Граф коммитов

28 Коммитов

Автор SHA1 Сообщение Дата
David Howells 64724cfc6e Merge remote-tracking branch 'integrity/next-with-keys' into keys-next
Signed-off-by: David Howells <dhowells@redhat.com>
2014-07-22 21:54:43 +01:00
David Howells 002edaf76f KEYS: big_key: Use key preparsing
Make use of key preparsing in the big key type so that quota size determination
can take place prior to keyring locking when a key is being added.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
2014-07-22 21:46:47 +01:00
David Howells f9167789df KEYS: user: Use key preparsing
Make use of key preparsing in user-defined and logon keys so that quota size
determination can take place prior to keyring locking when a key is being
added.

Also the idmapper key types need to change to match as they use the
user-defined key type routines.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jlayton@primarydata.com>
2014-07-22 21:46:17 +01:00
Mimi Zohar 3be4beaf7c KEYS: verify a certificate is signed by a 'trusted' key
Only public keys, with certificates signed by an existing
'trusted' key on the system trusted keyring, should be added
to a trusted keyring.  This patch adds support for verifying
a certificate's signature.

This is derived from David Howells pkcs7_request_asymmetric_key() patch.

Changelog v6:
- on error free key - Dmitry
- validate trust only for not already trusted keys - Dmitry
- formatting cleanup

Changelog:
- define get_system_trusted_keyring() to fix kbuild issues

Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
2014-07-17 09:35:15 -04:00
David Howells b56e5a17b6 KEYS: Separate the kernel signature checking keyring from module signing
Separate the kernel signature checking keyring from module signing so that it
can be used by code other than the module-signing code.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-25 17:17:01 +01:00
David Howells ab3c3587f8 KEYS: Implement a big key type that can save to tmpfs
Implement a big key type that can save its contents to tmpfs and thus
swapspace when memory is tight.  This is useful for Kerberos ticket caches.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
2013-09-24 10:35:18 +01:00
David Howells b2a4df200d KEYS: Expand the capacity of a keyring
Expand the capacity of a keyring to be able to hold a lot more keys by using
the previously added associative array implementation.  Currently the maximum
capacity is:

	(PAGE_SIZE - sizeof(header)) / sizeof(struct key *)

which, on a 64-bit system, is a little more 500.  However, since this is being
used for the NFS uid mapper, we need more than that.  The new implementation
gives us effectively unlimited capacity.

With some alterations, the keyutils testsuite runs successfully to completion
after this patch is applied.  The alterations are because (a) keyrings that
are simply added to no longer appear ordered and (b) some of the errors have
changed a bit.

Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24 10:35:18 +01:00
David Howells 46c6f1776e KEYS: Asymmetric key pluggable data parsers
The instantiation data passed to the asymmetric key type are expected to be
formatted in some way, and there are several possible standard ways to format
the data.

The two obvious standards are OpenPGP keys and X.509 certificates.  The latter
is especially useful when dealing with UEFI, and the former might be useful
when dealing with, say, eCryptfs.

Further, it might be desirable to provide formatted blobs that indicate
hardware is to be accessed to retrieve the keys or that the keys live
unretrievably in a hardware store, but that the keys can be used by means of
the hardware.

From userspace, the keys can be loaded using the keyctl command, for example,
an X.509 binary certificate:

	keyctl padd asymmetric foo @s <dhowells.pem

or a PGP key:

	keyctl padd asymmetric bar @s <dhowells.pub

or a pointer into the contents of the TPM:

	keyctl add asymmetric zebra "TPM:04982390582905f8" @s

Inside the kernel, pluggable parsers register themselves and then get to
examine the payload data to see if they can handle it.  If they can, they get
to:

  (1) Propose a name for the key, to be used it the name is "" or NULL.

  (2) Specify the key subtype.

  (3) Provide the data for the subtype.

The key type asks the parser to do its stuff before a key is allocated and thus
before the name is set.  If successful, the parser stores the suggested data
into the key_preparsed_payload struct, which will be either used (if the key is
successfully created and instantiated or updated) or discarded.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:13 +10:30
David Howells 964f3b3bf4 KEYS: Implement asymmetric key type
Create a key type that can be used to represent an asymmetric key type for use
in appropriate cryptographic operations, such as encryption, decryption,
signature generation and signature verification.

The key type is "asymmetric" and can provide access to a variety of
cryptographic algorithms.

Possibly, this would be better as "public_key" - but that has the disadvantage
that "public key" is an overloaded term.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:12 +10:30
David Howells cf7f601c06 KEYS: Add payload preparsing opportunity prior to key instantiate or update
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called.  This is done with the
provision of two new key type operations:

	int (*preparse)(struct key_preparsed_payload *prep);
	void (*free_preparse)(struct key_preparsed_payload *prep);

If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases).  The second operation is called to clean up if the first
was called.

preparse() is given the opportunity to fill in the following structure:

	struct key_preparsed_payload {
		char		*description;
		void		*type_data[2];
		void		*payload;
		const void	*data;
		size_t		datalen;
		size_t		quotalen;
	};

Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.

The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.

The preparser may also propose a description for the key by attaching it as a
string to the description field.  This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function.  This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.

This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.

The instantiate() and update() operations are then modified to look like this:

	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
	int (*update)(struct key *key, struct key_preparsed_payload *prep);

and the new payload data is passed in *prep, whether or not it was preparsed.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:49:48 +10:30
David Howells 233e4735f2 KEYS: Permit in-place link replacement in keyring list
Make use of the previous patch that makes the garbage collector perform RCU
synchronisation before destroying defunct keys.  Key pointers can now be
replaced in-place without creating a new keyring payload and replacing the
whole thing as the discarded keys will not be destroyed until all currently
held RCU read locks are released.

If the keyring payload space needs to be expanded or contracted, then a
replacement will still need allocating, and the original will still have to be
freed by RCU.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
Jeff Layton 9f6ed2ca25 keys: add a "logon" key type
For CIFS, we want to be able to store NTLM credentials (aka username
and password) in the keyring. We do not, however want to allow users
to fetch those keys back out of the keyring since that would be a
security risk.

Unfortunately, due to the nuances of key permission bits, it's not
possible to do this. We need to grant search permissions so the kernel
can find these keys, but that also implies permissions to read the
payload.

Resolve this by adding a new key_type. This key type is essentially
the same as key_type_user, but does not define a .read op. This
prevents the payload from ever being visible from userspace. This
key type also vets the description to ensure that it's "qualified"
by checking to ensure that it has a ':' in it that is preceded by
other characters.

Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
2012-01-17 22:39:40 -06:00
Roberto Sassu 4e561d388f encrypted-keys: add key format support
This patch introduces a new parameter, called 'format', that defines the
format of data stored by encrypted keys. The 'default' format identifies
encrypted keys containing only the symmetric key, while other formats can
be defined to support additional information. The 'format' parameter is
written in the datablob produced by commands 'keyctl print' or
'keyctl pipe' and is integrity protected by the HMAC.

Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Acked-by: Gianluca Ramunno <ramunno@polito.it>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2011-06-27 09:10:45 -04:00
Tommi Virtanen 4b2a58abd1 libceph: Create a new key type "ceph".
This allows us to use existence of the key type as a feature test,
from userspace.

Signed-off-by: Tommi Virtanen <tommi.virtanen@dreamhost.com>
Signed-off-by: Sage Weil <sage@newdream.net>
2011-03-29 12:11:24 -07:00
Anton Blanchard f009918a1c RxRPC: Fix v1 keys
commit 339412841d (RxRPC: Allow key payloads to be passed in XDR form)
broke klog for me. I notice the v1 key struct had a kif_version field
added:

-struct rxkad_key {
-       u16     security_index;         /* RxRPC header security index */
-       u16     ticket_len;             /* length of ticket[] */
-       u32     expiry;                 /* time at which expires */
-       u32     kvno;                   /* key version number */
-       u8      session_key[8];         /* DES session key */
-       u8      ticket[0];              /* the encrypted ticket */
-};

+struct rxrpc_key_data_v1 {
+       u32             kif_version;            /* 1 */
+       u16             security_index;
+       u16             ticket_length;
+       u32             expiry;                 /* time_t */
+       u32             kvno;
+       u8              session_key[8];
+       u8              ticket[0];
+};

However the code in rxrpc_instantiate strips it away:

	data += sizeof(kver);
	datalen -= sizeof(kver);

Removing kif_version fixes my problem.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-03-02 22:18:53 -08:00
Mimi Zohar 7e70cb4978 keys: add new key-type encrypted
Define a new kernel key-type called 'encrypted'. Encrypted keys are kernel
generated random numbers, which are encrypted/decrypted with a 'trusted'
symmetric key. Encrypted keys are created/encrypted/decrypted in the kernel.
Userspace only ever sees/stores encrypted blobs.

Changelog:
- bug fix: replaced master-key rcu based locking with semaphore
  (reported by David Howells)
- Removed memset of crypto_shash_digest() digest output
- Replaced verification of 'key-type:key-desc' using strcspn(), with
  one based on string constants.
- Moved documentation to Documentation/keys-trusted-encrypted.txt
- Replace hash with shash (based on comments by David Howells)
- Make lengths/counts size_t where possible (based on comments by David Howells)
  Could not convert most lengths, as crypto expects 'unsigned int'
  (size_t: on 32 bit is defined as unsigned int, but on 64 bit is unsigned long)
- Add 'const' where possible (based on comments by David Howells)
- allocate derived_buf dynamically to support arbitrary length master key
  (fixed by Roberto Sassu)
- wait until late_initcall for crypto libraries to be registered
- cleanup security/Kconfig
- Add missing 'update' keyword (reported/fixed by Roberto Sassu)
- Free epayload on failure to create key (reported/fixed by Roberto Sassu)
- Increase the data size limit (requested by Roberto Sassu)
- Crypto return codes are always 0 on success and negative on failure,
  remove unnecessary tests.
- Replaced kzalloc() with kmalloc()

Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: David Safford <safford@watson.ibm.com>
Reviewed-by: Roberto Sassu <roberto.sassu@polito.it>
Signed-off-by: James Morris <jmorris@namei.org>
2010-11-29 08:55:29 +11:00
Mimi Zohar d00a1c72f7 keys: add new trusted key-type
Define a new kernel key-type called 'trusted'.  Trusted keys are random
number symmetric keys, generated and RSA-sealed by the TPM.  The TPM
only unseals the keys, if the boot PCRs and other criteria match.
Userspace can only ever see encrypted blobs.

Based on suggestions by Jason Gunthorpe, several new options have been
added to support additional usages.

The new options are:
migratable=  designates that the key may/may not ever be updated
             (resealed under a new key, new pcrinfo or new auth.)

pcrlock=n    extends the designated PCR 'n' with a random value,
             so that a key sealed to that PCR may not be unsealed
             again until after a reboot.

keyhandle=   specifies the sealing/unsealing key handle.

keyauth=     specifies the sealing/unsealing key auth.

blobauth=    specifies the sealed data auth.

Implementation of a kernel reserved locality for trusted keys will be
investigated for a possible future extension.

Changelog:
- Updated and added examples to Documentation/keys-trusted-encrypted.txt
- Moved generic TPM constants to include/linux/tpm_command.h
  (David Howell's suggestion.)
- trusted_defined.c: replaced kzalloc with kmalloc, added pcrlock failure
  error handling, added const qualifiers where appropriate.
- moved to late_initcall
- updated from hash to shash (suggestion by David Howells)
- reduced worst stack usage (tpm_seal) from 530 to 312 bytes
- moved documentation to Documentation directory (suggestion by David Howells)
- all the other code cleanups suggested by David Howells
- Add pcrlock CAP_SYS_ADMIN dependency (based on comment by Jason Gunthorpe)
- New options: migratable, pcrlock, keyhandle, keyauth, blobauth (based on
  discussions with Jason Gunthorpe)
- Free payload on failure to create key(reported/fixed by Roberto Sassu)
- Updated Kconfig and other descriptions (based on Serge Hallyn's suggestion)
- Replaced kzalloc() with kmalloc() (reported by Serge Hallyn)

Signed-off-by: David Safford <safford@watson.ibm.com>
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-11-29 08:55:25 +11:00
Wang Lei 1a4240f476 DNS: Separate out CIFS DNS Resolver code
Separate out the DNS resolver key type from the CIFS filesystem into its own
module so that it can be made available for general use, including the AFS
filesystem module.

This facility makes it possible for the kernel to upcall to userspace to have
it issue DNS requests, package up the replies and present them to the kernel
in a useful form.  The kernel is then able to cache the DNS replies as keys
can be retained in keyrings.

Resolver keys are of type "dns_resolver" and have a case-insensitive
description that is of the form "[<type>:]<domain_name>".  The optional <type>
indicates the particular DNS lookup and packaging that's required.  The
<domain_name> is the query to be made.

If <type> isn't given, a basic hostname to IP address lookup is made, and the
result is stored in the key in the form of a printable string consisting of a
comma-separated list of IPv4 and IPv6 addresses.

This key type is supported by userspace helpers driven from /sbin/request-key
and configured through /etc/request-key.conf.  The cifs.upcall utility is
invoked for UNC path server name to IP address resolution.

The CIFS functionality is encapsulated by the dns_resolve_unc_to_ip() function,
which is used to resolve a UNC path to an IP address for CIFS filesystem.  This
part remains in the CIFS module for now.

See the added Documentation/networking/dns_resolver.txt for more information.

Signed-off-by: Wang Lei <wang840925@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-08-05 17:17:51 +00:00
David Howells 4e36a95e59 RxRPC: Use uX/sX rather than uintX_t/intX_t types
Use uX rather than uintX_t types for consistency.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-16 00:01:13 -07:00
David Howells 99455153d0 RxRPC: Parse security index 5 keys (Kerberos 5)
Parse RxRPC security index 5 type keys (Kerberos 5 tokens).

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-15 02:44:33 -07:00
David Howells 339412841d RxRPC: Allow key payloads to be passed in XDR form
Allow add_key() and KEYCTL_INSTANTIATE to accept key payloads in XDR form as
described by openafs-1.4.10/src/auth/afs_token.xg.  This provides a way of
passing kaserver, Kerberos 4, Kerberos 5 and GSSAPI keys from userspace, and
allows for future expansion.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-15 02:44:23 -07:00
David Howells e9e349b051 KEYS: Disperse linux/key_ui.h
Disperse the bits of linux/key_ui.h as the reason they were put here (keyfs)
didn't get in.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:13 +11:00
Robert P. J. Day dd89db1df9 KEYS: Fix the comment to match the file name in rxrpc-type.h.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
2008-04-21 22:43:55 +00:00
David Howells 76181c134f KEYS: Make request_key() and co fundamentally asynchronous
Make request_key() and co fundamentally asynchronous to make it easier for
NFS to make use of them.  There are now accessor functions that do
asynchronous constructions, a wait function to wait for construction to
complete, and a completion function for the key type to indicate completion
of construction.

Note that the construction queue is now gone.  Instead, keys under
construction are linked in to the appropriate keyring in advance, and that
anyone encountering one must wait for it to be complete before they can use
it.  This is done automatically for userspace.

The following auxiliary changes are also made:

 (1) Key type implementation stuff is split from linux/key.h into
     linux/key-type.h.

 (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
     not need to call key_instantiate_and_link() directly.

 (3) Adjust the debugging macros so that they're -Wformat checked even if
     they are disabled, and make it so they can be enabled simply by defining
     __KDEBUG to be consistent with other code of mine.

 (3) Documentation.

[alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:57 -07:00
David Howells 17926a7932 [AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve
answers to AFS clients.  KerberosIV security is fully supported.  The patches
and some example test programs can be found in:

	http://people.redhat.com/~dhowells/rxrpc/

This will eventually replace the old implementation of kernel-only RxRPC
currently resident in net/rxrpc/.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-26 15:48:28 -07:00
David Howells 31204ed925 [PATCH] keys: discard the contents of a key on revocation
Cause the keys linked to a keyring to be unlinked from it when revoked and it
causes the data attached to a user-defined key to be discarded when revoked.

This frees up most of the quota a key occupied at that point, rather than
waiting for the key to actually be destroyed.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-26 09:58:18 -07:00
David Howells 8d9067bda9 [PATCH] Keys: Remove key duplication
Remove the key duplication stuff since there's nothing that uses it, no way
to get at it and it's awkward to deal with for LSM purposes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:33:29 -08:00
David Howells 2aa349f6e3 [PATCH] Keys: Export user-defined keyring operations
Export user-defined key operations so that those who wish to define their
own key type based on the user-defined key operations may do so (as has
been requested).

The header file created has been placed into include/keys/user-type.h, thus
creating a directory where other key types may also be placed.  Any
objections to doing this?

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:22 -08:00