As Mark mentioned, it may be time-consuming when we remove the
empty xattr bucket, so this patch try to let empty bucket exist
in xattr operation. The modification includes:
1. Remove the functin of bucket and extent record deletion during
xattr delete.
2. In xattr set:
1) Don't clean the last entry so that if the bucket is empty,
the hash value of the bucket is the hash value of the entry
which is deleted last.
2) During insert, if we meet with an empty bucket, just use the
1st entry.
3. In binary search of xattr bucket, use the bucket hash value(which
stored in the 1st xattr entry) to find the right place.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
During the process of xatt insertion, we use binary search
to find the right place and "low" is set to it. But when
there is one xattr which has the same name hash as the inserted
one, low is the wrong value. So set it to the right position.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In ocfs2_xattr_free_block, we take a cluster lock on xb_alloc_inode while we
have a transaction open. This will deadlock the downconvert thread, so fix
it.
We can clean up how xattr blocks are removed while here - this patch also
moves the mechanism of releasing xattr block (including both value, xattr
tree and xattr block) into this function.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In ocfs2_extend_trans, when we can't extend the current
transaction, it will commit current transaction and restart
a new one. So if the previous credits we have allocated aren't
used(the block isn't dirtied before our extend), we will not
have enough credits for any future operation(it will cause jbd
complain and bug out). So check this and re-extend it.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The original get/put_extent_tree() functions held a reference on
et_root_bh. However, every single caller already has a safe reference,
making the get/put cycle irrelevant.
We change ocfs2_get_*_extent_tree() to ocfs2_init_*_extent_tree(). It
no longer gets a reference on et_root_bh. ocfs2_put_extent_tree() is
removed. Callers now have a simpler init+use pattern.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
We now have three different kinds of extent trees in ocfs2: inode data
(dinode), extended attributes (xattr_tree), and extended attribute
values (xattr_value). There is a nice abstraction for them,
ocfs2_extent_tree, but it is hidden in alloc.c. All the calling
functions have to pick amongst a varied API and pass in type bits and
often extraneous pointers.
A better way is to make ocfs2_extent_tree a first-class object.
Everyone converts their object to an ocfs2_extent_tree() via the
ocfs2_get_*_extent_tree() calls, then uses the ocfs2_extent_tree for all
tree calls to alloc.c.
This simplifies a lot of callers, making for readability. It also
provides an easy way to add additional extent tree types, as they only
need to be defined in alloc.c with a ocfs2_get_<new>_extent_tree()
function.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch fixes the following build warnings:
fs/ocfs2/xattr.c: In function 'ocfs2_half_xattr_bucket':
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 7 has type 'long int'
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 8 has type 'long int'
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 7 has type 'long int'
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 8 has type 'long int'
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 7 has type 'long int'
fs/ocfs2/xattr.c:3282: warning: format '%d' expects type 'int', but argument 8 has type 'long int'
fs/ocfs2/xattr.c: In function 'ocfs2_xattr_set_entry_in_bucket':
fs/ocfs2/xattr.c:4092: warning: format '%d' expects type 'int', but argument 6 has type 'size_t'
fs/ocfs2/xattr.c:4092: warning: format '%d' expects type 'int', but argument 6 has type 'size_t'
fs/ocfs2/xattr.c:4092: warning: format '%d' expects type 'int', but argument 6 has type 'size_t'
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch adds the s_incompat flag for extended attribute support. This
helps us ensure that older versions of Ocfs2 or ocfs2-tools will not be able
to mount a volume with xattr support.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In inode removal, we need to iterate all the buckets, remove any
externally-stored EA values and delete the xattr buckets.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Where the previous patches added the ability of list/get xattr in buckets
for ocfs2, this patch enables ocfs2 to store large numbers of EAs.
The original design doc is written by Mark Fasheh, and it can be found in
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/IndexedEATrees. I only had to
make small modifications to it.
First, because the bucket size is 4K, a new field named xh_free_start is added
in ocfs2_xattr_header to indicate the next valid name/value offset in a bucket.
It is used when we store new EA name/value. With this field, we can find the
place more quickly and what's more, we don't need to sort the name/value every
time to let the last entry indicate the next unused space. This makes the
insert operation more efficient for blocksizes smaller than 4k.
Because of the new xh_free_start, another field named as xh_name_value_len is
also added in ocfs2_xattr_header. It records the total length of all the
name/values in the bucket. We need this so that we can check it and defragment
the bucket if there is not enough contiguous free space.
An xattr insertion looks like this:
1. xattr_index_block_find: find the right bucket by the name_hash, say bucketA.
2. check whether there is enough space in bucketA. If yes, insert it directly
and modify xh_free_start and xh_name_value_len accordingly. If not, check
xh_name_value_len to see whether we can store this by defragment the bucket.
If yes, defragment it and go on insertion.
3. If defragement doesn't work, check whether there is new empty bucket in
the clusters within this extent record. If yes, init the new bucket and move
all the buckets after bucketA one by one to the next bucket. Move half of the
entries in bucketA to the next bucket and go on insertion.
4. If there is no new bucket, grow the extent tree.
As for xattr deletion, we will delete an xattr bucket when all it's xattrs
are removed and move all the buckets after it to the previous one. When all
the xattr buckets in an extend record are freed, free this extend records
from ocfs2_xattr_tree.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Add code to lookup a given extended attribute in the xattr btree. Lookup
follows this general scheme:
1. Use ocfs2_xattr_get_rec to find the xattr extent record
2. Find the xattr bucket within the extent which may contain this xattr
3. Iterate the bucket to find the xattr. In ocfs2_xattr_block_get(), we need
to recalcuate the block offset and name offset for the right position of
name/value.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Ocfs2 breaks up xattr index tree leaves into 4k regions, called buckets.
Attributes are stored within a given bucket, depending on hash value.
After a discussion with Mark, we decided that the per-bucket index
(xe_entry[]) would only exist in the 1st block of a bucket. Likewise,
name/value pairs will not straddle more than one block. This allows the
majority of operations to work directly on the buffer heads in a leaf block.
This patch adds code to iterate the buckets in an EA. A new abstration of
ocfs2_xattr_bucket is added. It records the bhs in this bucket and
ocfs2_xattr_header. This keeps the code neat, improving readibility.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch implements storing extended attributes both in inode or a single
external block. We only store EA's in-inode when blocksize > 512 or that
inode block has free space for it. When an EA's value is larger than 80
bytes, we will store the value via b-tree outside inode or block.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Add some thin wrappers around ocfs2_insert_extent() for each of the 3
different btree types, ocfs2_inode_insert_extent(),
ocfs2_xattr_value_insert_extent() and ocfs2_xattr_tree_insert_extent(). The
last is for the xattr index btree, which will be used in a followup patch.
All the old callers in file.c etc will call ocfs2_dinode_insert_extent(),
while the other two handle the xattr issue. And the init of extent tree are
handled by these functions.
When storing xattr value which is too large, we will allocate some clusters
for it and here ocfs2_extent_list and ocfs2_extent_rec will also be used. In
order to re-use the b-tree operation code, a new parameter named "private"
is added into ocfs2_extent_tree and it is used to indicate the root of
ocfs2_exent_list. The reason is that we can't deduce the root from the
buffer_head now. It may be in an inode, an ocfs2_xattr_block or even worse,
in any place in an ocfs2_xattr_bucket.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>