Граф коммитов

432 Коммитов

Автор SHA1 Сообщение Дата
Michal Hocko 89c83fb539 mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask
THP allocation mode is quite complex and it depends on the defrag mode.
This complexity is hidden in alloc_hugepage_direct_gfpmask from a large
part currently. The NUMA special casing (namely __GFP_THISNODE) is
however independent and placed in alloc_pages_vma currently. This both
adds an unnecessary branch to all vma based page allocation requests and
it makes the code more complex unnecessarily as well. Not to mention
that e.g. shmem THP used to do the node reclaiming unconditionally
regardless of the defrag mode until recently. This was not only
unexpected behavior but it was also hardly a good default behavior and I
strongly suspect it was just a side effect of the code sharing more than
a deliberate decision which suggests that such a layering is wrong.

Get rid of the thp special casing from alloc_pages_vma and move the
logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the
resulting gfp mask only when the direct reclaim is not requested and
when there is no explicit numa binding to preserve the current logic.

Please note that there's also a slight difference wrt MPOL_BIND now. The
previous code would avoid using __GFP_THISNODE if the local node was
outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided
for all MPOL_BIND policies. So there's a difference that if local node
is actually allowed by the bind policy's nodemask, previously
__GFP_THISNODE would be added, but now it won't be. From the behavior
POV this is still correct because the policy nodemask is used.

Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:37 -07:00
Andrea Arcangeli ac5b2c1891 mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings
THP allocation might be really disruptive when allocated on NUMA system
with the local node full or hard to reclaim.  Stefan has posted an
allocation stall report on 4.12 based SLES kernel which suggests the
same issue:

  kvm: page allocation stalls for 194572ms, order:9, mode:0x4740ca(__GFP_HIGHMEM|__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE|__GFP_MOVABLE|__GFP_DIRECT_RECLAIM), nodemask=(null)
  kvm cpuset=/ mems_allowed=0-1
  CPU: 10 PID: 84752 Comm: kvm Tainted: G        W 4.12.0+98-ph <a href="/view.php?id=1" title="[geschlossen] Integration Ramdisk" class="resolved">0000001</a> SLE15 (unreleased)
  Hardware name: Supermicro SYS-1029P-WTRT/X11DDW-NT, BIOS 2.0 12/05/2017
  Call Trace:
   dump_stack+0x5c/0x84
   warn_alloc+0xe0/0x180
   __alloc_pages_slowpath+0x820/0xc90
   __alloc_pages_nodemask+0x1cc/0x210
   alloc_pages_vma+0x1e5/0x280
   do_huge_pmd_wp_page+0x83f/0xf00
   __handle_mm_fault+0x93d/0x1060
   handle_mm_fault+0xc6/0x1b0
   __do_page_fault+0x230/0x430
   do_page_fault+0x2a/0x70
   page_fault+0x7b/0x80
   [...]
  Mem-Info:
  active_anon:126315487 inactive_anon:1612476 isolated_anon:5
   active_file:60183 inactive_file:245285 isolated_file:0
   unevictable:15657 dirty:286 writeback:1 unstable:0
   slab_reclaimable:75543 slab_unreclaimable:2509111
   mapped:81814 shmem:31764 pagetables:370616 bounce:0
   free:32294031 free_pcp:6233 free_cma:0
  Node 0 active_anon:254680388kB inactive_anon:1112760kB active_file:240648kB inactive_file:981168kB unevictable:13368kB isolated(anon):0kB isolated(file):0kB mapped:280240kB dirty:1144kB writeback:0kB shmem:95832kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 81225728kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
  Node 1 active_anon:250583072kB inactive_anon:5337144kB active_file:84kB inactive_file:0kB unevictable:49260kB isolated(anon):20kB isolated(file):0kB mapped:47016kB dirty:0kB writeback:4kB shmem:31224kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 31897600kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no

The defrag mode is "madvise" and from the above report it is clear that
the THP has been allocated for MADV_HUGEPAGA vma.

Andrea has identified that the main source of the problem is
__GFP_THISNODE usage:

: The problem is that direct compaction combined with the NUMA
: __GFP_THISNODE logic in mempolicy.c is telling reclaim to swap very
: hard the local node, instead of failing the allocation if there's no
: THP available in the local node.
:
: Such logic was ok until __GFP_THISNODE was added to the THP allocation
: path even with MPOL_DEFAULT.
:
: The idea behind the __GFP_THISNODE addition, is that it is better to
: provide local memory in PAGE_SIZE units than to use remote NUMA THP
: backed memory. That largely depends on the remote latency though, on
: threadrippers for example the overhead is relatively low in my
: experience.
:
: The combination of __GFP_THISNODE and __GFP_DIRECT_RECLAIM results in
: extremely slow qemu startup with vfio, if the VM is larger than the
: size of one host NUMA node. This is because it will try very hard to
: unsuccessfully swapout get_user_pages pinned pages as result of the
: __GFP_THISNODE being set, instead of falling back to PAGE_SIZE
: allocations and instead of trying to allocate THP on other nodes (it
: would be even worse without vfio type1 GUP pins of course, except it'd
: be swapping heavily instead).

Fix this by removing __GFP_THISNODE for THP requests which are
requesting the direct reclaim.  This effectivelly reverts 5265047ac3
on the grounds that the zone/node reclaim was known to be disruptive due
to premature reclaim when there was memory free.  While it made sense at
the time for HPC workloads without NUMA awareness on rare machines, it
was ultimately harmful in the majority of cases.  The existing behaviour
is similar, if not as widespare as it applies to a corner case but
crucially, it cannot be tuned around like zone_reclaim_mode can.  The
default behaviour should always be to cause the least harm for the
common case.

If there are specialised use cases out there that want zone_reclaim_mode
in specific cases, then it can be built on top.  Longterm we should
consider a memory policy which allows for the node reclaim like behavior
for the specific memory ranges which would allow a

[1] http://lkml.kernel.org/r/20180820032204.9591-1-aarcange@redhat.com

Mel said:

: Both patches look correct to me but I'm responding to this one because
: it's the fix.  The change makes sense and moves further away from the
: severe stalling behaviour we used to see with both THP and zone reclaim
: mode.
:
: I put together a basic experiment with usemem configured to reference a
: buffer multiple times that is 80% the size of main memory on a 2-socket
: box with symmetric node sizes and defrag set to "always".  The defrag
: setting is not the default but it would be functionally similar to
: accessing a buffer with madvise(MADV_HUGEPAGE).  Usemem is configured to
: reference the buffer multiple times and while it's not an interesting
: workload, it would be expected to complete reasonably quickly as it fits
: within memory.  The results were;
:
: usemem
:                                   vanilla           noreclaim-v1
: Amean     Elapsd-1       42.78 (   0.00%)       26.87 (  37.18%)
: Amean     Elapsd-3       27.55 (   0.00%)        7.44 (  73.00%)
: Amean     Elapsd-4        5.72 (   0.00%)        5.69 (   0.45%)
:
: This shows the elapsed time in seconds for 1 thread, 3 threads and 4
: threads referencing buffers 80% the size of memory.  With the patches
: applied, it's 37.18% faster for the single thread and 73% faster with two
: threads.  Note that 4 threads showing little difference does not indicate
: the problem is related to thread counts.  It's simply the case that 4
: threads gets spread so their workload mostly fits in one node.
:
: The overall view from /proc/vmstats is more startling
:
:                          4.19.0-rc1  4.19.0-rc1
:                             vanillanoreclaim-v1r1
: Minor Faults               35593425      708164
: Major Faults                 484088          36
: Swap Ins                    3772837           0
: Swap Outs                   3932295           0
:
: Massive amounts of swap in/out without the patch
:
: Direct pages scanned        6013214           0
: Kswapd pages scanned              0           0
: Kswapd pages reclaimed            0           0
: Direct pages reclaimed      4033009           0
:
: Lots of reclaim activity without the patch
:
: Kswapd efficiency              100%        100%
: Kswapd velocity               0.000       0.000
: Direct efficiency               67%        100%
: Direct velocity           11191.956       0.000
:
: Mostly from direct reclaim context as you'd expect without the patch.
:
: Page writes by reclaim  3932314.000       0.000
: Page writes file                 19           0
: Page writes anon            3932295           0
: Page reclaim immediate        42336           0
:
: Writes from reclaim context is never good but the patch eliminates it.
:
: We should never have default behaviour to thrash the system for such a
: basic workload.  If zone reclaim mode behaviour is ever desired but on a
: single task instead of a global basis then the sensible option is to build
: a mempolicy that enforces that behaviour.

This was a severe regression compared to previous kernels that made
important workloads unusable and it starts when __GFP_THISNODE was
added to THP allocations under MADV_HUGEPAGE.  It is not a significant
risk to go to the previous behavior before __GFP_THISNODE was added, it
worked like that for years.

This was simply an optimization to some lucky workloads that can fit in
a single node, but it ended up breaking the VM for others that can't
possibly fit in a single node, so going back is safe.

[mhocko@suse.com: rewrote the changelog based on the one from Andrea]
Link: http://lkml.kernel.org/r/20180925120326.24392-2-mhocko@kernel.org
Fixes: 5265047ac3 ("mm, thp: really limit transparent hugepage allocation to local node")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Debugged-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: <stable@vger.kernel.org>	[4.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:37 -07:00
zhong jiang dedf2c73b8 mm/mempolicy.c: use match_string() helper to simplify the code
match_string() returns the index of an array for a matching string, which
can be used intead of open coded implementation.

Link: http://lkml.kernel.org/r/1536988365-50310-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Andrea Arcangeli 3b9aadf727 userfaultfd: allow get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) to trigger userfaults
get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) called a get_user_pages that would
not be waiting for userfaults before failing and it would hit on a SIGBUS
instead.  Using get_user_pages_locked/unlocked instead will allow
get_mempolicy to allow userfaults to resolve the fault and fill the hole,
before grabbing the node id of the page.

If the user calls get_mempolicy() with MPOL_F_ADDR | MPOL_F_NODE for an
address inside an area managed by uffd and there is no page at that
address, the page allocation from within get_mempolicy() will fail
because get_user_pages() does not allow for page fault retry required
for uffd; the user will get SIGBUS.

With this patch, the page fault will be resolved by the uffd and the
get_mempolicy() will continue normally.

Background:

Via code review, previously the syscall would have returned -EFAULT
(vm_fault_to_errno), now it will block and wait for an userfault (if
it's waken before the fault is resolved it'll still -EFAULT).

This way get_mempolicy will give a chance to an "unaware" app to be
compliant with userfaults.

The reason this visible change is that becoming "userfault compliant"
cannot regress anything: all other syscalls including read(2)/write(2)
had to become "userfault compliant" long time ago (that's one of the
things userfaultfd can do that PROT_NONE and trapping segfaults can't).

So this is just one more syscall that become "userfault compliant" like
all other major ones already were.

This has been happening on virtio-bridge dpdk process which just called
get_mempolicy on the guest space post live migration, but before the
memory had a chance to be migrated to destination.

I didn't run an strace to be able to show the -EFAULT going away, but
I've the confirmation of the below debug aid information (only visible
with CONFIG_DEBUG_VM=y) going away with the patch:

    [20116.371461] FAULT_FLAG_ALLOW_RETRY missing 0
    [20116.371464] CPU: 1 PID: 13381 Comm: vhost-events Not tainted 4.17.12-200.fc28.x86_64 #1
    [20116.371465] Hardware name: LENOVO 20FAS2BN0A/20FAS2BN0A, BIOS N1CET54W (1.22 ) 02/10/2017
    [20116.371466] Call Trace:
    [20116.371473]  dump_stack+0x5c/0x80
    [20116.371476]  handle_userfault.cold.37+0x1b/0x22
    [20116.371479]  ? remove_wait_queue+0x20/0x60
    [20116.371481]  ? poll_freewait+0x45/0xa0
    [20116.371483]  ? do_sys_poll+0x31c/0x520
    [20116.371485]  ? radix_tree_lookup_slot+0x1e/0x50
    [20116.371488]  shmem_getpage_gfp+0xce7/0xe50
    [20116.371491]  ? page_add_file_rmap+0x1a/0x2c0
    [20116.371493]  shmem_fault+0x78/0x1e0
    [20116.371495]  ? filemap_map_pages+0x3a1/0x450
    [20116.371498]  __do_fault+0x1f/0xc0
    [20116.371500]  __handle_mm_fault+0xe2e/0x12f0
    [20116.371502]  handle_mm_fault+0xda/0x200
    [20116.371504]  __get_user_pages+0x238/0x790
    [20116.371506]  get_user_pages+0x3e/0x50
    [20116.371510]  kernel_get_mempolicy+0x40b/0x700
    [20116.371512]  ? vfs_write+0x170/0x1a0
    [20116.371515]  __x64_sys_get_mempolicy+0x21/0x30
    [20116.371517]  do_syscall_64+0x5b/0x160
    [20116.371520]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

The above harmless debug message (not a kernel crash, just a
dump_stack()) is shown with CONFIG_DEBUG_VM=y to more quickly identify
and improve kernel spots that may have to become "userfaultfd
compliant" like this one (without having to run an strace and search
for syscall misbehavior).  Spots like the above are more closer to a
kernel bug for the non-cooperative usages that Mike focuses on, than
for for dpdk qemu-cooperative usages that reproduced it, but it's still
nicer to get this fixed for dpdk too.

The part of the patch that caused me to think is only the
implementation issue of mpol_get, but it looks like it should work safe
no matter the kind of mempolicy structure that is (the default static
policy also starts at 1 so it'll go to 2 and back to 1 without crashing
everything at 0).

[rppt@linux.vnet.ibm.com: changelog addition]
  http://lkml.kernel.org/r/20180904073718.GA26916@rapoport-lnx
Link: http://lkml.kernel.org/r/20180831214848.23676-1-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Tested-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:20 -07:00
Pavel Tatashin c1093b746c mm: access zone->node via zone_to_nid() and zone_set_nid()
zone->node is configured only when CONFIG_NUMA=y, so it is a good idea to
have inline functions to access this field in order to avoid ifdef's in c
files.

Link: http://lkml.kernel.org/r/20180730101757.28058-3-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Andrew Morton a670468f5e mm: zero out the vma in vma_init()
Rather than in vm_area_alloc().  To ensure that the various oddball
stack-based vmas are in a good state.  Some of the callers were zeroing
them out, others were not.

Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Kirill A. Shutemov 2c4541e24c mm: use vma_init() to initialize VMAs on stack and data segments
Make sure to initialize all VMAs properly, not only those which come
from vm_area_cachep.

Link: http://lkml.kernel.org/r/20180724121139.62570-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-07-26 19:38:03 -07:00
Michal Hocko 94723aafb9 mm: unclutter THP migration
THP migration is hacked into the generic migration with rather
surprising semantic.  The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate.  unmap_and_move then
fixes that up by spliting the THP into small pages while moving the head
page to the newly allocated order-0 page.  Remaning pages are moved to
the LRU list by split_huge_page.  The same happens if the THP allocation
fails.  This is really ugly and error prone [1].

I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated.  Some callers will just work
around that by retrying (e.g.  memory hotplug).  There are other pfn
walkers which are simply broken though.  e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior.  Page compaction doesn't try to migrate large
pages so it should be immune.

This patch tries to unclutter the situation by moving the special THP
handling up to the migrate_pages layer where it actually belongs.  We
simply split the THP page into the existing list if unmap_and_move fails
with ENOMEM and retry.  So we will _always_ migrate all THP subpages and
specific migrate_pages users do not have to deal with this case in a
special way.

[1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com

Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Michal Hocko 666feb21a0 mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore.  new_page_node
used to use this parameter to convey node_id resp.  migration error up
to move_pages code (do_move_page_to_node_array).  The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now.  All other allocation
callbacks simply ignored the argument so we can drop it finally.

[mhocko@suse.com: fix migration callback]
  Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
  Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Michal Hocko a49bd4d716 mm, numa: rework do_pages_move
Patch series "unclutter thp migration"

Motivation:

THP migration is hacked into the generic migration with rather
surprising semantic.  The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate.  unmap_and_move then
fixes that up by splitting the THP into small pages while moving the
head page to the newly allocated order-0 page.  Remaining pages are
moved to the LRU list by split_huge_page.  The same happens if the THP
allocation fails.  This is really ugly and error prone [2].

I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated.  Some callers will just work
around that by retrying (e.g.  memory hotplug).  There are other pfn
walkers which are simply broken though.  e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior.  Page compaction doesn't try to migrate large
pages so it should be immune.

The first patch reworks do_pages_move which relies on a very ugly
calling semantic when the return status is pushed to the migration path
via private pointer.  It uses pre allocated fixed size batching to
achieve that.  We simply cannot do the same if a THP is to be split
during the migration path which is done in the patch 3.  Patch 2 is
follow up cleanup which removes the mentioned return status calling
convention ugliness.

On a side note:

There are some semantic issues I have encountered on the way when
working on patch 1 but I am not addressing them here.  E.g. trying to
move THP tail pages will result in either success or EBUSY (the later
one more likely once we isolate head from the LRU list).  Hugetlb
reports EACCESS on tail pages.  Some errors are reported via status
parameter but migration failures are not even though the original
`reason' argument suggests there was an intention to do so.  From a
quick look into git history this never worked.  I have tried to keep the
semantic unchanged.

Then there is a relatively minor thing that the page isolation might
fail because of pages not being on the LRU - e.g. because they are
sitting on the per-cpu LRU caches.  Easily fixable.

This patch (of 3):

do_pages_move is supposed to move user defined memory (an array of
addresses) to the user defined numa nodes (an array of nodes one for
each address).  The user provided status array then contains resulting
numa node for each address or an error.  The semantic of this function
is little bit confusing because only some errors are reported back.
Notably migrate_pages error is only reported via the return value.  This
patch doesn't try to address these semantic nuances but rather change
the underlying implementation.

Currently we are processing user input (which can be really large) in
batches which are stored to a temporarily allocated page.  Each address
is resolved to its struct page and stored to page_to_node structure
along with the requested target numa node.  The array of these
structures is then conveyed down the page migration path via private
argument.  new_page_node then finds the corresponding structure and
allocates the proper target page.

What is the problem with the current implementation and why to change
it? Apart from being quite ugly it also doesn't cope with unexpected
pages showing up on the migration list inside migrate_pages path.  That
doesn't happen currently but the follow up patch would like to make the
thp migration code more clear and that would need to split a THP into
the list for some cases.

How does the new implementation work? Well, instead of batching into a
fixed size array we simply batch all pages that should be migrated to
the same node and isolate all of them into a linked list which doesn't
require any additional storage.  This should work reasonably well
because page migration usually migrates larger ranges of memory to a
specific node.  So the common case should work equally well as the
current implementation.  Even if somebody constructs an input where the
target numa nodes would be interleaved we shouldn't see a large
performance impact because page migration alone doesn't really benefit
from batching.  mmap_sem batching for the lookup is quite questionable
and isolate_lru_page which would benefit from batching is not using it
even in the current implementation.

Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Linus Torvalds 642e7fd233 Merge branch 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
 "System calls are interaction points between userspace and the kernel.
  Therefore, system call functions such as sys_xyzzy() or
  compat_sys_xyzzy() should only be called from userspace via the
  syscall table, but not from elsewhere in the kernel.

  At least on 64-bit x86, it will likely be a hard requirement from
  v4.17 onwards to not call system call functions in the kernel: It is
  better to use use a different calling convention for system calls
  there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
  which then hands processing over to the actual syscall function. This
  means that only those parameters which are actually needed for a
  specific syscall are passed on during syscall entry, instead of
  filling in six CPU registers with random user space content all the
  time (which may cause serious trouble down the call chain). Those
  x86-specific patches will be pushed through the x86 tree in the near
  future.

  Moreover, rules on how data may be accessed may differ between kernel
  data and user data. This is another reason why calling sys_xyzzy() is
  generally a bad idea, and -- at most -- acceptable in arch-specific
  code.

  This patchset removes all in-kernel calls to syscall functions in the
  kernel with the exception of arch/. On top of this, it cleans up the
  three places where many syscalls are referenced or prototyped, namely
  kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"

* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
  bpf: whitelist all syscalls for error injection
  kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
  kernel/sys_ni: sort cond_syscall() entries
  syscalls/x86: auto-create compat_sys_*() prototypes
  syscalls: sort syscall prototypes in include/linux/compat.h
  net: remove compat_sys_*() prototypes from net/compat.h
  syscalls: sort syscall prototypes in include/linux/syscalls.h
  kexec: move sys_kexec_load() prototype to syscalls.h
  x86/sigreturn: use SYSCALL_DEFINE0
  x86: fix sys_sigreturn() return type to be long, not unsigned long
  x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
  mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
  mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
  mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
  fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
  fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
  fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
  fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
  kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
  kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
  ...
2018-04-02 21:22:12 -07:00
Dominik Brodowski af03c4acb7 mm: add kernel_[sg]et_mempolicy() helpers; remove in-kernel calls to syscalls
Using the mm-internal kernel_[sg]et_mempolicy() helper allows us to get
rid of the mm-internal calls to the sys_[sg]et_mempolicy() syscalls.

This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:34 +02:00
Dominik Brodowski e7dc9ad6e9 mm: add kernel_mbind() helper; remove in-kernel call to syscall
Using the mm-internal kernel_mbind() helper allows us to get rid of the
mm-internal call to the sys_mbind() syscall.

This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:33 +02:00
Dominik Brodowski b6e9b0babb mm: add kernel_migrate_pages() helper, move compat syscall to mm/mempolicy.c
Move compat_sys_migrate_pages() to mm/mempolicy.c and make it call a newly
introduced helper -- kernel_migrate_pages() -- instead of the syscall.

This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:31 +02:00
Yisheng Xie 8970a63e96 mm/mempolicy.c: avoid use uninitialized preferred_node
Alexander reported a use of uninitialized memory in __mpol_equal(),
which is caused by incorrect use of preferred_node.

When mempolicy in mode MPOL_PREFERRED with flags MPOL_F_LOCAL, it uses
numa_node_id() instead of preferred_node, however, __mpol_equal() uses
preferred_node without checking whether it is MPOL_F_LOCAL or not.

[akpm@linux-foundation.org: slight comment tweak]
Link: http://lkml.kernel.org/r/4ebee1c2-57f6-bcb8-0e2d-1833d1ee0bb7@huawei.com
Fixes: fc36b8d3d8 ("mempolicy: use MPOL_F_LOCAL to Indicate Preferred Local Policy")
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-22 17:07:01 -07:00
Michal Hocko 389c8178d0 hugetlb, mbind: fall back to default policy if vma is NULL
Dan Carpenter has noticed that mbind migration callback (new_page) can
get a NULL vma pointer and choke on it inside alloc_huge_page_vma which
relies on the VMA to get the hstate.  We used to BUG_ON this case but
the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the
mbind hugetlb migration".

The proper way to handle this is to get the hstate from the migrated
page and rely on huge_node (resp.  get_vma_policy) do the right thing
with null VMA.  We are currently falling back to the default mempolicy
in that case which is in line what THP path is doing here.

Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko ebd6372358 hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages.  alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting.  None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped.  This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.

The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.

Fix this by making mbind like other hugetlb migration paths.  Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.

alloc_huge_page_noerr has no more users and it can go.

Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Yisheng Xie 0486a38bcc mm/mempolicy: add nodes_empty check in SYSC_migrate_pages
As in manpage of migrate_pages, the errno should be set to EINVAL when
none of the node IDs specified by new_nodes are on-line and allowed by
the process's current cpuset context, or none of the specified nodes
contain memory.  However, when test by following case:

	new_nodes = 0;
	old_nodes = 0xf;
	ret = migrate_pages(pid, old_nodes, new_nodes, MAX);

The ret will be 0 and no errno is set.  As the new_nodes is empty, we
should expect EINVAL as documented.

To fix the case like above, this patch check whether target nodes AND
current task_nodes is empty, and then check whether AND
node_states[N_MEMORY] is empty.

Link: http://lkml.kernel.org/r/1510882624-44342-4-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Christopher Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Yisheng Xie 56521e7a02 mm/mempolicy: fix the check of nodemask from user
As Xiaojun reported the ltp of migrate_pages01 will fail on arm64 system
which has 4 nodes[0...3], all have memory and CONFIG_NODES_SHIFT=2:

  migrate_pages01    0  TINFO  :  test_invalid_nodes
  migrate_pages01   14  TFAIL  :  migrate_pages_common.c:45: unexpected failure - returned value = 0, expected: -1
  migrate_pages01   15  TFAIL  :  migrate_pages_common.c:55: call succeeded unexpectedly

In this case the test_invalid_nodes of migrate_pages01 will call:
SYSC_migrate_pages as:

  migrate_pages(0, , {0x0000000000000001}, 64, , {0x0000000000000010}, 64) = 0

The new nodes specifies one or more node IDs that are greater than the
maximum supported node ID, however, the errno is not set to EINVAL as
expected.

As man pages of set_mempolicy[1], mbind[2], and migrate_pages[3]
mentioned, when nodemask specifies one or more node IDs that are greater
than the maximum supported node ID, the errno should set to EINVAL.
However, get_nodes only check whether the part of bits
[BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES), maxnode) is zero or not, and
remain [MAX_NUMNODES, BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES)
unchecked.

This patch is to check the bits of [MAX_NUMNODES, maxnode) in get_nodes
to let migrate_pages set the errno to EINVAL when nodemask specifies one
or more node IDs that are greater than the maximum supported node ID,
which follows the manpage's guide.

[1] http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
[2] http://man7.org/linux/man-pages/man2/mbind.2.html
[3] http://man7.org/linux/man-pages/man2/migrate_pages.2.html

Link: http://lkml.kernel.org/r/1510882624-44342-3-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Tan Xiaojun <tanxiaojun@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Christopher Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Yisheng Xie 66f308ed7d mm/mempolicy: remove redundant check in get_nodes
We have already checked whether maxnode is a page worth of bits, by:
    maxnode > PAGE_SIZE*BITS_PER_BYTE

So no need to check it once more.

Link: http://lkml.kernel.org/r/1510882624-44342-2-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Kemi Wang 4518085e12 mm, sysctl: make NUMA stats configurable
This is the second step which introduces a tunable interface that allow
numa stats configurable for optimizing zone_statistics(), as suggested
by Dave Hansen and Ying Huang.

=========================================================================

When page allocation performance becomes a bottleneck and you can
tolerate some possible tool breakage and decreased numa counter
precision, you can do:

	echo 0 > /proc/sys/vm/numa_stat

In this case, numa counter update is ignored.  We can see about
*4.8%*(185->176) drop of cpu cycles per single page allocation and
reclaim on Jesper's page_bench01 (single thread) and *8.1%*(343->315)
drop of cpu cycles per single page allocation and reclaim on Jesper's
page_bench03 (88 threads) running on a 2-Socket Broadwell-based server
(88 threads, 126G memory).

Benchmark link provided by Jesper D Brouer (increase loop times to
10000000):

  https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench

=========================================================================

When page allocation performance is not a bottleneck and you want all
tooling to work, you can do:

	echo 1 > /proc/sys/vm/numa_stat

This is system default setting.

Many thanks to Michal Hocko, Dave Hansen, Ying Huang and Vlastimil Babka
for comments to help improve the original patch.

[keescook@chromium.org: make sure mutex is a global static]
  Link: http://lkml.kernel.org/r/20171107213809.GA4314@beast
Link: http://lkml.kernel.org/r/1508290927-8518-1-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Otto Ebeling 3136746619 Unify migrate_pages and move_pages access checks
Commit 197e7e5213 ("Sanitize 'move_pages()' permission checks") fixed
a security issue I reported in the move_pages syscall, and made it so
that you can't act on set-uid processes unless you have the
CAP_SYS_PTRACE capability.

Unify the access check logic of migrate_pages to match the new behavior
of move_pages.  We discussed this a bit in the security@ list and
thought it'd be good for consistency even though there's no evident
security impact.  The NUMA node access checks are left intact and
require CAP_SYS_NICE as before.

Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1710011830320.6333@lakka.kapsi.fi
Signed-off-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Andrey Ryabinin de55c8b251 mm/mempolicy: fix NUMA_INTERLEAVE_HIT counter
Commit 3a321d2a3d ("mm: change the call sites of numa statistics
items") separated NUMA counters from zone counters, but the
NUMA_INTERLEAVE_HIT call site wasn't updated to use the new interface.
So alloc_page_interleave() actually increments NR_ZONE_INACTIVE_FILE
instead of NUMA_INTERLEAVE_HIT.

Fix this by using __inc_numa_state() interface to increment
NUMA_INTERLEAVE_HIT.

Link: http://lkml.kernel.org/r/20171003191003.8573-1-aryabinin@virtuozzo.com
Fixes: 3a321d2a3d ("mm: change the call sites of numa statistics items")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-13 16:18:32 -07:00
Anshuman Khandual 149728e913 mm/mempolicy.c: remove BUG_ON() checks for VMA inside mpol_misplaced()
VMA and its address bounds checks are too late in this function.  They
must have been verified earlier in the page fault sequence.  Hence just
remove them.

Link: http://lkml.kernel.org/r/20170901130137.7617-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00
Laurent Dufour 98c70baad4 mm: remove useless vma parameter to offset_il_node
While reading the code I found that offset_il_node() has a vm_area_struct
pointer parameter which is unused.

Link: http://lkml.kernel.org/r/1502899755-23146-1-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Naoya Horiguchi c863379849 mm: mempolicy: mbind and migrate_pages support thp migration
This patch enables thp migration for mbind(2) and migrate_pages(2).

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:45 -07:00
Naoya Horiguchi 88aaa2a1d7 mm: mempolicy: add queue_pages_required()
Patch series "mm: page migration enhancement for thp", v9.

Motivations:

1. THP migration becomes important in the upcoming heterogeneous memory
   systems. As David Nellans from NVIDIA pointed out from other threads
   (http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1349227.html),
   future GPUs or other accelerators will have their memory managed by
   operating systems. Moving data into and out of these memory nodes
   efficiently is critical to applications that use GPUs or other
   accelerators. Existing page migration only supports base pages, which
   has a very low memory bandwidth utilization. My experiments (see
   below) show THP migration can migrate pages more efficiently.

2. Base page migration vs THP migration throughput.

   Here are cross-socket page migration results from calling
   move_pages() syscall:

   In x86_64, a Intel two-socket E5-2640v3 box,
    - single 4KB base page migration takes 62.47 us, using 0.06 GB/s BW,
    - single 2MB THP migration takes 658.54 us, using 2.97 GB/s BW,
    - 512 4KB base page migration takes 1987.38 us, using 0.98 GB/s BW.

   In ppc64, a two-socket Power8 box,
    - single 64KB base page migration takes 49.3 us, using 1.24 GB/s BW,
    - single 16MB THP migration takes 2202.17 us, using 7.10 GB/s BW,
    - 256 64KB base page migration takes 2543.65 us, using 6.14 GB/s BW.

   THP migration can give us 3x and 1.15x throughput over base page
   migration in x86_64 and ppc64 respectivley.

   You can test it out by using the code here:
      https://github.com/x-y-z/thp-migration-bench

3. Existing page migration splits THP before migration and cannot
   guarantee the migrated pages are still contiguous. Contiguity is
   always what GPUs and accelerators look for. Without THP migration,
   khugepaged needs to do extra work to reassemble the migrated pages
   back to THPs.

This patch (of 10):

Introduce a separate check routine related to MPOL_MF_INVERT flag.  This
patch just does cleanup, no behavioral change.

Link: http://lkml.kernel.org/r/20170717193955.20207-2-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:45 -07:00
zhong jiang 73223e4e2e mm/mempolicy: fix use after free when calling get_mempolicy
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled.  The related call trace is as follows.

  BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
  Read of size 2 by task syz-executor1/798

  INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
     __slab_alloc+0x768/0x970
     kmem_cache_alloc+0x2e7/0x450
     mpol_new.part.2+0x74/0x160
     mpol_new+0x66/0x80
     SyS_mbind+0x267/0x9f0
     system_call_fastpath+0x16/0x1b
  INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
     __slab_free+0x495/0x8e0
     kmem_cache_free+0x2f3/0x4c0
     __mpol_put+0x2b/0x40
     SyS_mbind+0x383/0x9f0
     system_call_fastpath+0x16/0x1b
  INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
  INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600

  Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a  ........ZZZZZZZZ
  Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5                          kkkkkkk.
  Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb                          ........
  Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a                          ZZZZZZZZ
  Memory state around the buggy address:
  ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
  ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
  >ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc

!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem.  do_get_mempolicy,
however, drops the lock midway while we can still access it later.

Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffb ("[PATCH] Implement sys_* do_*
layering in the memory policy layer.").  but when we have the the
current mempolicy ref count model.  The issue was introduced
accordingly.

Fix the issue by removing the premature release.

Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[2.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18 15:32:02 -07:00
Michal Hocko 0f55685627 mm, migration: do not trigger OOM killer when migrating memory
Page migration (for memory hotplug, soft_offline_page or mbind) needs to
allocate a new memory.  This can trigger an oom killer if the target
memory is depleated.  Although quite unlikely, still possible,
especially for the memory hotplug (offlining of memoery).

Up to now we didn't really have reasonable means to back off.
__GFP_NORETRY can fail just too easily and __GFP_THISNODE sticks to a
single node and that is not suitable for all callers.

But now that we have __GFP_RETRY_MAYFAIL we should use it.  It is
preferable to fail the migration than disrupt the system by killing some
processes.

Link: http://lkml.kernel.org/r/20170623085345.11304-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:04 -07:00
Vlastimil Babka e0dd7d53a6 mm, mempolicy: don't check cpuset seqlock where it doesn't matter
Two wrappers of __alloc_pages_nodemask() are checking
task->mems_allowed_seq themselves to retry allocation that has raced
with a cpuset update.

This has been shown to be ineffective in preventing premature OOM's
which can happen in __alloc_pages_slowpath() long before it returns back
to the wrappers to detect the race at that level.

Previous patches have made __alloc_pages_slowpath() more robust, so we
can now simply remove the seqlock checking in the wrappers to prevent
further wrong impression that it can actually help.

Link: http://lkml.kernel.org/r/20170517081140.30654-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Vlastimil Babka 213980c0f2 mm, mempolicy: simplify rebinding mempolicies when updating cpusets
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") has introduced a two-step protocol when
rebinding task's mempolicy due to cpuset update, in order to avoid a
parallel allocation seeing an empty effective nodemask and failing.

Later, commit cc9a6c8776 ("cpuset: mm: reduce large amounts of memory
barrier related damage v3") introduced a seqlock protection and removed
the synchronization point between the two update steps.  At that point
(or perhaps later), the two-step rebinding became unnecessary.

Currently it only makes sure that the update first adds new nodes in
step 1 and then removes nodes in step 2.  Without memory barriers the
effects are questionable, and even then this cannot prevent a parallel
zonelist iteration checking the nodemask at each step to observe all
nodes as unusable for allocation.  We now fully rely on the seqlock to
prevent premature OOMs and allocation failures.

We can thus remove the two-step update parts and simplify the code.

Link: http://lkml.kernel.org/r/20170517081140.30654-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Vlastimil Babka 04ec6264f2 mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters.  All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask.  We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).

There are some code size benefits thanks to removal of inlined
node_zonelist():

  bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)

This will also make things simpler if we proceed with converting cpusets
to zonelists.

Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Vlastimil Babka 45816682b2 mm, mempolicy: stop adjusting current->il_next in mpol_rebind_nodemask()
The task->il_next variable stores the next allocation node id for task's
MPOL_INTERLEAVE policy.  mpol_rebind_nodemask() updates interleave and
bind mempolicies due to changing cpuset mems.  Currently it also tries
to make sure that current->il_next is valid within the updated nodemask.
This is bogus, because 1) we are updating potentially any task's
mempolicy, not just current, and 2) we might be updating a per-vma
mempolicy, not task one.

The interleave_nodes() function that uses il_next can cope fine with the
value not being within the currently allowed nodes, so this hasn't
manifested as an actual issue.

We can remove the need for updating il_next completely by changing it to
il_prev and store the node id of the previous interleave allocation
instead of the next id.  Then interleave_nodes() can calculate the next
id using the current nodemask and also store it as il_prev, except when
querying the next node via do_get_mempolicy().

Link: http://lkml.kernel.org/r/20170517081140.30654-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Chris Salls cf01fb9985 mm/mempolicy.c: fix error handling in set_mempolicy and mbind.
In the case that compat_get_bitmap fails we do not want to copy the
bitmap to the user as it will contain uninitialized stack data and leak
sensitive data.

Signed-off-by: Chris Salls <salls@cs.ucsb.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-08 10:57:55 -07:00
Ingo Molnar f719ff9bce sched/headers: Prepare to move the task_lock()/unlock() APIs to <linux/sched/task.h>
But first update the code that uses these facilities with the
new header.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:38 +01:00
Ingo Molnar 6a3827d750 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/numa_balancing.h>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:30 +01:00
Ingo Molnar 6e84f31522 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

The APIs that are going to be moved first are:

   mm_alloc()
   __mmdrop()
   mmdrop()
   mmdrop_async_fn()
   mmdrop_async()
   mmget_not_zero()
   mmput()
   mmput_async()
   get_task_mm()
   mm_access()
   mm_release()

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:28 +01:00
Vlastimil Babka d51e9894d2 mm/mempolicy.c: do not put mempolicy before using its nodemask
Since commit be97a41b29 ("mm/mempolicy.c: merge alloc_hugepage_vma to
alloc_pages_vma") alloc_pages_vma() can potentially free a mempolicy by
mpol_cond_put() before accessing the embedded nodemask by
__alloc_pages_nodemask().  The commit log says it's so "we can use a
single exit path within the function" but that's clearly wrong.  We can
still do that when doing mpol_cond_put() after the allocation attempt.

Make sure the mempolicy is not freed prematurely, otherwise
__alloc_pages_nodemask() can end up using a bogus nodemask, which could
lead e.g.  to premature OOM.

Fixes: be97a41b29 ("mm/mempolicy.c: merge alloc_hugepage_vma to alloc_pages_vma")
Link: http://lkml.kernel.org/r/20170118141124.8345-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>	[4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Linus Torvalds 7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Piotr Kwapulinski 8d303e44e9 mm/mempolicy.c: forbid static or relative flags for local NUMA mode
The MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES flags are irrelevant
when setting them for MPOL_LOCAL NUMA memory policy via set_mempolicy or
mbind.

Return the "invalid argument" from set_mempolicy and mbind whenever any
of these flags is passed along with MPOL_LOCAL.

It is consistent with MPOL_PREFERRED passed with empty nodemask.

It slightly shortens the execution time in paths where these flags are
used e.g.  when trying to rebind the NUMA nodes for changes in cgroups
cpuset mems (mpol_rebind_preferred()) or when just printing the mempolicy
structure (/proc/PID/numa_maps).  Isolated tests done.

Link: http://lkml.kernel.org/r/20161027163037.4089-1-kwapulinski.piotr@gmail.com
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Liang Chen <liangchen.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Michal Hocko 6d8409580b mm, mempolicy: clean up __GFP_THISNODE confusion in policy_zonelist
__GFP_THISNODE is documented to enforce the allocation to be satisified
from the requested node with no fallbacks or placement policy
enforcements.  policy_zonelist seemingly breaks this semantic if the
current policy is MPOL_MBIND and instead of taking the node it will
fallback to the first node in the mask if the requested one is not in
the mask.  This is confusing to say the least because it fact we
shouldn't ever go that path.  First tasks shouldn't be scheduled on CPUs
with nodes outside of their mempolicy binding.  And secondly
policy_zonelist is called only from 3 places:

 - huge_zonelist - never should do __GFP_THISNODE when going this path

 - alloc_pages_vma - which shouldn't depend on __GFP_THISNODE either

 - alloc_pages_current - which uses default_policy id __GFP_THISNODE is
   used

So we shouldn't even need to care about this possibility and can drop
the confusing code.  Let's keep a WARN_ON_ONCE in place to catch
potential users and fix them up properly (aka use a different allocation
function which ignores mempolicy).

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161013125958.32155-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
David Rientjes fd60775aea mm, thp: avoid unlikely branches for split_huge_pmd
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage.  This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.

Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Lorenzo Stoakes 768ae309a9 mm: replace get_user_pages() write/force parameters with gup_flags
This removes the 'write' and 'force' from get_user_pages() and replaces
them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers
as use of this flag can result in surprising behaviour (and hence bugs)
within the mm subsystem.

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-19 08:11:43 -07:00
Aneesh Kumar K.V c9634cf012 mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the
zonelist.  This makes it more readable.  No functionality change by this
patch.

Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
David Rientjes c11600e4fe mm, mempolicy: task->mempolicy must be NULL before dropping final reference
KASAN allocates memory from the page allocator as part of
kmem_cache_free(), and that can reference current->mempolicy through any
number of allocation functions.  It needs to be NULL'd out before the
final reference is dropped to prevent a use-after-free bug:

	BUG: KASAN: use-after-free in alloc_pages_current+0x363/0x370 at addr ffff88010b48102c
	CPU: 0 PID: 15425 Comm: trinity-c2 Not tainted 4.8.0-rc2+ #140
	...
	Call Trace:
		dump_stack
		kasan_object_err
		kasan_report_error
		__asan_report_load2_noabort
		alloc_pages_current	<-- use after free
		depot_save_stack
		save_stack
		kasan_slab_free
		kmem_cache_free
		__mpol_put		<-- free
		do_exit

This patch sets current->mempolicy to NULL before dropping the final
reference.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1608301442180.63329@chino.kir.corp.google.com
Fixes: cd11016e5f ("mm, kasan: stackdepot implementation. Enable stackdepot for SLAB")
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>	[4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-01 17:52:01 -07:00
Mel Gorman 599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Kirill A. Shutemov 800d8c63b2 shmem: add huge pages support
Here's basic implementation of huge pages support for shmem/tmpfs.

It's all pretty streight-forward:

  - shmem_getpage() allcoates huge page if it can and try to inserd into
    radix tree with shmem_add_to_page_cache();

  - shmem_add_to_page_cache() puts the page onto radix-tree if there's
    space for it;

  - shmem_undo_range() removes huge pages, if it fully within range.
    Partial truncate of huge pages zero out this part of THP.

    This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
    behaviour. As we don't really create hole in this case,
    lseek(SEEK_HOLE) may have inconsistent results depending what
    pages happened to be allocated.

  - no need to change shmem_fault: core-mm will map an compound page as
    huge if VMA is suitable;

Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Naoya Horiguchi 337d9abf1c mm: thp: check pmd_trans_unstable() after split_huge_pmd()
split_huge_pmd() doesn't guarantee that the pmd is normal pmd pointing
to pte entries, which can be checked with pmd_trans_unstable().  Some
callers make this assertion and some do it differently and some not, so
let's do it in a unified manner.

Link: http://lkml.kernel.org/r/1464741400-12143-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Mel Gorman c33d6c06f6 mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.

                                             4.6.0-rc2                  4.6.0-rc2
                                        fastmark-v1r20             initonce-v1r20
  Min      alloc-odr0-1               364.00 (  0.00%)           359.00 (  1.37%)
  Min      alloc-odr0-2               262.00 (  0.00%)           260.00 (  0.76%)
  Min      alloc-odr0-4               214.00 (  0.00%)           214.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           165.00 (  0.00%)
  Min      alloc-odr0-64              161.00 (  0.00%)           162.00 ( -0.62%)
  Min      alloc-odr0-128             159.00 (  0.00%)           161.00 ( -1.26%)
  Min      alloc-odr0-256             168.00 (  0.00%)           170.00 ( -1.19%)
  Min      alloc-odr0-512             180.00 (  0.00%)           181.00 ( -0.56%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           190.00 (  0.00%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           202.00 (  0.00%)
  Min      alloc-odr0-8192            206.00 (  0.00%)           205.00 (  0.49%)
  Min      alloc-odr0-16384           206.00 (  0.00%)           205.00 (  0.49%)

The benefit is negligible and the results are within the noise but each
cycle counts.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton fee83b3aba mm/mempolicy.c:offset_il_node() document and clarify
This code was pretty obscure and was relying upon obscure side-effects
of next_node(-1, ...) and was relying upon NUMA_NO_NODE being equal to
-1.

Clean that all up and document the function's intent.

Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton 0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Linus Torvalds 643ad15d47 Merge branch 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 protection key support from Ingo Molnar:
 "This tree adds support for a new memory protection hardware feature
  that is available in upcoming Intel CPUs: 'protection keys' (pkeys).

  There's a background article at LWN.net:

      https://lwn.net/Articles/643797/

  The gist is that protection keys allow the encoding of
  user-controllable permission masks in the pte.  So instead of having a
  fixed protection mask in the pte (which needs a system call to change
  and works on a per page basis), the user can map a (handful of)
  protection mask variants and can change the masks runtime relatively
  cheaply, without having to change every single page in the affected
  virtual memory range.

  This allows the dynamic switching of the protection bits of large
  amounts of virtual memory, via user-space instructions.  It also
  allows more precise control of MMU permission bits: for example the
  executable bit is separate from the read bit (see more about that
  below).

  This tree adds the MM infrastructure and low level x86 glue needed for
  that, plus it adds a high level API to make use of protection keys -
  if a user-space application calls:

        mmap(..., PROT_EXEC);

  or

        mprotect(ptr, sz, PROT_EXEC);

  (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
  this special case, and will set a special protection key on this
  memory range.  It also sets the appropriate bits in the Protection
  Keys User Rights (PKRU) register so that the memory becomes unreadable
  and unwritable.

  So using protection keys the kernel is able to implement 'true'
  PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
  PROT_READ as well.  Unreadable executable mappings have security
  advantages: they cannot be read via information leaks to figure out
  ASLR details, nor can they be scanned for ROP gadgets - and they
  cannot be used by exploits for data purposes either.

  We know about no user-space code that relies on pure PROT_EXEC
  mappings today, but binary loaders could start making use of this new
  feature to map binaries and libraries in a more secure fashion.

  There is other pending pkeys work that offers more high level system
  call APIs to manage protection keys - but those are not part of this
  pull request.

  Right now there's a Kconfig that controls this feature
  (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
  (like most x86 CPU feature enablement code that has no runtime
  overhead), but it's not user-configurable at the moment.  If there's
  any serious problem with this then we can make it configurable and/or
  flip the default"

* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
  x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
  mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
  x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
  mm/core, x86/mm/pkeys: Add execute-only protection keys support
  x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
  x86/mm/pkeys: Allow kernel to modify user pkey rights register
  x86/fpu: Allow setting of XSAVE state
  x86/mm: Factor out LDT init from context init
  mm/core, x86/mm/pkeys: Add arch_validate_pkey()
  mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
  x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
  x86/mm/pkeys: Add Kconfig prompt to existing config option
  x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
  x86/mm/pkeys: Dump PKRU with other kernel registers
  mm/core, x86/mm/pkeys: Differentiate instruction fetches
  x86/mm/pkeys: Optimize fault handling in access_error()
  mm/core: Do not enforce PKEY permissions on remote mm access
  um, pkeys: Add UML arch_*_access_permitted() methods
  mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
  x86/mm/gup: Simplify get_user_pages() PTE bit handling
  ...
2016-03-20 19:08:56 -07:00
Joe Perches 756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Liang Chen 4355c018c2 mm/mempolicy.c: skip VM_HUGETLB and VM_MIXEDMAP VMA for lazy mbind
VM_HUGETLB and VM_MIXEDMAP vma needs to be excluded to avoid compound
pages being marked for migration and unexpected COWs when handling
hugetlb fault.

Thanks to Naoya Horiguchi for reminding me on these checks.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Kirill A. Shutemov 0a2e280b6d mm, thp: fix migration of PTE-mapped transparent huge pages
We don't have native support of THP migration, so we have to split huge
page into small pages in order to migrate it to different node.  This
includes PTE-mapped huge pages.

I made mistake in refcounting patchset: we don't actually split
PTE-mapped huge page in queue_pages_pte_range(), if we step on head
page.

The result is that the head page is queued for migration, but none of
tail pages: putting head page on queue takes pin on the page and any
subsequent attempts of split_huge_pages() would fail and we skip queuing
tail pages.

unmap_and_move_huge_page() will eventually split the huge pages, but
only one of 512 pages would get migrated.

Let's fix the situation.

Fixes: 248db92da1 ("migrate_pages: try to split pages on queuing")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Dave Hansen d4edcf0d56 mm/gup: Switch all callers of get_user_pages() to not pass tsk/mm
We will soon modify the vanilla get_user_pages() so it can no
longer be used on mm/tasks other than 'current/current->mm',
which is by far the most common way it is called.  For now,
we allow the old-style calls, but warn when they are used.
(implemented in previous patch)

This patch switches all callers of:

	get_user_pages()
	get_user_pages_unlocked()
	get_user_pages_locked()

to stop passing tsk/mm so they will no longer see the warnings.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: jack@suse.cz
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210156.113E9407@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-16 10:11:12 +01:00
Kirill A. Shutemov 77bf45e780 mempolicy: do not try to queue pages from !vma_migratable()
Maybe I miss some point, but I don't see a reason why we try to queue
pages from non migratable VMAs.

This testcase steps on VM_BUG_ON_PAGE() in isolate_lru_page():

    #include <fcntl.h>
    #include <unistd.h>
    #include <stdio.h>
    #include <sys/mman.h>
    #include <numaif.h>

    #define SIZE 0x2000

    int foo;

    int main()
    {
        int fd;
        char *p;
        unsigned long mask = 2;

        fd = open("/dev/sg0", O_RDWR);
        p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
        /* Faultin pages */
        foo = p[0] + p[0x1000];
        mbind(p, SIZE, MPOL_BIND, &mask, 4, MPOL_MF_MOVE | MPOL_MF_STRICT);
        return 0;
    }

The only case when we can queue pages from such VMA is MPOL_MF_STRICT
plus MPOL_MF_MOVE or MPOL_MF_MOVE_ALL for VMA which has pages on LRU,
but gfp mask is not sutable for migaration (see mapping_gfp_mask() check
in vma_migratable()).  That's looks like a bug to me.

Let's filter out non-migratable vma at start of queue_pages_test_walk()
and go to queue_pages_pte_range() only if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL flag is set.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Liang Chen d645fc0eab mm: mempolicy: skip non-migratable VMAs when setting MPOL_MF_LAZY
MPOL_MF_LAZY is not visible from userspace since a720094ded ("mm:
mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now"), but
it should still skip non-migratable VMAs such as VM_IO, VM_PFNMAP, and
VM_HUGETLB VMAs, and avoid useless overhead of minor faults.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 248db92da1 migrate_pages: try to split pages on queuing
We are not able to migrate THPs.  It means it's not enough to split only
PMD on migration -- we need to split compound page under it too.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 78ddc53473 thp: rename split_huge_page_pmd() to split_huge_pmd()
We are going to decouple splitting THP PMD from splitting underlying
compound page.

This patch renames split_huge_page_pmd*() functions to split_huge_pmd*()
to reflect the fact that it doesn't imply page splitting, only PMD.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Nathan Zimmer 4a8c7bb59a mm/mempolicy.c: convert the shared_policy lock to a rwlock
When running the SPECint_rate gcc on some very large boxes it was
noticed that the system was spending lots of time in
mpol_shared_policy_lookup().  The gamess benchmark can also show it and
is what I mostly used to chase down the issue since the setup for that I
found to be easier.

To be clear the binaries were on tmpfs because of disk I/O requirements.
We then used text replication to avoid icache misses and having all the
copies banging on the memory where the instruction code resides.  This
results in us hitting a bottleneck in mpol_shared_policy_lookup() since
lookup is serialised by the shared_policy lock.

I have only reproduced this on very large (3k+ cores) boxes.  The
problem starts showing up at just a few hundred ranks getting worse
until it threatens to livelock once it gets large enough.  For example
on the gamess benchmark at 128 ranks this area consumes only ~1% of
time, at 512 ranks it consumes nearly 13%, and at 2k ranks it is over
90%.

To alleviate the contention in this area I converted the spinlock to an
rwlock.  This allows a large number of lookups to happen simultaneously.
The results were quite good reducing this consumtion at max ranks to
around 2%.

[akpm@linux-foundation.org: tidy up code comments]
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vlastimil Babka 96db800f5d mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise.  In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.

The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").

Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.

To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage.  Both functions get described in comments.

It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly.  The number of users would be small
anyway.

Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead.  This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.

Both differences will be rectified by the next patch.

To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers.  Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Aristeu Rozanski acda0c3340 mm/mempolicy.c: get rid of duplicated check for vma(VM_PFNMAP) in queue_pages_range()
This check was introduced as part of
   6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")

which got duplicated by
   48684a65b4 ("mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)")

by reintroducing it earlier on queue_page_test_walk()

Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Andrea Arcangeli 19a809afe2 userfaultfd: teach vma_merge to merge across vma->vm_userfaultfd_ctx
vma->vm_userfaultfd_ctx is yet another vma parameter that vma_merge
must be aware about so that we can merge vmas back like they were
originally before arming the userfaultfd on some memory range.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Vlastimil Babka 0867a57c4f mm, thp: respect MPOL_PREFERRED policy with non-local node
Since commit 077fcf116c ("mm/thp: allocate transparent hugepages on
local node"), we handle THP allocations on page fault in a special way -
for non-interleave memory policies, the allocation is only attempted on
the node local to the current CPU, if the policy's nodemask allows the
node.

This is motivated by the assumption that THP benefits cannot offset the
cost of remote accesses, so it's better to fallback to base pages on the
local node (which might still be available, while huge pages are not due
to fragmentation) than to allocate huge pages on a remote node.

The nodemask check prevents us from violating e.g.  MPOL_BIND policies
where the local node is not among the allowed nodes.  However, the
current implementation can still give surprising results for the
MPOL_PREFERRED policy when the preferred node is different than the
current CPU's local node.

In such case we should honor the preferred node and not use the local
node, which is what this patch does.  If hugepage allocation on the
preferred node fails, we fall back to base pages and don't try other
nodes, with the same motivation as is done for the local node hugepage
allocations.  The patch also moves the MPOL_INTERLEAVE check around to
simplify the hugepage specific test.

The difference can be demonstrated using in-tree transhuge-stress test
on the following 2-node machine where half memory on one node was
occupied to show the difference.

> numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 7878 MB
node 0 free: 3623 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47
node 1 size: 8045 MB
node 1 free: 7818 MB
node distances:
node   0   1
  0:  10  21
  1:  21  10

Before the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.197 s/loop, 0.276 ms/page,   7249.168 MiB/s 7962 succeed,    0 failed, 1786 different pages

> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.962 s/loop, 0.372 ms/page,   5376.172 MiB/s 7962 succeed,    0 failed, 3873 different pages

Number of successful THP allocations corresponds to free memory on node 0 in
the first case and node 1 in the second case, i.e. -p parameter is ignored and
cpu binding "wins".

After the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.183 s/loop, 0.274 ms/page,   7295.516 MiB/s 7962 succeed,    0 failed, 1760 different pages

> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.878 s/loop, 0.361 ms/page,   5533.638 MiB/s 7962 succeed,    0 failed, 1750 different pages

> numactl -p1 -C0 ./transhuge-stress
transhuge-stress: 4.628 s/loop, 0.581 ms/page,   3440.893 MiB/s 7962 succeed,    0 failed, 3918 different pages

The -p parameter is respected regardless of cpu binding.

> numactl -C0 ./transhuge-stress
transhuge-stress: 2.202 s/loop, 0.277 ms/page,   7230.003 MiB/s 7962 succeed,    0 failed, 1750 different pages

> numactl -C12 ./transhuge-stress
transhuge-stress: 3.020 s/loop, 0.379 ms/page,   5273.324 MiB/s 7962 succeed,    0 failed, 3916 different pages

Without -p parameter, hugepage restriction to CPU-local node works as before.

Fixes: 077fcf116c ("mm/thp: allocate transparent hugepages on local node")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>	[4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:46 -07:00
Mel Gorman b0dc2b9bb4 mm, numa: really disable NUMA balancing by default on single node machines
NUMA balancing is meant to be disabled by default on UMA machines but
the check is using nr_node_ids (highest node) instead of
num_online_nodes (online nodes).

The consequences are that a UMA machine with a node ID of 1 or higher
will enable NUMA balancing.  This will incur useless overhead due to
minor faults with the impact depending on the workload.  These are the
impact on the stats when running a kernel build on a single node machine
whose node ID happened to be 1:

  			       vanilla     patched
  NUMA base PTE updates          5113158           0
  NUMA huge PMD updates              643           0
  NUMA page range updates        5442374           0
  NUMA hint faults               2109622           0
  NUMA hint local faults         2109622           0
  NUMA hint local percent            100         100
  NUMA pages migrated                  0           0

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-05-14 17:55:51 -07:00
David Rientjes 5265047ac3 mm, thp: really limit transparent hugepage allocation to local node
Commit 077fcf116c ("mm/thp: allocate transparent hugepages on local
node") restructured alloc_hugepage_vma() with the intent of only
allocating transparent hugepages locally when there was not an effective
interleave mempolicy.

alloc_pages_exact_node() does not limit the allocation to the single node,
however, but rather prefers it.  This is because __GFP_THISNODE is not set
which would cause the node-local nodemask to be passed.  Without it, only
a nodemask that prefers the local node is passed.

Fix this by passing __GFP_THISNODE and falling back to small pages when
the allocation fails.

Commit 9f1b868a13 ("mm: thp: khugepaged: add policy for finding target
node") suffers from a similar problem for khugepaged, which is also fixed.

Fixes: 077fcf116c ("mm/thp: allocate transparent hugepages on local node")
Fixes: 9f1b868a13 ("mm: thp: khugepaged: add policy for finding target node")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Jarno Rajahalme <jrajahalme@nicira.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
David Rientjes b360edb43f mm, mempolicy: migrate_to_node should only migrate to node
migrate_to_node() is intended to migrate a page from one source node to
a target node.

Today, migrate_to_node() could end up migrating to any node, not only
the target node.  This is because the page migration allocator,
new_node_page() does not pass __GFP_THISNODE to
alloc_pages_exact_node().  This causes the target node to be preferred
but allows fallback to any other node in order of affinity.

Prevent this by allocating with __GFP_THISNODE.  If memory is not
available, -ENOMEM will be returned as appropriate.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Tejun Heo 9e763e0f4f mm: use %*pb[l] to print bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:38 -08:00
Mel Gorman 4d94246699 mm: convert p[te|md]_mknonnuma and remaining page table manipulations
With PROT_NONE, the traditional page table manipulation functions are
sufficient.

[andre.przywara@arm.com: fix compiler warning in pmdp_invalidate()]
[akpm@linux-foundation.org: fix build with STRICT_MM_TYPECHECKS]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Naoya Horiguchi 48684a65b4 mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)
walk_page_range() silently skips vma having VM_PFNMAP set, which leads to
undesirable behaviour at client end (who called walk_page_range).  For
example for pagemap_read(), when no callbacks are called against VM_PFNMAP
vma, pagemap_read() may prepare pagemap data for next virtual address
range at wrong index.  That could confuse and/or break userspace
applications.

This patch avoid this misbehavior caused by vma(VM_PFNMAP) like follows:
- for pagemap_read() which has its own ->pte_hole(), call the ->pte_hole()
  over vma(VM_PFNMAP),
- for clear_refs and queue_pages which have their own ->tests_walk,
  just return 1 and skip vma(VM_PFNMAP). This is no problem because
  these are not interested in hole regions,
- for other callers, just skip the vma(VM_PFNMAP) as a default behavior.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
Naoya Horiguchi 6f4576e368 mempolicy: apply page table walker on queue_pages_range()
queue_pages_range() does page table walking in its own way now, but there
is some code duplicate.  This patch applies page table walker to reduce
lines of code.

queue_pages_range() has to do some precheck to determine whether we really
walk over the vma or just skip it.  Now we have test_walk() callback in
mm_walk for this purpose, so we can do this replacement cleanly.
queue_pages_test_walk() depends on not only the current vma but also the
previous one, so queue_pages->prev is introduced to remember it.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
Vlastimil Babka be97a41b29 mm/mempolicy.c: merge alloc_hugepage_vma to alloc_pages_vma
The previous commit ("mm/thp: Allocate transparent hugepages on local
node") introduced alloc_hugepage_vma() to mm/mempolicy.c to perform a
special policy for THP allocations.  The function has the same interface
as alloc_pages_vma(), shares a lot of boilerplate code and a long
comment.

This patch merges the hugepage special case into alloc_pages_vma.  The
extra if condition should be cheap enough price to pay.  We also prevent
a (however unlikely) race with parallel mems_allowed update, which could
make hugepage allocation restart only within the fallback call to
alloc_hugepage_vma() and not reconsider the special rule in
alloc_hugepage_vma().

Also by making sure mpol_cond_put(pol) is always called before actual
allocation attempt, we can use a single exit path within the function.

Also update the comment for missing node parameter and obsolete reference
to mm_sem.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Aneesh Kumar K.V 077fcf116c mm/thp: allocate transparent hugepages on local node
This make sure that we try to allocate hugepages from local node if
allowed by mempolicy.  If we can't, we fallback to small page allocation
based on mempolicy.  This is based on the observation that allocating
pages on local node is more beneficial than allocating hugepages on remote
node.

With this patch applied we may find transparent huge page allocation
failures if the current node doesn't have enough freee hugepages.  Before
this patch such failures result in us retrying the allocation on other
nodes in the numa node mask.

[akpm@linux-foundation.org: fix comment, add CONFIG_TRANSPARENT_HUGEPAGE dependency]
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Linus Torvalds ecb5ec044a Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile #3 from Al Viro:
 "Assorted fixes and patches from the last cycle"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  [regression] chunk lost from bd9b51
  vfs: make mounts and mountstats honor root dir like mountinfo does
  vfs: cleanup show_mountinfo
  init: fix read-write root mount
  unfuck binfmt_misc.c (broken by commit e6084d4)
  vm_area_operations: kill ->migrate()
  new helper: iter_is_iovec()
  move_extent_per_page(): get rid of unused w_flags
  lustre: get rid of playing with ->fs
  btrfs: filp_open() returns ERR_PTR() on failure, not NULL...
2014-12-19 18:19:19 -08:00
Zhihui Zhang 859f7ef142 mm/mempolicy.c: remove unnecessary is_valid_nodemask()
When nodes is true, nsc->mask2 has already been filtered by nsc->mask1,
which has already factored in node_states[N_MEMORY].

Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18 19:08:10 -08:00
Al Viro 50062175ff vm_area_operations: kill ->migrate()
the only instance this method has ever grown was one in kernfs -
one that call ->migrate() of another vm_ops if it exists.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-12-17 08:26:51 -05:00
Mel Gorman 2c0346a36c mm: mempolicy: skip inaccessible VMAs when setting MPOL_MF_LAZY
PROT_NUMA VMAs are skipped to avoid problems distinguishing between
present, prot_none and special entries.  MPOL_MF_LAZY is not visible from
userspace since commit a720094ded ("mm: mempolicy: Hide MPOL_NOOP and
MPOL_MF_LAZY from userspace for now") but it should still skip VMAs the
same way task_numa_work does.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:02 -04:00
Oleg Nesterov dd6eecb917 mempolicy: unexport get_vma_policy() and remove its "task" arg
- get_vma_policy(task) is not safe if task != current, remove this
  argument.

- get_vma_policy() no longer has callers outside of mempolicy.c,
  make it static.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Oleg Nesterov 2c7c3a7d08 mempolicy: kill do_set_mempolicy()->down_write(&mm->mmap_sem)
Remove down_write(&mm->mmap_sem) in do_set_mempolicy(). This logic
was never correct and it is no longer needed, see the previous patch.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Oleg Nesterov 74d2c3a05c mempolicy: introduce __get_vma_policy(), export get_task_policy()
Extract the code which looks for vma's policy from get_vma_policy()
into the new helper, __get_vma_policy(). Export get_task_policy().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Oleg Nesterov 6b6482bbf6 mempolicy: remove the "task" arg of vma_policy_mof() and simplify it
1. vma_policy_mof(task) is simply not safe unless task == current,
   it can race with do_exit()->mpol_put(). Remove this arg and update
   its single caller.

2. vma can not be NULL, remove this check and simplify the code.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Oleg Nesterov 8d90274b3b mempolicy: sanitize the usage of get_task_policy()
Cleanup + preparation. Every user of get_task_policy() calls it
unconditionally, even if it is not going to use the result.

get_task_policy() is cheap but still this does not look clean, plus
the code looks simpler if get_task_policy() is called only when this
is really needed.

Note: I hope this is correct, but it is not clear why vma_policy_mof()
doesn't fall back to get_task_policy() if ->get_policy() returns NULL.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Oleg Nesterov f15ca78e33 mempolicy: change get_task_policy() to return default_policy rather than NULL
Every caller of get_task_policy() falls back to default_policy if it
returns NULL. Change get_task_policy() to do this.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:55 -04:00
Oleg Nesterov 2386740d1a mempolicy: change alloc_pages_vma() to use mpol_cond_put()
Trivial cleanup. alloc_pages_vma() can use mpol_cond_put().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:55 -04:00
Linus Torvalds 40f6123737 Merge branch 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
 "Mostly fixes for the fallouts from the recent cgroup core changes.

  The decoupled nature of cgroup dynamic hierarchy management
  (hierarchies are created dynamically on mount but may or may not be
  reused once unmounted depending on remaining usages) led to more
  ugliness being added to kernfs.

  Hopefully, this is the last of it"

* 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cpuset: break kernfs active protection in cpuset_write_resmask()
  cgroup: fix a race between cgroup_mount() and cgroup_kill_sb()
  kernfs: introduce kernfs_pin_sb()
  cgroup: fix mount failure in a corner case
  cpuset,mempolicy: fix sleeping function called from invalid context
  cgroup: fix broken css_has_online_children()
2014-07-10 11:38:23 -07:00
Gu Zheng 391acf970d cpuset,mempolicy: fix sleeping function called from invalid context
When runing with the kernel(3.15-rc7+), the follow bug occurs:
[ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586
[ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python
[ 9969.441175] INFO: lockdep is turned off.
[ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G       A      3.15.0-rc7+ #85
[ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012
[ 9969.706052]  ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18
[ 9969.795323]  ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c
[ 9969.884710]  ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000
[ 9969.974071] Call Trace:
[ 9970.003403]  [<ffffffff8162f523>] dump_stack+0x4d/0x66
[ 9970.065074]  [<ffffffff8109995a>] __might_sleep+0xfa/0x130
[ 9970.130743]  [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0
[ 9970.200638]  [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210
[ 9970.272610]  [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140
[ 9970.344584]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.409282]  [<ffffffff811b1385>] __mpol_dup+0xe5/0x150
[ 9970.471897]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.536585]  [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40
[ 9970.613763]  [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10
[ 9970.683660]  [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50
[ 9970.759795]  [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40
[ 9970.834885]  [<ffffffff8106a598>] do_fork+0xd8/0x380
[ 9970.894375]  [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0
[ 9970.969470]  [<ffffffff8106a8c6>] SyS_clone+0x16/0x20
[ 9971.030011]  [<ffffffff81642009>] stub_clone+0x69/0x90
[ 9971.091573]  [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b

The cause is that cpuset_mems_allowed() try to take
mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in
__mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is
under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock
protection region to protect the access to cpuset only in
current_cpuset_is_being_rebound(). So that we can avoid this bug.

This patch is a temporary solution that just addresses the bug
mentioned above, can not fix the long-standing issue about cpuset.mems
rebinding on fork():

"When the forker's task_struct is duplicated (which includes
 ->mems_allowed) and it races with an update to cpuset_being_rebound
 in update_tasks_nodemask() then the task's mems_allowed doesn't get
 updated. And the child task's mems_allowed can be wrong if the
 cpuset's nodemask changes before the child has been added to the
 cgroup's tasklist."

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable <stable@vger.kernel.org>
2014-06-25 09:42:11 -04:00
Hugh Dickins d05f0cdcbe mm: fix crashes from mbind() merging vmas
In v2.6.34 commit 9d8cebd4bc ("mm: fix mbind vma merge problem")
introduced vma merging to mbind(), but it should have also changed the
convention of passing start vma from queue_pages_range() (formerly
check_range()) to new_vma_page(): vma merging may have already freed
that structure, resulting in BUG at mm/mempolicy.c:1738 and probably
worse crashes.

Fixes: 9d8cebd4bc ("mm: fix mbind vma merge problem")
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Tested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: <stable@vger.kernel.org>	[2.6.34+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:44 -07:00
Linus Torvalds 3f17ea6dea Merge branch 'next' (accumulated 3.16 merge window patches) into master
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.

* accumulated work in next: (6809 commits)
  ufs: sb mutex merge + mutex_destroy
  powerpc: update comments for generic idle conversion
  cris: update comments for generic idle conversion
  idle: remove cpu_idle() forward declarations
  nbd: zero from and len fields in NBD_CMD_DISCONNECT.
  mm: convert some level-less printks to pr_*
  MAINTAINERS: adi-buildroot-devel is moderated
  MAINTAINERS: add linux-api for review of API/ABI changes
  mm/kmemleak-test.c: use pr_fmt for logging
  fs/dlm/debug_fs.c: replace seq_printf by seq_puts
  fs/dlm/lockspace.c: convert simple_str to kstr
  fs/dlm/config.c: convert simple_str to kstr
  mm: mark remap_file_pages() syscall as deprecated
  mm: memcontrol: remove unnecessary memcg argument from soft limit functions
  mm: memcontrol: clean up memcg zoneinfo lookup
  mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
  mm/mempool.c: update the kmemleak stack trace for mempool allocations
  lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
  mm: introduce kmemleak_update_trace()
  mm/kmemleak.c: use %u to print ->checksum
  ...
2014-06-08 11:31:16 -07:00
Mitchel Humpherys b1de0d139c mm: convert some level-less printks to pr_*
printk is meant to be used with an associated log level.  There are some
instances of printk scattered around the mm code where the log level is
missing.  Add a log level and adhere to suggestions by
scripts/checkpatch.pl by moving to the pr_* macros.

Also add the typical pr_fmt definition so that print statements can be
easily traced back to the modules where they occur, correlated one with
another, etc.  This will require the removal of some (now redundant)
prefixes on a few print statements.

Signed-off-by: Mitchel Humpherys <mitchelh@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:18 -07:00
Naoya Horiguchi d4c54919ed mm: add !pte_present() check on existing hugetlb_entry callbacks
The age table walker doesn't check non-present hugetlb entry in common
path, so hugetlb_entry() callbacks must check it.  The reason for this
behavior is that some callers want to handle it in its own way.

[ I think that reason is bogus, btw - it should just do what the regular
  code does, which is to call the "pte_hole()" function for such hugetlb
  entries  - Linus]

However, some callers don't check it now, which causes unpredictable
result, for example when we have a race between migrating hugepage and
reading /proc/pid/numa_maps.  This patch fixes it by adding !pte_present
checks on buggy callbacks.

This bug exists for years and got visible by introducing hugepage
migration.

ChangeLog v2:
- fix if condition (check !pte_present() instead of pte_present())

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Backported to 3.15.  Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org> ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 13:21:16 -07:00
David Rientjes 68711a7463 mm, migration: add destination page freeing callback
Memory migration uses a callback defined by the caller to determine how to
allocate destination pages.  When migration fails for a source page,
however, it frees the destination page back to the system.

This patch adds a memory migration callback defined by the caller to
determine how to free destination pages.  If a caller, such as memory
compaction, builds its own freelist for migration targets, this can reuse
already freed memory instead of scanning additional memory.

If the caller provides a function to handle freeing of destination pages,
it is called when page migration fails.  If the caller passes NULL then
freeing back to the system will be handled as usual.  This patch
introduces no functional change.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Fabian Frederick b46e14acb8 mm/mempolicy.c: parameter doc uniformization
Also fixes kernel-doc warning

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:05 -07:00
Rasmus Villemoes 23c8902d40 mm: constify nmask argument to set_mempolicy()
The nmask argument to set_mempolicy() is const according to the user-space
header numaif.h, and since the kernel does indeed not modify it, it might
as well be declared const in the kernel.

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Rasmus Villemoes f7f28ca98b mm: constify nmask argument to mbind()
The nmask argument to mbind() is const according to the userspace header
numaif.h, and since the kernel does indeed not modify it, it might as well
be declared const in the kernel.

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
David Rientjes f0432d1596 mm, mempolicy: remove per-process flag
PF_MEMPOLICY is an unnecessary optimization for CONFIG_SLAB users.
There's no significant performance degradation to checking
current->mempolicy rather than current->flags & PF_MEMPOLICY in the
allocation path, especially since this is considered unlikely().

Running TCP_RR with netperf-2.4.5 through localhost on 16 cpu machine with
64GB of memory and without a mempolicy:

	threads		before		after
	16		1249409		1244487
	32		1281786		1246783
	48		1239175		1239138
	64		1244642		1241841
	80		1244346		1248918
	96		1266436		1254316
	112		1307398		1312135
	128		1327607		1326502

Per-process flags are a scarce resource so we should free them up whenever
possible and make them available.  We'll be using it shortly for memcg oom
reserves.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
David Rientjes 2a389610a7 mm, mempolicy: rename slab_node for clarity
slab_node() is actually a mempolicy function, so rename it to
mempolicy_slab_node() to make it clearer that it used for processes with
mempolicies.

At the same time, cleanup its code by saving numa_mem_id() in a local
variable (since we require a node with memory, not just any node) and
remove an obsolete comment that assumes the mempolicy is actually passed
into the function.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
Mel Gorman d26914d117 mm: optimize put_mems_allowed() usage
Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.

Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.

This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:20:58 -07:00
Linus Torvalds 190f918660 Merge branch 'compat' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 compat wrapper rework from Heiko Carstens:
 "S390 compat system call wrapper simplification work.

  The intention of this work is to get rid of all hand written assembly
  compat system call wrappers on s390, which perform proper sign or zero
  extension, or pointer conversion of compat system call parameters.
  Instead all of this should be done with C code eg by using Al's
  COMPAT_SYSCALL_DEFINEx() macro.

  Therefore all common code and s390 specific compat system calls have
  been converted to the COMPAT_SYSCALL_DEFINEx() macro.

  In order to generate correct code all compat system calls may only
  have eg compat_ulong_t parameters, but no unsigned long parameters.
  Those patches which change parameter types from unsigned long to
  compat_ulong_t parameters are separate in this series, but shouldn't
  cause any harm.

  The only compat system calls which intentionally have 64 bit
  parameters (preadv64 and pwritev64) in support of the x86/32 ABI
  haven't been changed, but are now only available if an architecture
  defines __ARCH_WANT_COMPAT_SYS_PREADV64/PWRITEV64.

  System calls which do not have a compat variant but still need proper
  zero extension on s390, like eg "long sys_brk(unsigned long brk)" will
  get a proper wrapper function with the new s390 specific
  COMPAT_SYSCALL_WRAPx() macro:

     COMPAT_SYSCALL_WRAP1(brk, unsigned long, brk);

  which generates the following code (simplified):

     asmlinkage long sys_brk(unsigned long brk);
     asmlinkage long compat_sys_brk(long brk)
     {
         return sys_brk((u32)brk);
     }

  Given that the C file which contains all the COMPAT_SYSCALL_WRAP lines
  includes both linux/syscall.h and linux/compat.h, it will generate
  build errors, if the declaration of sys_brk() doesn't match, or if
  there exists a non-matching compat_sys_brk() declaration.

  In addition this will intentionally result in a link error if
  somewhere else a compat_sys_brk() function exists, which probably
  should have been used instead.  Two more BUILD_BUG_ONs make sure the
  size and type of each compat syscall parameter can be handled
  correctly with the s390 specific macros.

  I converted the compat system calls step by step to verify the
  generated code is correct and matches the previous code.  In fact it
  did not always match, however that was always a bug in the hand
  written asm code.

  In result we get less code, less bugs, and much more sanity checking"

* 'compat' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (44 commits)
  s390/compat: add copyright statement
  compat: include linux/unistd.h within linux/compat.h
  s390/compat: get rid of compat wrapper assembly code
  s390/compat: build error for large compat syscall args
  mm/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
  kexec/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
  net/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
  ipc/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
  fs/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
  ipc/compat: convert to COMPAT_SYSCALL_DEFINE
  fs/compat: convert to COMPAT_SYSCALL_DEFINE
  security/compat: convert to COMPAT_SYSCALL_DEFINE
  mm/compat: convert to COMPAT_SYSCALL_DEFINE
  net/compat: convert to COMPAT_SYSCALL_DEFINE
  kernel/compat: convert to COMPAT_SYSCALL_DEFINE
  fs/compat: optional preadv64/pwrite64 compat system calls
  ipc/compat_sys_msgrcv: change msgtyp type from long to compat_long_t
  s390/compat: partial parameter conversion within syscall wrappers
  s390/compat: automatic zero, sign and pointer conversion of syscalls
  s390/compat: add sync_file_range and fallocate compat syscalls
  ...
2014-03-31 14:32:17 -07:00
Heiko Carstens c93e0f6c89 mm/compat: convert to COMPAT_SYSCALL_DEFINE
Convert all compat system call functions where all parameter types
have a size of four or less than four bytes, or are pointer types
to COMPAT_SYSCALL_DEFINE.
The implicit casts within COMPAT_SYSCALL_DEFINE will perform proper
zero and sign extension to 64 bit of all parameters if needed.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2014-03-06 16:30:42 +01:00