All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
logfs does not need the BKL, so use ->unlocked_ioctl instead
of ->ioctl in file operations.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Joern Engel <joern@logfs.org>
[ fixed trivial conflict ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Make sure we call inode_change_ok before doing any changes in ->setattr,
and make sure to call it even if our fs wants to ignore normal UNIX
permissions, but use the ATTR_FORCE to skip those.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace inode_setattr with opencoded variants of it in all callers. This
moves the remaining call to vmtruncate into the filesystem methods where it
can be replaced with the proper truncate sequence.
In a few cases it was obvious that we would never end up calling vmtruncate
so it was left out in the opencoded variant:
spufs: explicitly checks for ATTR_SIZE earlier
btrfs,hugetlbfs,logfs,dlmfs: explicitly clears ATTR_SIZE earlier
ufs: contains an opencoded simple_seattr + truncate that sets the filesize just above
In addition to that ncpfs called inode_setattr with handcrafted iattrs,
which allowed to trim down the opencoded variant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (44 commits)
vlynq: make whole Kconfig-menu dependant on architecture
add descriptive comment for TIF_MEMDIE task flag declaration.
EEPROM: max6875: Header file cleanup
EEPROM: 93cx6: Header file cleanup
EEPROM: Header file cleanup
agp: use NULL instead of 0 when pointer is needed
rtc-v3020: make bitfield unsigned
PCI: make bitfield unsigned
jbd2: use NULL instead of 0 when pointer is needed
cciss: fix shadows sparse warning
doc: inode uses a mutex instead of a semaphore.
uml: i386: Avoid redefinition of NR_syscalls
fix "seperate" typos in comments
cocbalt_lcdfb: correct sections
doc: Change urls for sparse
Powerpc: wii: Fix typo in comment
i2o: cleanup some exit paths
Documentation/: it's -> its where appropriate
UML: Fix compiler warning due to missing task_struct declaration
UML: add kernel.h include to signal.c
...
The write buffer may not have been written and may no longer be written
due to an interrupted write in the affected page.
Signed-off-by: Joern Engel <joern@logfs.org>
The get_mtd_device() function returns error pointers on failure and if we
don't handle it, it leads to a crash.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
When CONFIG_BLOCK is not enabled:
fs/logfs/super.c:142: error: implicit declaration of function 'bdev_get_queue'
fs/logfs/super.c:142: error: invalid type argument of '->' (have 'int')
Found by Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Joern Engel <joern@logfs.org>
li_refcount was not re-initialized in function logfs_init_inode(), small
patch that will fix the problem
Signed-off-by: Prasad Joshi <prasadjoshi124@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
logfs_seek_hole() may return the same offset it is passed as argument.
Found by Prasad Joshi <prasadjoshi124@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
There is a typo here. We should test "last" instead of "first".
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Joern Engel <joern@logfs.org>
Truncate would do an almost limitless amount of work without invoking
the garbage collector in between. Split it up into more manageable,
though still large, chunks.
Signed-off-by: Joern Engel <joern@logfs.org>
Since 32a88aa1 sync() was turned into a NOP for logfs. Worse, sync()
would not return an error, giving the illusion that writeout had
actually happened.
Afaics jffs2 was broken as well.
Signed-off-by: Joern Engel <joern@logfs.org>
It would probably be better to just accept NULL pointers in
mempool_destroy(). But for the current -rc series let's keep things
simple.
This patch was lost in the cracks for a while.
Kevin Cernekee <cernekee@gmail.com> had to rediscover the problem and
send a similar patch because of it. :(
Signed-off-by: Joern Engel <joern@logfs.org>
Removing sufficiently large files would create aliases for a large
number of segments. This in turn results in a large number of journal
entries and an overflow of s_je_array.
Cheap fix is to add a BUG_ON, turning memory corruption into something
annoying, but less dangerous. Real fix is to count the number of
affected segments and prevent the problem completely.
Signed-off-by: Joern Engel <joern@logfs.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
If the device contains on old logfs image and the journal is moved to
segment that have never been used by the current logfs and not all
journal segments are erased before the next mount, the old content can
confuse mount code. To prevent this, always erase the new journal
segments.
Signed-off-by: Joern Engel <joern@logfs.org>
do_logfs_journal_wl_pass() must call freeseg(), thereby clear
PagePrivate on all pages of the current journal segment.
Signed-off-by: Joern Engel <joern@logfs.org>
A comment in the old code read:
/* The math in this function can surely use some love */
And indeed it did. In the case that area->a_used_bytes is exactly
4096 bytes below segment size it fell apart. pad_wbuf is now split
into two helpers that are significantly less complicated.
Signed-off-by: Joern Engel <joern@logfs.org>
The comment was correct, so make the code match the comment. As the
new comment indicates, we might be able to do a little less work. But
for the current -rc series let's keep it simple and just fix the bug.
Signed-off-by: Joern Engel <joern@logfs.org>
If the first superblock is wrong and the second gets written, there
will still be a mismatch on next mount. Write both to make sure they
match.
Signed-off-by: Joern Engel <joern@logfs.org>
Intel SSDs have a limit of 0xffff as queue_max_hw_sectors(q). Such a
limit may make sense from a hardware pov, but it causes bio_alloc() to
return NULL.
Signed-off-by: Joern Engel <joern@logfs.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs:
[LogFS] Change magic number
[LogFS] Remove h_version field
[LogFS] Check feature flags
[LogFS] Only write journal if dirty
[LogFS] Fix bdev erases
[LogFS] Silence gcc
[LogFS] Prevent 64bit divisions in hash_index
[LogFS] Plug memory leak on error paths
[LogFS] Add MAINTAINERS entry
[LogFS] add new flash file system
Fixed up trivial conflict in lib/Kconfig, and a semantic conflict in
fs/logfs/inode.c introduced by write_inode() being changed to use
writeback_control' by commit a9185b41a4
("pass writeback_control to ->write_inode")
Many changes were made during development that could result in old
versions of mklogfs and the kernel code being subtly incompatible.
Not being a friend of subtleties, I hereby change the magic number.
Any old version of mklogfs is now guaranteed to fail.
Erases for block devices were always just emulated by writing 0xff.
Some time back the write was removed and only the page cache was
changed to 0xff. Superficialy a good idea with two problems:
1. Touching the page cache isn't necessary either.
2. However, writing out 0xff _is_ necessary for the journal. As the
journal is scanned linearly, an old non-overwritten commit entry
can be used on next mount and cause havoc.
This should fix both aspects.
Andrew Morton sayeth:
fs/logfs/journal.c: In function 'logfs_init_journal':
fs/logfs/journal.c:266: warning: 'last_len' may be used uninitialized in this function
Can this be squished please?