Now It Can Be Done(tm) - we don't need to do iov_shorten() in
generic_file_direct_write() anymore, now that all ->direct_IO()
instances are converted to proper iov_iter methods and honour
iter->count and iter->iov_offset properly.
Get rid of count/ocount arguments of generic_file_direct_write(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
iov_iter-using variant of generic_file_aio_read(). Some callers
converted. Note that it's still not quite there for use as ->read_iter() -
we depend on having zero iter->iov_offset in O_DIRECT case. Fortunately,
that's true for all converted callers (and for generic_file_aio_read() itself).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
the thing is, we want to advance what's given to ->direct_IO() as we
are forming the request; however, the callers care about the amount
of data actually transferred, not the amount we tried to transfer.
It's more convenient to allow ->direct_IO() instances do use
iov_iter_advance() on the copy of iov_iter, leaving the actual
advancing of the original to caller.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all callers of ->aio_read() and ->aio_write() have iov/nr_segs already
checked - generic_segment_checks() done after that is just an odd way
to spell iov_length().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Dave Jones reports the following crash when find_get_pages_tag() runs
into an exceptional entry:
kernel BUG at mm/filemap.c:1347!
RIP: find_get_pages_tag+0x1cb/0x220
Call Trace:
find_get_pages_tag+0x36/0x220
pagevec_lookup_tag+0x21/0x30
filemap_fdatawait_range+0xbe/0x1e0
filemap_fdatawait+0x27/0x30
sync_inodes_sb+0x204/0x2a0
sync_inodes_one_sb+0x19/0x20
iterate_supers+0xb2/0x110
sys_sync+0x44/0xb0
ia32_do_call+0x13/0x13
1343 /*
1344 * This function is never used on a shmem/tmpfs
1345 * mapping, so a swap entry won't be found here.
1346 */
1347 BUG();
After commit 0cd6144aad ("mm + fs: prepare for non-page entries in
page cache radix trees") this comment and BUG() are out of date because
exceptional entries can now appear in all mappings - as shadows of
recently evicted pages.
However, as Hugh Dickins notes,
"it is truly surprising for a PAGECACHE_TAG_WRITEBACK (and probably
any other PAGECACHE_TAG_*) to appear on an exceptional entry.
I expect it comes down to an occasional race in RCU lookup of the
radix_tree: lacking absolute synchronization, we might sometimes
catch an exceptional entry, with the tag which really belongs with
the unexceptional entry which was there an instant before."
And indeed, not only is the tree walk lockless, the tags are also read
in chunks, one radix tree node at a time. There is plenty of time for
page reclaim to swoop in and replace a page that was already looked up
as tagged with a shadow entry.
Remove the BUG() and update the comment. While reviewing all other
lookup sites for whether they properly deal with shadow entries of
evicted pages, update all the comments and fix memcg file charge moving
to not miss shmem/tmpfs swapcache pages.
Fixes: 0cd6144aad ("mm + fs: prepare for non-page entries in page cache radix trees")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix new kernel-doc warning in mm/filemap.c:
Warning(mm/filemap.c:2600): Excess function parameter 'ppos' description in '__generic_file_aio_write'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.
mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minor cleanups:
- 'size' variable is now in bytes, not pages;
- use round_up(): it should be easier to read.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes read_cache_page_async() which wasn't really needed
anywhere and simplifies the code around it a bit.
read_cache_page_async() is useful when we want to read a page into the
cache without waiting for it to complete. This happens when the
appropriate callback 'filler' doesn't complete its read operation and
releases the page lock immediately, and instead queues a different
completion routine to do that. This never actually happened anywhere in
the code.
read_cache_page_async() had 3 different callers:
- read_cache_page() which is the sync version, it would just wait for
the requested read to complete using wait_on_page_read().
- JFFS2 would call it from jffs2_gc_fetch_page(), but the filler
function it supplied doesn't do any async reads, and would complete
before the filler function returns - making it actually a sync read.
- CRAMFS would call it using the read_mapping_page_async() wrapper, with
a similar story to JFFS2 - the filler function doesn't do anything that
reminds async reads and would always complete before the filler function
returns.
To sum it up, the code in mm/filemap.c never took advantage of having
read_cache_page_async(). While there are filler callbacks that do async
reads (such as the block one), we always called it with the
read_cache_page().
This patch adds a mandatory wait for read to complete when adding a new
page to the cache, and removes read_cache_page_async() and its wrappers.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously, page cache radix tree nodes were freed after reclaim emptied
out their page pointers. But now reclaim stores shadow entries in their
place, which are only reclaimed when the inodes themselves are
reclaimed. This is problematic for bigger files that are still in use
after they have a significant amount of their cache reclaimed, without
any of those pages actually refaulting. The shadow entries will just
sit there and waste memory. In the worst case, the shadow entries will
accumulate until the machine runs out of memory.
To get this under control, the VM will track radix tree nodes
exclusively containing shadow entries on a per-NUMA node list. Per-NUMA
rather than global because we expect the radix tree nodes themselves to
be allocated node-locally and we want to reduce cross-node references of
otherwise independent cache workloads. A simple shrinker will then
reclaim these nodes on memory pressure.
A few things need to be stored in the radix tree node to implement the
shadow node LRU and allow tree deletions coming from the list:
1. There is no index available that would describe the reverse path
from the node up to the tree root, which is needed to perform a
deletion. To solve this, encode in each node its offset inside the
parent. This can be stored in the unused upper bits of the same
member that stores the node's height at no extra space cost.
2. The number of shadow entries needs to be counted in addition to the
regular entries, to quickly detect when the node is ready to go to
the shadow node LRU list. The current entry count is an unsigned
int but the maximum number of entries is 64, so a shadow counter
can easily be stored in the unused upper bits.
3. Tree modification needs tree lock and tree root, which are located
in the address space, so store an address_space backpointer in the
node. The parent pointer of the node is in a union with the 2-word
rcu_head, so the backpointer comes at no extra cost as well.
4. The node needs to be linked to an LRU list, which requires a list
head inside the node. This does increase the size of the node, but
it does not change the number of objects that fit into a slab page.
[akpm@linux-foundation.org: export the right function]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently usedbut
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This patch solves one half of the problem by decoupling the ability to
detect working set changes from the inactive list size. By maintaining
a history of recently evicted file pages it can detect frequently used
pages with an arbitrarily small inactive list size, and subsequently
apply pressure on the active list based on actual demand for cache, not
just overall eviction speed.
Every zone maintains a counter that tracks inactive list aging speed.
When a page is evicted, a snapshot of this counter is stored in the
now-empty page cache radix tree slot. On refault, the minimum access
distance of the page can be assessed, to evaluate whether the page
should be part of the active list or not.
This fixes the VM's blindness towards working set changes in excess of
the inactive list. And it's the foundation to further improve the
protection ability and reduce the minimum inactive list size of 50%.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem mappings already contain exceptional entries where swap slot
information is remembered.
To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.
The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before. But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The radix tree hole searching code is only used for page cache, for
example the readahead code trying to get a a picture of the area
surrounding a fault.
It sufficed to rely on the radix tree definition of holes, which is
"empty tree slot". But this is about to change, though, as shadow page
descriptors will be stored in the page cache after the actual pages get
evicted from memory.
Move the functions over to mm/filemap.c and make them native page cache
operations, where they can later be adapted to handle the new definition
of "page cache hole".
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.
Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.
This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
generic_file_aio_read() was looping over the target iovec, with loop over
(source) pages nested inside that. Just set an iov_iter up and pass *that*
to do_generic_file_aio_read(). With copy_page_to_iter() doing all work
of mapping and copying a page to iovec and advancing iov_iter.
Switch shmem_file_aio_read() to the same and kill file_read_actor(), while
we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It actually goes back to 2004 ([PATCH] Concurrent O_SYNC write support)
when sync_page_range() had been introduced; generic_file_write{,v}() correctly
synced
pos_after_write - written .. pos_after_write - 1
but generic_file_aio_write() synced
pos_before_write .. pos_before_write + written - 1
instead. Which is not the same thing with O_APPEND, obviously.
A couple of years later correct variant had been killed off when
everything switched to use of generic_file_aio_write().
All users of generic_file_aio_write() are affected, and the same bug
has been copied into other instances of ->aio_write().
The fix is trivial; the only subtle point is that generic_write_sync()
ought to be inlined to avoid calculations useless for the majority of
calls.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs updates from Al Viro:
"Assorted stuff; the biggest pile here is Christoph's ACL series. Plus
assorted cleanups and fixes all over the place...
There will be another pile later this week"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (43 commits)
__dentry_path() fixes
vfs: Remove second variable named error in __dentry_path
vfs: Is mounted should be testing mnt_ns for NULL or error.
Fix race when checking i_size on direct i/o read
hfsplus: remove can_set_xattr
nfsd: use get_acl and ->set_acl
fs: remove generic_acl
nfs: use generic posix ACL infrastructure for v3 Posix ACLs
gfs2: use generic posix ACL infrastructure
jfs: use generic posix ACL infrastructure
xfs: use generic posix ACL infrastructure
reiserfs: use generic posix ACL infrastructure
ocfs2: use generic posix ACL infrastructure
jffs2: use generic posix ACL infrastructure
hfsplus: use generic posix ACL infrastructure
f2fs: use generic posix ACL infrastructure
ext2/3/4: use generic posix ACL infrastructure
btrfs: use generic posix ACL infrastructure
fs: make posix_acl_create more useful
fs: make posix_acl_chmod more useful
...
So far I've had one ACK for this, and no other comments. So I think it
is probably time to send this via some suitable tree. I'm guessing that
the vfs tree would be the most appropriate route, but not sure that
there is one at the moment (don't see anything recent at kernel.org)
so in that case I think -mm is the "back up plan". Al, please let me
know if you will take this?
Steve.
---------------------
Following on from the "Re: [PATCH v3] vfs: fix a bug when we do some dio
reads with append dio writes" thread on linux-fsdevel, this patch is my
current version of the fix proposed as option (b) in that thread.
Removing the i_size test from the direct i/o read path at vfs level
means that filesystems now have to deal with requests which are beyond
i_size themselves. These I've divided into three sets:
a) Those with "no op" ->direct_IO (9p, cifs, ceph)
These are obviously not going to be an issue
b) Those with "home brew" ->direct_IO (nfs, fuse)
I've been told that NFS should not have any problem with the larger
i_size, however I've added an extra test to FUSE to duplicate the
original behaviour just to be on the safe side.
c) Those using __blockdev_direct_IO()
These call through to ->get_block() which should deal with the EOF
condition correctly. I've verified that with GFS2 and I believe that
Zheng has verified it for ext4. I've also run the test on XFS and it
passes both before and after this change.
The part of the patch in filemap.c looks a lot larger than it really is
- there are only two lines of real change. The rest is just indentation
of the contained code.
There remains a test of i_size though, which was added for btrfs. It
doesn't cause the other filesystems a problem as the test is performed
after ->direct_IO has been called. It is possible that there is a race
that does matter to btrfs, however this patch doesn't change that, so
its still an overall improvement.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reported-by: Zheng Liu <gnehzuil.liu@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's only one caller of do_generic_file_read() and the only actor is
file_read_actor(). No reason to have a callback parameter.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is
one such possible user), the following race can happen:
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
<interrupt>
...
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
And we give out one radix tree node twice. That clearly results in radix
tree corruption with different results (usually OOPS) depending on which
two users of radix tree race.
We fix the problem by making radix_tree_node_alloc() always allocate fresh
radix tree nodes when in interrupt. Using preloading when in interrupt
doesn't make sense since all the allocations have to be atomic anyway and
we cannot steal nodes from process-context users because some users rely
on radix_tree_insert() succeeding after radix_tree_preload().
in_interrupt() check is somewhat ugly but we cannot simply key off passed
gfp_mask as that is acquired from root_gfp_mask() and thus the same for
all preload users.
Another part of the fix is to avoid node preallocation in
radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again,
preallocation in such case doesn't make sense and when preallocation would
happen in interrupt we could possibly leak some allocated nodes. However,
some users of radix_tree_preload() require following radix_tree_insert()
to succeed. To avoid unexpected effects for these users,
radix_tree_preload() only warns if passed gfp mask doesn't allow waiting
and we provide a new function radix_tree_maybe_preload() for those users
which get different gfp mask from different call sites and which are
prepared to handle radix_tree_insert() failure.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Call generic_write_sync() from the deferred I/O completion handler if
O_DSYNC is set for a write request. Also make sure various callers
don't call generic_write_sync if the direct I/O code returns
-EIOCBQUEUED.
Based on an earlier patch from Jan Kara <jack@suse.cz> with updates from
Jeff Moyer <jmoyer@redhat.com> and Darrick J. Wong <darrick.wong@oracle.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These VM_<READfoo> macros aren't used very often and three of them
aren't used at all.
Expand the ones that are used in-place, and remove all the now unused
#define VM_<foo> macros.
VM_READHINTMASK, VM_NormalReadHint and VM_ClearReadHint were added just
before 2.4 and appears have never been used.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
There are two convenient ways to report errors to userspace
1) retun error to original syscall for example write(2)
2) mark mapping with error flag and return it on later fsync(2)
Second one is broken if (mapping->nrpages == 0) This is real-life
situation because after error pages are likey to be truncated or
invalidated.
We have to return an error regardless to number of pages in the mapping.
#Original testcase: git@github.com:dmonakhov/xfstests.git
MOUNT_OPTIONS="-b1024"
./check shared/305
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the events API to trace filemap loading and unloading of file pieces
into the page cache.
This patch aims at tracing the eviction reload cycle of executable and
shared libraries pages in a memory constrained environment.
The typical usage is to spot a specific device and inode (for example
/lib/libc.so) to see the eviction cycles, and find out if frequently
used code is rather spread across many pages (bad) or coallesced (good).
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
Create a helper function to check if a backing device requires stable
page writes and, if so, performs the necessary wait. Then, make it so
that all points in the memory manager that handle making pages writable
use the helper function. This should provide stable page write support
to most filesystems, while eliminating unnecessary waiting for devices
that don't require the feature.
Before this patchset, all filesystems would block, regardless of whether
or not it was necessary. ext3 would wait, but still generate occasional
checksum errors. The network filesystems were left to do their own
thing, so they'd wait too.
After this patchset, all the disk filesystems except ext3 and btrfs will
wait only if the hardware requires it. ext3 (if necessary) snapshots
pages instead of blocking, and btrfs provides its own bdi so the mm will
never wait. Network filesystems haven't been touched, so either they
provide their own stable page guarantees or they don't block at all.
The blocking behavior is back to what it was before 3.0 if you don't
have a disk requiring stable page writes.
Here's the result of using dbench to test latency on ext2:
3.8.0-rc3:
Operation Count AvgLat MaxLat
----------------------------------------
WriteX 109347 0.028 59.817
ReadX 347180 0.004 3.391
Flush 15514 29.828 287.283
Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms
3.8.0-rc3 + patches:
WriteX 105556 0.029 4.273
ReadX 335004 0.005 4.112
Flush 14982 30.540 298.634
Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms
As you can see, the maximum write latency drops considerably with this
patch enabled. The other filesystems (ext3/ext4/xfs/btrfs) behave
similarly, but see the cover letter for those results.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function does not modify iov_iter which 'i' points to.
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
.fault now can retry. The retry can break state machine of .fault. In
filemap_fault, if page is miss, ra->mmap_miss is increased. In the second
try, since the page is in page cache now, ra->mmap_miss is decreased. And
these are done in one fault, so we can't detect random mmap file access.
Add a new flag to indicate .fault is tried once. In the second try, skip
ra->mmap_miss decreasing. The filemap_fault state machine is ok with it.
I only tested x86, didn't test other archs, but looks the change for other
archs is obvious, but who knows :)
Signed-off-by: Shaohua Li <shaohua.li@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move actual pte filling for non-linear file mappings into the new special
vma operation: ->remap_pages().
Filesystems must implement this method to get non-linear mapping support,
if it uses filemap_fault() then generic_file_remap_pages() can be used.
Now device drivers can implement this method and obtain nonlinear vma support.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com> #arch/tile
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Venkatesh Pallipadi <venki@google.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move unplugging for direct I/O from around ->direct_IO() down to
do_blockdev_direct_IO(). This implicitly adds plugging for direct
writes.
CC: Li Shaohua <shli@fusionio.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Buffered write(2) is not directly tied to IO, so it's not suitable to
handle plug in generic_file_aio_write().
Note that plugging for O_SYNC writes is also removed. The user may pass
arbitrary @size arguments, which may be much larger than the preferable
I/O size, or may cross extent/device boundaries. Let the lower layers
handle the plugging. The plugging code here actually turns them into
no-ops.
CC: Li Shaohua <shli@fusionio.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are several entry points which dirty pages in a filesystem. mmap
(handled by block_page_mkwrite()), buffered write (handled by
__generic_file_aio_write()), splice write (generic_file_splice_write),
truncate, and fallocate (these can dirty last partial page - handled inside
each filesystem separately). Protect these places with sb_start_write() and
sb_end_write().
->page_mkwrite() calls are particularly complex since they are called with
mmap_sem held and thus we cannot use standard sb_start_write() due to lock
ordering constraints. We solve the problem by using a special freeze protection
sb_start_pagefault() which ranks below mmap_sem.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make default vm_ops provide ->page_mkwrite handler. Currently it only updates
file's modification times and gets locked page but later it will also handle
filesystem freezing.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs changes from Al Viro.
"A lot of misc stuff. The obvious groups:
* Miklos' atomic_open series; kills the damn abuse of
->d_revalidate() by NFS, which was the major stumbling block for
all work in that area.
* ripping security_file_mmap() and dealing with deadlocks in the
area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
general.
* ->encode_fh() switched to saner API; insane fake dentry in
mm/cleancache.c gone.
* assorted annotations in fs (endianness, __user)
* parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
* ->update_time() work from Josef.
* other bits and pieces all over the place.
Normally it would've been in two or three pull requests, but
signal.git stuff had eaten a lot of time during this cycle ;-/"
Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
nfs: don't open in ->d_revalidate
vfs: retry last component if opening stale dentry
vfs: nameidata_to_filp(): don't throw away file on error
vfs: nameidata_to_filp(): inline __dentry_open()
vfs: do_dentry_open(): don't put filp
vfs: split __dentry_open()
vfs: do_last() common post lookup
vfs: do_last(): add audit_inode before open
vfs: do_last(): only return EISDIR for O_CREAT
vfs: do_last(): check LOOKUP_DIRECTORY
vfs: do_last(): make ENOENT exit RCU safe
vfs: make follow_link check RCU safe
vfs: do_last(): use inode variable
vfs: do_last(): inline walk_component()
vfs: do_last(): make exit RCU safe
vfs: split do_lookup()
Btrfs: move over to use ->update_time
fs: introduce inode operation ->update_time
reiserfs: get rid of resierfs_sync_super
reiserfs: mark the superblock as dirty a bit later
...
Btrfs has to make sure we have space to allocate new blocks in order to modify
the inode, so updating time can fail. We've gotten around this by having our
own file_update_time but this is kind of a pain, and Christoph has indicated he
would like to make xfs do something different with atime updates. So introduce
->update_time, where we will deal with i_version an a/m/c time updates and
indicate which changes need to be made. The normal version just does what it
has always done, updates the time and marks the inode dirty, and then
filesystems can choose to do something different.
I've gone through all of the users of file_update_time and made them check for
errors with the exception of the fault code since it's complicated and I wasn't
quite sure what to do there, also Jan is going to be pushing the file time
updates into page_mkwrite for those who have it so that should satisfy btrfs and
make it not a big deal to check the file_update_time() return code in the
generic fault path. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
file_remove_suid() is a generic function operates on struct file,
it almost has no relations with file mapping, so move it to fs/inode.c.
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It is better to define readahead(2) in mm/readahead.c than in
mm/filemap.c.
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace radix_tree_gang_lookup_slot() and
radix_tree_gang_lookup_tag_slot() in page-cache lookup functions with
brand-new radix-tree direct iterating. This avoids the double-scanning
and pointer copying.
Iterator don't stop after nr_pages page-get fails in a row, it continue
lookup till the radix-tree end. Thus we can safely remove these restart
conditions.
Unfortunately, old implementation didn't forbid nr_pages == 0, this corner
case does not fit into new code, so the patch adds an extra check at the
beginning.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
into debugfs, and use __read_mostly as neccessary.
Also add a MAINTAINER file for cleancache API files.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAABAgAGBQJPZ1sjAAoJEFjIrFwIi8fJCSkIALqBBCkuPSusvdebT59Oq145
EW2eEwJzVft0vlvS/IPl+W37TH5VWhBVCW8frAYMpLaY5X/W1ZwzFpx76T4acAiM
wkXwsyYXs6N13OOFoH5gmf3cwproAioRxbEeALucxeMR4rK5Yw+oZXT+hSu2KaLh
1LtHyx+u+NLb0QOseAuDcmyjY9r6aLBA1HMcVD2z+4UW1n/9NWexQP3ShYP9uMDs
GnyDzZ8vWXTcoc4Auj0rpaNsT5d47ltGegKASZmmvS3QyMHbZ4sk2HECnQY4wSee
alPJwDyb6mOJmQ3e4s940onjfZPgd8/cW/DVEUrveH+dz6Eqjxqz41dVRVXiLz8=
=tUNC
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm
Pull cleancache changes from Konrad Rzeszutek Wilk:
"This has some patches for the cleancache API that should have been
submitted a _long_ time ago. They are basically cleanups:
- rename of flush to invalidate
- moving reporting of statistics into debugfs
- use __read_mostly as necessary.
Oh, and also the MAINTAINERS file change. The files (except the
MAINTAINERS file) have been in #linux-next for months now. The late
addition of MAINTAINERS file is a brain-fart on my side - didn't
realize I needed that just until I was typing this up - and I based
that patch on v3.3 - so the tree is on top of v3.3."
* tag 'stable/for-linus-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm:
MAINTAINERS: Adding cleancache API to the list.
mm: cleancache: Use __read_mostly as appropiate.
mm: cleancache: report statistics via debugfs instead of sysfs.
mm: zcache/tmem/cleancache: s/flush/invalidate/
mm: cleancache: s/flush/invalidate/
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When i_mmap_lock changed to a mutex the locking order in memory failure
was changed to take the sleeping lock first. But the big fat mm lock
ordering comment (BFMLO) wasn't updated. Do this here.
Pointed out by Andrew.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is not much point in skipping zones during allocation based on the
dirty usage which they'll never contribute to. And we'd like to avoid
page reclaim waits when writing to ramfs/sysfs etc.
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Herbert Poetzl reported a performance regression since 2.6.39. The test
is a simple dd read, but with big block size. The reason is:
T1: ra (A, A+128k), (A+128k, A+256k)
T2: lock_page for page A, submit the 256k
T3: hit page A+128K, ra (A+256k, A+384). the range isn't submitted
because of plug and there isn't any lock_page till we hit page A+256k
because all pages from A to A+256k is in memory
T4: hit page A+256k, ra (A+384, A+ 512). Because of plug, the range isn't
submitted again.
T5: lock_page A+256k, so (A+256k, A+512k) will be submitted. The task is
waitting for (A+256k, A+512k) finish.
There is no request to disk in T3 and T4, so readahead pipeline breaks.
We really don't need block plug for generic_file_aio_read() for buffered
I/O. The readahead already has plug and has fine grained control when I/O
should be submitted. Deleting plug for buffered I/O fixes the regression.
One side effect is plug makes the request size 256k, the size is 128k
without it. This is because default ra size is 128k and not a reason we
need plug here.
Vivek said:
: We submit some readahead IO to device request queue but because of nested
: plug, queue never gets unplugged. When read logic reaches a page which is
: not in page cache, it waits for page to be read from the disk
: (lock_page_killable()) and that time we flush the plug list.
:
: So effectively read ahead logic is kind of broken in parts because of
: nested plugging. Removing top level plug (generic_file_aio_read()) for
: buffered reads, will allow unplugging queue earlier for readahead.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reported-by: Herbert Poetzl <herbert@13thfloor.at>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per akpm suggestions alter the use of the term flush to be
invalidate. The next patch will do this across all MM.
This change is completely cosmetic.
[v9: akpm@linux-foundation.org: change "flush" to "invalidate", part 3]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jan Beulich <JBeulich@novell.com>
Reviewed-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Rik Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
[v10: Fixed fs: move code out of buffer.c conflict change]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Commit ef6a3c6311 ("mm: add replace_page_cache_page() function") added a
function replace_page_cache_page(). This function replaces a page in the
radix-tree with a new page. WHen doing this, memory cgroup needs to fix
up the accounting information. memcg need to check PCG_USED bit etc.
In some(many?) cases, 'newpage' is on LRU before calling
replace_page_cache(). So, memcg's LRU accounting information should be
fixed, too.
This patch adds mem_cgroup_replace_page_cache() and removes the old hooks.
In that function, old pages will be unaccounted without touching
res_counter and new page will be accounted to the memcg (of old page).
WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid
races with LRU handling.
Background:
replace_page_cache_page() is called by FUSE code in its splice() handling.
Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated
page and may be on LRU. LRU mis-accounting will be critical for memory cgroup
because rmdir() checks the whole LRU is empty and there is no account leak.
If a page is on the other LRU than it should be, rmdir() will fail.
This bug was added in March 2011, but no bug report yet. I guess there
are not many people who use memcg and FUSE at the same time with upstream
kernels.
The result of this bug is that admin cannot destroy a memcg because of
account leak. So, no panic, no deadlock. And, even if an active cgroup
exist, umount can succseed. So no problem at shutdown.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tell the page allocator that pages allocated through
grab_cache_page_write_begin() are expected to become dirty soon.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lockdep reports a deadlock in jfs because a special inode's rw semaphore
is taken recursively. The mapping's gfp mask is GFP_NOFS, but is not
used when __read_cache_page() calls add_to_page_cache_lru().
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently write(2) to a file is not interruptible by any signal.
Sometimes this is desirable, e.g. when you want to quickly kill a
process hogging your disk. Also, with commit 499d05ecf9 ("mm: Make
task in balance_dirty_pages() killable"), it's necessary to abort the
current write accordingly to avoid it quickly dirtying lots more pages
at unthrottled rate.
This patch makes write interruptible by SIGKILL. We do not allow write
to be interruptible by any other signal because that has larger
potential of screwing some badly written applications.
Reported-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Tested-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Acked-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The files changed within are only using the EXPORT_SYMBOL
macro variants. They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Currently, when you call iov_iter_advance, then the pointer to the iovec
array can be incremented, but it does not decrement the nr_segs value in
the iov_iter struct. The result is a iov_iter struct with a nr_segs
value that goes beyond the end of the array.
While I'm not aware of anything that's specifically broken by this, it
seems odd and a bit dangerous not to decrement that value. If someone
were to trust the nr_segs value to be correct, then they could end up
walking off the end of the array.
Changing this might also provide some micro-optimization when dealing
with the last iovec in an array. Many of the other routines that deal
with iov_iter have optimized codepaths when nr_segs == 1.
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The found entries by find_get_pages() could be all swap entries. In
this case we skip the entries, but make sure the skipped entries are
accounted, so we don't keep looping.
Using nr_found > nr_skip to simplify code as suggested by Eric.
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the radix_tree exceptional cases, mostly in filemap.c, clearer.
It's hard to devise a suitable snappy name that illuminates the use by
shmem/tmpfs for swap, while keeping filemap/pagecache/radix_tree
generality. And akpm points out that /* radix_tree_deref_retry(page) */
comments look like calls that have been commented out for unknown
reason.
Skirt the naming difficulty by rearranging these blocks to handle the
transient radix_tree_deref_retry(page) case first; then just explain the
remaining shmem/tmpfs swap case in a comment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove PageSwapBacked (!page_is_file_cache) cases from
add_to_page_cache_locked() and add_to_page_cache_lru(): those pages now
go through shmem_add_to_page_cache().
Remove a comment on maximum tmpfs size from fsstack_copy_inode_size(),
and add a comment on swap entries to invalidate_mapping_pages().
And mincore_page() uses find_get_page() on what might be shmem or a
tmpfs file: allow for a radix_tree_exceptional_entry(), and proceed to
find_get_page() on swapper_space if so (oh, swapper_space needs #ifdef).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If swap entries are to be stored along with struct page pointers in a
radix tree, they need to be distinguished as exceptional entries.
Most of the handling of swap entries in radix tree will be contained in
shmem.c, but a few functions in filemap.c's common code need to check
for their appearance: find_get_page(), find_lock_page(),
find_get_pages() and find_get_pages_contig().
So as not to slow their fast paths, tuck those checks inside the
existing checks for unlikely radix_tree_deref_slot(); except for
find_lock_page(), where it is an added test. And make it a BUG in
find_get_pages_tag(), which is not applied to tmpfs files.
A part of the reason for eliminating shmem_readpage() earlier, was to
minimize the places where common code would need to allow for swap
entries.
The swp_entry_t known to swapfile.c must be massaged into a slightly
different form when stored in the radix tree, just as it gets massaged
into a pte_t when stored in page tables.
In an i386 kernel this limits its information (type and page offset) to
30 bits: given 32 "types" of swapfile and 4kB pagesize, that's a maximum
swapfile size of 128GB. Which is less than the 512GB we previously
allowed with X86_PAE (where the swap entry can occupy the entire upper
32 bits of a pte_t), but not a new limitation on 32-bit without PAE; and
there's not a new limitation on 64-bit (where swap filesize is already
limited to 16TB by a 32-bit page offset). Thirty areas of 128GB is
probably still enough swap for a 64GB 32-bit machine.
Provide swp_to_radix_entry() and radix_to_swp_entry() conversions, and
enforce filesize limit in read_swap_header(), just as for ptes.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A patchset to extend tmpfs to MAX_LFS_FILESIZE by abandoning its
peculiar swap vector, instead keeping a file's swap entries in the same
radix tree as its struct page pointers: thus saving memory, and
simplifying its code and locking.
This patch:
The radix_tree is used by several subsystems for different purposes. A
major use is to store the struct page pointers of a file's pagecache for
memory management. But what if mm wanted to store something other than
page pointers there too?
The low bit of a radix_tree entry is already used to denote an indirect
pointer, for internal use, and the unlikely radix_tree_deref_retry()
case.
Define the next bit as denoting an exceptional entry, and supply inline
functions radix_tree_exception() to return non-0 in either unlikely
case, and radix_tree_exceptional_entry() to return non-0 in the second
case.
If a subsystem already uses radix_tree with that bit set, no problem: it
does not affect internal workings at all, but is defined for the
convenience of those storing well-aligned pointers in the radix_tree.
The radix_tree_gang_lookups have an implicit assumption that the caller
can deduce the offset of each entry returned e.g. by the page->index of
a struct page. But that may not be feasible for some kinds of item to
be stored there.
radix_tree_gang_lookup_slot() allow for an optional indices argument,
output array in which to return those offsets. The same could be added
to other radix_tree_gang_lookups, but for now keep it to the only one
for which we need it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the pagevec_lookup loops in truncate_inode_pages_range(),
invalidate_mapping_pages() and invalidate_inode_pages2_range() more
consistent with each other.
They were relying upon page->index of an unlocked page, but apologizing
for it: accept it, embrace it, add comments and WARN_ONs, and simplify the
index handling.
invalidate_inode_pages2_range() had special handling for a wrapped
page->index + 1 = 0 case; but MAX_LFS_FILESIZE doesn't let us anywhere
near there, and a corrupt page->index in the radix_tree could cause more
trouble than that would catch. Remove that wrapped handling.
invalidate_inode_pages2_range() uses min() to limit the pagevec_lookup
when near the end of the range: copy that into the other two, although
it's less useful than you might think (it limits the use of the buffer,
rather than the indices looked up).
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The often-NULL data arg to read_cache_page() and read_mapping_page()
functions is misdescribed as "destination for read data": no, it's the
first arg to the filler function, often struct file * to ->readpage().
Satisfy checkpatch.pl on those filler prototypes, and tidy up the
declarations in linux/pagemap.h.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
i_alloc_sem is a rather special rw_semaphore. It's the last one that may
be released by a non-owner, and it's write side is always mirrored by
real exclusion. It's intended use it to wait for all pending direct I/O
requests to finish before starting a truncate.
Replace it with a hand-grown construct:
- exclusion for truncates is already guaranteed by i_mutex, so it can
simply fall way
- the reader side is replaced by an i_dio_count member in struct inode
that counts the number of pending direct I/O requests. Truncate can't
proceed as long as it's non-zero
- when i_dio_count reaches non-zero we wake up a pending truncate using
wake_up_bit on a new bit in i_flags
- new references to i_dio_count can't appear while we are waiting for
it to read zero because the direct I/O count always needs i_mutex
(or an equivalent like XFS's i_iolock) for starting a new operation.
This scheme is much simpler, and saves the space of a spinlock_t and a
struct list_head in struct inode (typically 160 bits on a non-debug 64-bit
system).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Split the global inode_wb_list_lock into a per-bdi_writeback list_lock,
as it's currently the most contended lock in the system for metadata
heavy workloads. It won't help for single-filesystem workloads for
which we'll need the I/O-less balance_dirty_pages, but at least we
can dedicate a cpu to spinning on each bdi now for larger systems.
Based on earlier patches from Nick Piggin and Dave Chinner.
It reduces lock contentions to 1/4 in this test case:
10 HDD JBOD, 100 dd on each disk, XFS, 6GB ram
lock_stat version 0.3
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
vanilla 2.6.39-rc3:
inode_wb_list_lock: 42590 44433 0.12 147.74 144127.35 252274 886792 0.08 121.34 917211.23
------------------
inode_wb_list_lock 2 [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
inode_wb_list_lock 34 [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
inode_wb_list_lock 12893 [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
inode_wb_list_lock 10702 [<ffffffff8115afef>] writeback_single_inode+0x16d/0x20a
------------------
inode_wb_list_lock 2 [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
inode_wb_list_lock 19 [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
inode_wb_list_lock 5550 [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
inode_wb_list_lock 8511 [<ffffffff8115b4ad>] writeback_sb_inodes+0x10f/0x157
2.6.39-rc3 + patch:
&(&wb->list_lock)->rlock: 11383 11657 0.14 151.69 40429.51 90825 527918 0.11 145.90 556843.37
------------------------
&(&wb->list_lock)->rlock 10 [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
&(&wb->list_lock)->rlock 1493 [<ffffffff8115b1ed>] writeback_inodes_wb+0x3d/0x150
&(&wb->list_lock)->rlock 3652 [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f
&(&wb->list_lock)->rlock 1412 [<ffffffff8115a38e>] writeback_single_inode+0x17f/0x223
------------------------
&(&wb->list_lock)->rlock 3 [<ffffffff8110b5af>] bdi_lock_two+0x46/0x4b
&(&wb->list_lock)->rlock 6 [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
&(&wb->list_lock)->rlock 2061 [<ffffffff8115af97>] __mark_inode_dirty+0x173/0x1cf
&(&wb->list_lock)->rlock 2629 [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f
hughd@google.com: fix recursive lock when bdi_lock_two() is called with new the same as old
akpm@linux-foundation.org: cleanup bdev_inode_switch_bdi() comment
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Caching "we have already removed suid/caps" was overenthusiastic as merged.
On network filesystems we might have had suid/caps set on another client,
silently picked by this client on revalidate, all of that *without* clearing
the S_NOSEC flag.
AFAICS, the only reasonably sane way to deal with that is
* new superblock flag; unless set, S_NOSEC is not going to be set.
* local block filesystems set it in their ->mount() (more accurately,
mount_bdev() does, so does btrfs ->mount(), users of mount_bdev() other than
local block ones clear it)
* if any network filesystem (or a cluster one) wants to use S_NOSEC,
it'll need to set MS_NOSEC in sb->s_flags *AND* take care to clear S_NOSEC when
inode attribute changes are picked from other clients.
It's not an earth-shattering hole (anybody that can set suid on another client
will almost certainly be able to write to the file before doing that anyway),
but it's a bug that needs fixing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some recent benchmarking on btrfs showed that a major scaling bottleneck
on large systems on btrfs is currently the xattr lookup on every write.
Why xattr lookup on every write I hear you ask?
write wants to drop suid and security related xattrs that could set o
capabilities for executables. To do that it currently looks up
security.capability on EVERY write (even for non executables) to decide
whether to drop it or not.
In btrfs this causes an additional tree walk, hitting some per file system
locks and quite bad scalability. In a simple read workload on a 8S
system I saw over 90% CPU time in spinlocks related to that.
Chris Mason tells me this is also a problem in ext4, where it hits
the global mbcache lock.
This patch adds a simple per inode to avoid this problem. We only
do the lookup once per file and then if there is no xattr cache
the decision. All xattr changes clear the flag.
I also used the same flag to avoid the suid check, although
that one is pretty cheap.
A file system can also set this flag when it creates the inode,
if it has a cheap way to do so. This is done for some common file systems
in followon patches.
With this patch a major part of the lock contention disappears
for btrfs. Some testing on smaller systems didn't show significant
performance changes, but at least it helps the larger systems
and is generally more efficient.
v2: Rename is_sgid. add file system helper.
Cc: chris.mason@oracle.com
Cc: josef@redhat.com
Cc: viro@zeniv.linux.org.uk
Cc: agruen@linbit.com
Cc: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When grabbing a page for a buffered IO write, the mm should wait for writeback
on the page to complete so that the page does not become writable during the IO
operation. This change is needed to provide page stability during writes for
all filesystems.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Two new stats in per-memcg memory.stat which tracks the number of page
faults and number of major page faults.
"pgfault"
"pgmajfault"
They are different from "pgpgin"/"pgpgout" stat which count number of
pages charged/discharged to the cgroup and have no meaning of reading/
writing page to disk.
It is valuable to track the two stats for both measuring application's
performance as well as the efficiency of the kernel page reclaim path.
Counting pagefaults per process is useful, but we also need the aggregated
value since processes are monitored and controlled in cgroup basis in
memcg.
Functional test: check the total number of pgfault/pgmajfault of all
memcgs and compare with global vmstat value:
$ cat /proc/vmstat | grep fault
pgfault 1070751
pgmajfault 553
$ cat /dev/cgroup/memory.stat | grep fault
pgfault 1071138
pgmajfault 553
total_pgfault 1071142
total_pgmajfault 553
$ cat /dev/cgroup/A/memory.stat | grep fault
pgfault 199
pgmajfault 0
total_pgfault 199
total_pgmajfault 0
Performance test: run page fault test(pft) wit 16 thread on faulting in
15G anon pages in 16G container. There is no regression noticed on the
"flt/cpu/s"
Sample output from pft:
TAG pft:anon-sys-default:
Gb Thr CLine User System Wall flt/cpu/s fault/wsec
15 16 1 0.67s 233.41s 14.76s 16798.546 266356.260
+-------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 10 16682.962 17344.027 16913.524 16928.812 166.5362
+ 10 16695.568 16923.896 16820.604 16824.652 84.816568
No difference proven at 95.0% confidence
[akpm@linux-foundation.org: fix build]
[hughd@google.com: shmem fix]
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/djm/tmem:
xen: cleancache shim to Xen Transcendent Memory
ocfs2: add cleancache support
ext4: add cleancache support
btrfs: add cleancache support
ext3: add cleancache support
mm/fs: add hooks to support cleancache
mm: cleancache core ops functions and config
fs: add field to superblock to support cleancache
mm/fs: cleancache documentation
Fix up trivial conflict in fs/btrfs/extent_io.c due to includes
This fourth patch of eight in this cleancache series provides the
core hooks in VFS for: initializing cleancache per filesystem;
capturing clean pages reclaimed by page cache; attempting to get
pages from cleancache before filesystem read; and ensuring coherency
between pagecache, disk, and cleancache. Note that the placement
of these hooks was stable from 2.6.18 to 2.6.38; a minor semantic
change was required due to a patchset in 2.6.39.
All hooks become no-ops if CONFIG_CLEANCACHE is unset, or become
a check of a boolean global if CONFIG_CLEANCACHE is set but no
cleancache "backend" has claimed cleancache_ops.
Details and a FAQ can be found in Documentation/vm/cleancache.txt
[v8: minchan.kim@gmail.com: adapt to new remove_from_page_cache function]
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik Van Riel <riel@redhat.com>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Andreas Dilger <adilger@sun.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Previously the mmap sequential readahead is triggered by updating
ra->prev_pos on each page fault and compare it with current page offset.
It costs dirtying the cache line on each _minor_ page fault. So remove
the ra->prev_pos recording, and instead tag PG_readahead to trigger the
possible sequential readahead. It's not only more simple, but also will
work more reliably and reduce cache line bouncing on concurrent page
faults on shared struct file.
In the mosbench exim benchmark which does multi-threaded page faults on
shared struct file, the ra->mmap_miss and ra->prev_pos updates are found
to cause excessive cache line bouncing on tmpfs, which actually disabled
readahead totally (shmem_backing_dev_info.ra_pages == 0).
So remove the ra->prev_pos recording, and instead tag PG_readahead to
trigger the possible sequential readahead. It's not only more simple, but
also will work more reliably on concurrent reads on shared struct file.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Tested-by: Tim Chen <tim.c.chen@intel.com>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original INT_MAX is too large, reduce it to
- avoid unnecessarily dirtying/bouncing the cache line
- restore mmap read-around faster on changed access pattern
Background: in the mosbench exim benchmark which does multi-threaded page
faults on shared struct file, the ra->mmap_miss updates are found to cause
excessive cache line bouncing on tmpfs. The ra state updates are needless
for tmpfs because it actually disabled readahead totally
(shmem_backing_dev_info.ra_pages == 0).
Tested-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reduce readahead overheads by returning early in do_sync_mmap_readahead().
tmpfs has ra_pages=0 and it can page fault really fast (not constraint by
IO if not swapping).
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Tested-by: Tim Chen <tim.c.chen@intel.com>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straightforward conversion of i_mmap_lock to a mutex.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an oom killing occurs, almost all processes are getting stuck at the
following two points.
1) __alloc_pages_nodemask
2) __lock_page_or_retry
1) is not very problematic because TIF_MEMDIE leads to an allocation
failure and getting out from page allocator.
2) is more problematic. In an OOM situation, zones typically don't have
page cache at all and memory starvation might lead to greatly reduced IO
performance. When a fork bomb occurs, TIF_MEMDIE tasks don't die quickly,
meaning that a fork bomb may create new process quickly rather than the
oom-killer killing it. Then, the system may become livelocked.
This patch makes the pagefault interruptible by SIGKILL.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>