec=
 =bXy6
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - reorganize & clean up the SD* flags definitions and add a bunch of
   sanity checks. These new checks caught quite a few bugs or at least
   inconsistencies, resulting in another set of patches.

 - rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ

 - add a new tracepoint to improve CPU capacity tracking

 - improve overloaded SMP system load-balancing behavior

 - tweak SMT balancing

 - energy-aware scheduling updates

 - NUMA balancing improvements

 - deadline scheduler fixes and improvements

 - CPU isolation fixes

 - misc cleanups, simplifications and smaller optimizations

* tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
  sched/deadline: Unthrottle PI boosted threads while enqueuing
  sched/debug: Add new tracepoint to track cpu_capacity
  sched/fair: Tweak pick_next_entity()
  rseq/selftests: Test MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
  rseq/selftests,x86_64: Add rseq_offset_deref_addv()
  rseq/membarrier: Add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
  sched/fair: Use dst group while checking imbalance for NUMA balancer
  sched/fair: Reduce busy load balance interval
  sched/fair: Minimize concurrent LBs between domain level
  sched/fair: Reduce minimal imbalance threshold
  sched/fair: Relax constraint on task's load during load balance
  sched/fair: Remove the force parameter of update_tg_load_avg()
  sched/fair: Fix wrong cpu selecting from isolated domain
  sched: Remove unused inline function uclamp_bucket_base_value()
  sched/rt: Disable RT_RUNTIME_SHARE by default
  sched/deadline: Fix stale throttling on de-/boosted tasks
  sched/numa: Use runnable_avg to classify node
  sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
  MAINTAINERS: Add myself as SCHED_DEADLINE reviewer
  sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
  ...
2020-10-12 12:56:01 -07:00
Vincent Guittot 6e7499135d sched/fair: Reduce busy load balance interval
The busy_factor, which increases load balance interval when a cpu is busy,
is set to 32 by default. This value generates some huge LB interval on
large system like the THX2 made of 2 node x 28 cores x 4 threads.
For such system, the interval increases from 112ms to 3584ms at MC level.
And from 228ms to 7168ms at NUMA level.

Even on smaller system, a lower busy factor has shown improvement on the
fair distribution of the running time so let reduce it for all.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-5-vincent.guittot@linaro.org
2020-09-25 14:23:26 +02:00
Vincent Guittot 2208cdaa56 sched/fair: Reduce minimal imbalance threshold
The 25% default imbalance threshold for DIE and NUMA domain is large
enough to generate significant unfairness between threads. A typical
example is the case of 11 threads running on 2x4 CPUs. The imbalance of
20% between the 2 groups of 4 cores is just low enough to not trigger
the load balance between the 2 groups. We will have always the same 6
threads on one group of 4 CPUs and the other 5 threads on the other
group of CPUS. With a fair time sharing in each group, we ends up with
+20% running time for the group of 5 threads.

Consider decreasing the imbalance threshold for overloaded case where we
use the load to balance task and to ensure fair time sharing.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Hillf Danton <hdanton@sina.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-3-vincent.guittot@linaro.org
2020-09-25 14:23:26 +02:00
Valentin Schneider 848785df48 sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
The last sd_flag_debug shuffle inadvertently moved its definition within
an #ifdef CONFIG_SYSCTL region. While CONFIG_SYSCTL is indeed required to
produce the sched domain ctl interface (which uses sd_flag_debug to output
flag names), it isn't required to run any assertion on the sched_domain
hierarchy itself.

Move the definition of sd_flag_debug to a CONFIG_SCHED_DEBUG region of
topology.c.

Now at long last we have:

- sd_flag_debug declared in include/linux/sched/topology.h iff
  CONFIG_SCHED_DEBUG=y
- sd_flag_debug defined in kernel/sched/topology.c, conditioned by:
  - CONFIG_SCHED_DEBUG, with an explicit #ifdef block
  - CONFIG_SMP, as a requirement to compile topology.c

With this change, all symbols pertaining to SD flag metadata (with the
exception of __SD_FLAG_CNT) are now defined exclusively within topology.c

Fixes: 8fca9494d4 ("sched/topology: Move sd_flag_debug out of linux/sched/topology.h")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200908184956.23369-1-valentin.schneider@arm.com
2020-09-09 10:09:03 +02:00
Valentin Schneider 4fc472f121 sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
SD_DEGENERATE_GROUPS_MASK is only useful for sched/topology.c, but still
gets defined for anyone who imports topology.h, leading to a flurry of
unused variable warnings.

Move it out of the header and place it next to the SD degeneration
functions in sched/topology.c.

Fixes: 4ee4ea443a ("sched/topology: Introduce SD metaflag for flags needing > 1 groups")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200825133216.9163-2-valentin.schneider@arm.com
2020-08-26 12:41:59 +02:00
Gustavo A. R. Silva df561f6688 treewide: Use fallthrough pseudo-keyword
Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-08-23 17:36:59 -05:00
Valentin Schneider 3a6712c768 sched/topology: Mark SD_PREFER_SIBLING as SDF_NEEDS_GROUPS
SD_PREFER_SIBLING is currently considered in sd_parent_degenerate() but not
in sd_degenerate(). It too hinges on load balancing, and thus won't have
any effect when set on a domain with a single group. Add it to
SD_DEGENERATE_GROUPS_MASK.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-12-valentin.schneider@arm.com
2020-08-19 10:49:49 +02:00
Valentin Schneider c200191d4c sched/topology: Propagate SD_ASYM_CPUCAPACITY upwards
We currently set this flag *only* on domains whose topology level exactly
match the level where we detect asymmetry (as returned by
asym_cpu_capacity_level()). This is rather problematic.

Say there are two clusters in the system, one with a lone big CPU and the
other with a mix of big and LITTLE CPUs (as is allowed by DynamIQ):

  DIE [                ]
  MC  [             ][ ]
       0   1   2   3  4
       L   L   B   B  B

asym_cpu_capacity_level() will figure out that the MC level is the one
where all CPUs can see a CPU of max capacity, and we will thus set
SD_ASYM_CPUCAPACITY at MC level for all CPUs.

That lone big CPU will degenerate its MC domain, since it would be alone in
there, and will end up with just a DIE domain. Since the flag was only set
at MC, this CPU ends up not seeing any SD with the flag set, which is
broken.

Rather than clearing dflags at every topology level, clear it before
entering the topology level loop. This will properly propagate upwards
flags that are set starting from a certain level.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-11-valentin.schneider@arm.com
2020-08-19 10:49:49 +02:00
Valentin Schneider ab65afb094 sched/topology: Remove SD_SERIALIZE degeneration special case
If there is only a single NUMA node in the system, the only NUMA topology
level that will be generated will be NODE (identity distance), which
doesn't have SD_SERIALIZE.

This means we don't need this special case in sd_parent_degenerate(), as
having the NODE level "naturally" covers it. Thus, remove it.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-10-valentin.schneider@arm.com
2020-08-19 10:49:48 +02:00
Valentin Schneider 6f34981862 sched/topology: Use prebuilt SD flag degeneration mask
Leverage SD_DEGENERATE_GROUPS_MASK in sd_degenerate() and
sd_parent_degenerate().

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-9-valentin.schneider@arm.com
2020-08-19 10:49:48 +02:00
Valentin Schneider 65c5e25316 sched/topology: Verify SD_* flags setup when sched_debug is on
Now that we have some description of what we expect the flags layout to
be, we can use that to assert at runtime that the actual layout is sane.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-6-valentin.schneider@arm.com
2020-08-19 10:49:48 +02:00
Valentin Schneider cfe7ddcbd7 ARM, sched/topology: Remove SD_SHARE_POWERDOMAIN
This flag was introduced in 2014 by commit:

  d77b3ed5c9 ("sched: Add a new SD_SHARE_POWERDOMAIN for sched_domain")

but AFAIA it was never leveraged by the scheduler. The closest thing I can
think of is EAS caring about frequency domains, and it does that by
leveraging performance domains.

Remove the flag. No change in functionality is expected.

Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-2-valentin.schneider@arm.com
2020-08-19 10:49:47 +02:00
Linus Torvalds 0408497800 Power management updates for 5.9-rc1
- Make the Energy Model cover non-CPU devices (Lukasz Luba).
 
  - Add Ice Lake server idle states table to the intel_idle driver
    and eliminate a redundant static variable from it (Chen Yu,
    Rafael Wysocki).
 
  - Eliminate all W=1 build warnings from cpufreq (Lee Jones).
 
  - Add support for Sapphire Rapids and for Power Limit 4 to the
    Intel RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).
 
  - Fix function name in kerneldoc comments in the idle_inject power
    capping driver (Yangtao Li).
 
  - Fix locking issues with cpufreq governors and drop a redundant
    "weak" function definition from cpufreq (Viresh Kumar).
 
  - Rearrange cpufreq to register non-modular governors at the
    core_initcall level and allow the default cpufreq governor to
    be specified in the kernel command line (Quentin Perret).
 
  - Extend, fix and clean up the intel_pstate driver (Srinivas
    Pandruvada, Rafael Wysocki):
 
    * Add a new sysfs attribute for disabling/enabling CPU
      energy-efficiency optimizations in the processor.
 
    * Make the driver avoid enabling HWP if EPP is not supported.
 
    * Allow the driver to handle numeric EPP values in the sysfs
      interface and fix the setting of EPP via sysfs in the active
      mode.
 
    * Eliminate a static checker warning and clean up a kerneldoc
      comment.
 
  - Clean up some variable declarations in the powernv cpufreq
    driver (Wei Yongjun).
 
  - Fix up the ->enter_s2idle callback definition to cover the case
    when it points to the same function as ->idle correctly (Neal
    Liu).
 
  - Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).
 
  - Make the PM core emit "changed" uevent when adding/removing the
    "wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).
 
  - Add a helper macro for declaring PM callbacks and use it in the
    MMC jz4740 driver (Paul Cercueil).
 
  - Fix white space in some places in the hibernate code and make the
    system-wide PM code use "const char *" where appropriate (Xiang
    Chen, Alexey Dobriyan).
 
  - Add one more "unsafe" helper macro to the freezer to cover the NFS
    use case (He Zhe).
 
  - Change the language in the generic PM domains framework to use
    parent/child terminology and clean up a typo and some comment
    fromatting in that code (Kees Cook, Geert Uytterhoeven).
 
  - Update the operating performance points OPP framework (Lukasz
    Luba, Andrew-sh.Cheng, Valdis Kletnieks):
 
    * Refactor dev_pm_opp_of_register_em() and update related drivers.
 
    * Add a missing function export.
 
    * Allow disabled OPPs in dev_pm_opp_get_freq().
 
  - Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
    Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):
 
    * Add support for delayed timers to the devfreq core and make the
      Samsung exynos5422-dmc driver use it.
 
    * Unify sysfs interface to use "df-" as a prefix in instance names
      consistently.
 
    * Fix devfreq_summary debugfs node indentation.
 
    * Add the rockchip,pmu phandle to the rk3399_dmc driver DT
      bindings.
 
    * List Dmitry Osipenko as the Tegra devfreq driver maintainer.
 
    * Fix typos in the core devfreq code.
 
  - Update the pm-graph utility to version 5.7 including a number of
    fixes related to suspend-to-idle (Todd Brandt).
 
  - Fix coccicheck errors and warnings in the cpupower utility (Shuah
    Khan).
 
  - Replace HTTP links with HTTPs ones in multiple places (Alexander
    A. Klimov).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl8oO24SHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx7ZQP/0lQ0yABnASnwomdOH6+K/m7rvc+e9FE
 zx5pTDQswhU5tM7SQAIKqe0uSI+okF2UrBrT5onA16F+JUbnrbexJLazBPfVTTGF
 AKpKEQ7Wh69Wz+Y6cQZjm1dTuRL+dlBJuBrzR2tLSnONPMMHuFcO3xd7lgE9UAxC
 oGEf393taA6OqcUNRQIa2gqbq+k1qhKjeDucGkbOaoJ6CL0ZyWI+Tfw1WWaBBGv0
 /2wBd6V513OH8WtQCW6H3YpHmhYW6OwL8w19KyGcjPRGJaeaIP4W/Ng7mkvgL5ZB
 vZqg3XiufFV9uTe8W1NQaVv/NjlN256OteuK809aosTVjD0dhFkhBYg5TLu6HbQq
 C/NciZ+78oLedWLT73EUfw3NyS+V0jk6X2EIlBUwNi0Qw1B1pCifGOCKzWFFe5cr
 ci4xr4FG7dBkxScOxwFAU2s5TdPHLOkGkQtg4jZr0OYDrzkyLEdsnZEUjLPORo+0
 6EBXGfTOSy2CBHcYswRtzJr/1pUTzj7oejhTAMCCuYW2r3VyQtnYcVjlehtp20if
 6BfmGisk8nmtxlSm+/Y2FqKa4bNnSTMmr0UJQ+Rjp0tHs47QeucI0ORfZ5nPaBac
 +ptvIjWmn3xejT/+oAehpH9066Iuy66vzHdnj7x5+WAsmYS8n8OFtlBFkYELmLJB
 3xI5hIl7WtGo
 =8cUO
 -----END PGP SIGNATURE-----

Merge tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "The most significant change here is the extension of the Energy Model
  to cover non-CPU devices (as well as CPUs) from Lukasz Luba.

  There is also some new hardware support (Ice Lake server idle states
  table for intel_idle, Sapphire Rapids and Power Limit 4 support in the
  RAPL driver), some new functionality in the existing drivers (eg. a
  new switch to disable/enable CPU energy-efficiency optimizations in
  intel_pstate, delayed timers in devfreq), some assorted fixes (cpufreq
  core, intel_pstate, intel_idle) and cleanups (eg. cpuidle-psci,
  devfreq), including the elimination of W=1 build warnings from cpufreq
  done by Lee Jones.

  Specifics:

   - Make the Energy Model cover non-CPU devices (Lukasz Luba).

   - Add Ice Lake server idle states table to the intel_idle driver and
     eliminate a redundant static variable from it (Chen Yu, Rafael
     Wysocki).

   - Eliminate all W=1 build warnings from cpufreq (Lee Jones).

   - Add support for Sapphire Rapids and for Power Limit 4 to the Intel
     RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).

   - Fix function name in kerneldoc comments in the idle_inject power
     capping driver (Yangtao Li).

   - Fix locking issues with cpufreq governors and drop a redundant
     "weak" function definition from cpufreq (Viresh Kumar).

   - Rearrange cpufreq to register non-modular governors at the
     core_initcall level and allow the default cpufreq governor to be
     specified in the kernel command line (Quentin Perret).

   - Extend, fix and clean up the intel_pstate driver (Srinivas
     Pandruvada, Rafael Wysocki):

       * Add a new sysfs attribute for disabling/enabling CPU
         energy-efficiency optimizations in the processor.

       * Make the driver avoid enabling HWP if EPP is not supported.

       * Allow the driver to handle numeric EPP values in the sysfs
         interface and fix the setting of EPP via sysfs in the active
         mode.

       * Eliminate a static checker warning and clean up a kerneldoc
         comment.

   - Clean up some variable declarations in the powernv cpufreq driver
     (Wei Yongjun).

   - Fix up the ->enter_s2idle callback definition to cover the case
     when it points to the same function as ->idle correctly (Neal Liu).

   - Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).

   - Make the PM core emit "changed" uevent when adding/removing the
     "wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).

   - Add a helper macro for declaring PM callbacks and use it in the MMC
     jz4740 driver (Paul Cercueil).

   - Fix white space in some places in the hibernate code and make the
     system-wide PM code use "const char *" where appropriate (Xiang
     Chen, Alexey Dobriyan).

   - Add one more "unsafe" helper macro to the freezer to cover the NFS
     use case (He Zhe).

   - Change the language in the generic PM domains framework to use
     parent/child terminology and clean up a typo and some comment
     fromatting in that code (Kees Cook, Geert Uytterhoeven).

   - Update the operating performance points OPP framework (Lukasz Luba,
     Andrew-sh.Cheng, Valdis Kletnieks):

       * Refactor dev_pm_opp_of_register_em() and update related drivers.

       * Add a missing function export.

       * Allow disabled OPPs in dev_pm_opp_get_freq().

   - Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
     Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):

       * Add support for delayed timers to the devfreq core and make the
         Samsung exynos5422-dmc driver use it.

       * Unify sysfs interface to use "df-" as a prefix in instance
         names consistently.

       * Fix devfreq_summary debugfs node indentation.

       * Add the rockchip,pmu phandle to the rk3399_dmc driver DT
         bindings.

       * List Dmitry Osipenko as the Tegra devfreq driver maintainer.

       * Fix typos in the core devfreq code.

   - Update the pm-graph utility to version 5.7 including a number of
     fixes related to suspend-to-idle (Todd Brandt).

   - Fix coccicheck errors and warnings in the cpupower utility (Shuah
     Khan).

   - Replace HTTP links with HTTPs ones in multiple places (Alexander A.
     Klimov)"

* tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (71 commits)
  cpuidle: ACPI: fix 'return' with no value build warning
  cpufreq: intel_pstate: Fix EPP setting via sysfs in active mode
  cpufreq: intel_pstate: Rearrange the storing of new EPP values
  intel_idle: Customize IceLake server support
  PM / devfreq: Fix the wrong end with semicolon
  PM / devfreq: Fix indentaion of devfreq_summary debugfs node
  PM / devfreq: Clean up the devfreq instance name in sysfs attr
  memory: samsung: exynos5422-dmc: Add module param to control IRQ mode
  memory: samsung: exynos5422-dmc: Adjust polling interval and uptreshold
  memory: samsung: exynos5422-dmc: Use delayed timer as default
  PM / devfreq: Add support delayed timer for polling mode
  dt-bindings: devfreq: rk3399_dmc: Add rockchip,pmu phandle
  PM / devfreq: tegra: Add Dmitry as a maintainer
  PM / devfreq: event: Fix trivial spelling
  PM / devfreq: rk3399_dmc: Fix kernel oops when rockchip,pmu is absent
  cpuidle: change enter_s2idle() prototype
  cpuidle: psci: Prevent domain idlestates until consumers are ready
  cpuidle: psci: Convert PM domain to platform driver
  cpuidle: psci: Fix error path via converting to a platform driver
  cpuidle: psci: Fail cpuidle registration if set OSI mode failed
  ...
2020-08-03 20:28:08 -07:00