Remove PDE_DATA() completely and replace it with pde_data().
[akpm@linux-foundation.org: fix naming clash in drivers/nubus/proc.c]
[akpm@linux-foundation.org: now fix it properly]
Link: https://lkml.kernel.org/r/20211124081956.87711-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a tracepoint to log the cell refcount and active user count and pass in
a reason code through various functions that manipulate these counters.
Additionally, a helper function, afs_see_cell(), is provided to log
interesting places that deal with a cell without actually doing any
accounting directly.
Signed-off-by: David Howells <dhowells@redhat.com>
Management of the lifetime of afs_cell struct has some problems due to the
usage counter being used to determine whether objects of that type are in
use in addition to whether anyone might be interested in the structure.
This is made trickier by cell objects being cached for a period of time in
case they're quickly reused as they hold the result of a setup process that
may be slow (DNS lookups, AFS RPC ops).
Problems include the cached root volume from alias resolution pinning its
parent cell record, rmmod occasionally hanging and occasionally producing
assertion failures.
Fix this by splitting the count of active users from the struct reference
count. Things then work as follows:
(1) The cell cache keeps +1 on the cell's activity count and this has to
be dropped before the cell can be removed. afs_manage_cell() tries to
exchange the 1 to a 0 with the cells_lock write-locked, and if
successful, the record is removed from the net->cells.
(2) One struct ref is 'owned' by the activity count. That is put when the
active count is reduced to 0 (final_destruction label).
(3) A ref can be held on a cell whilst it is queued for management on a
work queue without confusing the active count. afs_queue_cell() is
added to wrap this.
(4) The queue's ref is dropped at the end of the management. This is
split out into a separate function, afs_manage_cell_work().
(5) The root volume record is put after a cell is removed (at the
final_destruction label) rather then in the RCU destruction routine.
(6) Volumes hold struct refs, but aren't active users.
(7) Both counts are displayed in /proc/net/afs/cells.
There are some management function changes:
(*) afs_put_cell() now just decrements the refcount and triggers the RCU
destruction if it becomes 0. It no longer sets a timer to have the
manager do this.
(*) afs_use_cell() and afs_unuse_cell() are added to increase and decrease
the active count. afs_unuse_cell() sets the management timer.
(*) afs_queue_cell() is added to queue a cell with approprate refs.
There are also some other fixes:
(*) Don't let /proc/net/afs/cells access a cell's vllist if it's NULL.
(*) Make sure that candidate cells in lookups are properly destroyed
rather than being simply kfree'd. This ensures the bits it points to
are destroyed also.
(*) afs_dec_cells_outstanding() is now called in cell destruction rather
than at "final_destruction". This ensures that cell->net is still
valid to the end of the destructor.
(*) As a consequence of the previous two changes, move the increment of
net->cells_outstanding that was at the point of insertion into the
tree to the allocation routine to correctly balance things.
Fixes: 989782dcdc ("afs: Overhaul cell database management")
Signed-off-by: David Howells <dhowells@redhat.com>
Don't use the running state for VL server probes to make decisions about
which server to use as the state is cleared at the start of a probe and
intermediate values might also be misleading.
Instead, add a separate 'latest known' rtt in the afs_vlserver struct and a
flag to indicate if the server is known to be responding and update these
as and when we know what to change them to.
Fixes: 3bf0fb6f33 ("afs: Probe multiple fileservers simultaneously")
Signed-off-by: David Howells <dhowells@redhat.com>
Convert various bitfields in afs_vlserver::probe to a mask and then expose
this and some other bits of information through /proc/net/afs/<cell>/vlservers
to make it easier to debug VL server communication issues.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix afs_put_sysnames() to actually free the specified afs_sysnames
object after its reference count has been decreased to zero and
its contents have been released.
Fixes: 6f8880d8e6 ("afs: Implement @sys substitution handling")
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Display more information about the state of a server record, including the
flags, rtt and break counter plus the probe state for each server in
/proc/net/afs/servers.
Rearrange the server flags a bit to make them easier to read at a glance in
the proc file.
Signed-off-by: David Howells <dhowells@redhat.com>
Reorganise afs_volume objects such that they're in a tree keyed on volume
ID, rooted at on an afs_cell object rather than being in multiple trees,
each of which is rooted on an afs_server object.
afs_server structs become per-cell and acquire a pointer to the cell.
The process of breaking a callback then starts with finding the server by
its network address, following that to the cell and then looking up each
volume ID in the volume tree.
This is simpler than the afs_vol_interest/afs_cb_interest N:M mapping web
and allows those structs and the code for maintaining them to be simplified
or removed.
It does make a couple of things a bit more tricky, though:
(1) Operations now start with a volume, not a server, so there can be more
than one answer as to whether or not the server we'll end up using
supports the FS.InlineBulkStatus RPC.
(2) CB RPC operations that specify the server UUID. There's still a tree
of servers by UUID on the afs_net struct, but the UUIDs in it aren't
guaranteed unique.
Signed-off-by: David Howells <dhowells@redhat.com>
Put in the first phase of cell alias detection. This part handles alias
detection for cells that have root.cell volumes (which is expected to be
likely).
When a cell becomes newly active, it is probed for its root.cell volume,
and if it has one, this volume is compared against other root.cell volumes
to find out if the list of fileserver UUIDs have any in common - and if
that's the case, do the address lists of those fileservers have any
addresses in common. If they do, the new cell is adjudged to be an alias
of the old cell and the old cell is used instead.
Comparing is aided by the server list in struct afs_server_list being
sorted in UUID order and the addresses in the fileserver address lists
being sorted in address order.
The cell then retains the afs_volume object for the root.cell volume, even
if it's not mounted for future alias checking.
This necessary because:
(1) Whilst fileservers have UUIDs that are meant to be globally unique, in
practice they are not because cells get cloned without changing the
UUIDs - so afs_server records need to be per cell.
(2) Sometimes the DNS is used to make cell aliases - but if we don't know
they're the same, we may end up with multiple superblocks and multiple
afs_server records for the same thing, impairing our ability to
deliver callback notifications of third party changes
(3) The fileserver RPC API doesn't contain the cell name, so it can't tell
us which cell it's notifying and can't see that a change made to to
one cell should notify the same client that's also accessed as the
other cell.
Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Show more information in /proc/net/afs/servers to make it easier to see
what's going on with the server probing.
Signed-off-by: David Howells <dhowells@redhat.com>
Split the usage count on the afs_server struct to have an active count that
registers who's actually using it separately from the reference count on
the object.
This allows a future patch to dispatch polling probes without advancing the
"unuse" time into the future each time we emit a probe, which would
otherwise prevent unused server records from expiring.
Included in this:
(1) The latter part of afs_destroy_server() in which the RCU destruction
of afs_server objects is invoked and the outstanding server count is
decremented is split out into __afs_put_server().
(2) afs_put_server() now calls __afs_put_server() rather then setting the
management timer.
(3) The calls begun by afs_fs_give_up_all_callbacks() and
afs_fs_get_capabilities() can now take a ref on the server record, so
afs_destroy_server() can just drop its ref and needn't wait for the
completion of these calls. They'll put the ref when they're done.
(4) Because of (3), afs_fs_probe_done() no longer needs to wake up
afs_destroy_server() with server->probe_outstanding.
(5) afs_gc_servers can be simplified. It only needs to check if
server->active is 0 rather than playing games with the refcount.
(6) afs_manage_servers() can propose a server for gc if usage == 0 rather
than if ref == 1. The gc is effected by (5).
Signed-off-by: David Howells <dhowells@redhat.com>
Show the name of each volume in /proc/net/afs/<cell>/volumes to make it
easier to work out the name corresponding to a volume ID. This makes it
easier to work out which mounts in /proc/mounts correspond to which volume
ID.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fix it such that afs_cell records always have a VL server list record
attached, even if it's a dummy one, so that various checks can be removed.
Signed-off-by: David Howells <dhowells@redhat.com>
Send probes to all the unprobed fileservers in a fileserver list on all
addresses simultaneously in an attempt to find out the fastest route whilst
not getting stuck for 20s on any server or address that we don't get a
reply from.
This alleviates the problem whereby attempting to access a new server can
take a long time because the rotation algorithm ends up rotating through
all servers and addresses until it finds one that responds.
Signed-off-by: David Howells <dhowells@redhat.com>
Increase the sizes of the volume ID to 64 bits and the vnode ID (inode
number equivalent) to 96 bits to allow the support of YFS.
This requires the iget comparator to check the vnode->fid rather than i_ino
and i_generation as i_ino is not sufficiently capacious. It also requires
this data to be placed into the vnode cache key for fscache.
For the moment, just discard the top 32 bits of the vnode ID when returning
it though stat.
Signed-off-by: David Howells <dhowells@redhat.com>
Currently the TTL on VL server and address lists isn't set in all
circumstances and may be set to poor choices in others, since the TTL is
derived from the SRV/AFSDB DNS record if and when available.
Fix the TTL by limiting the range to a minimum and maximum from the current
time. At some point these can be made into sysctl knobs. Further, use the
TTL we obtained from the upcall to set the expiry on negative results too;
in future a mechanism can be added to force reloading of such data.
Signed-off-by: David Howells <dhowells@redhat.com>
Track VL servers as independent entities rather than lumping all their
addresses together into one set and implement server-level rotation by:
(1) Add the concept of a VL server list, where each server has its own
separate address list. This code is similar to the FS server list.
(2) Use the DNS resolver to retrieve a set of servers and their associated
addresses, ports, preference and weight ratings.
(3) In the case of a legacy DNS resolver or an address list given directly
through /proc/net/afs/cells, create a list containing just a dummy
server record and attach all the addresses to that.
(4) Implement a simple rotation policy, for the moment ignoring the
priorities and weights assigned to the servers.
(5) Show the address list through /proc/net/afs/<cell>/vlservers. This
also displays the source and status of the data as indicated by the
upcall.
Signed-off-by: David Howells <dhowells@redhat.com>
Access to the list of cells by /proc/net/afs/cells has a couple of
problems:
(1) It should be checking against SEQ_START_TOKEN for the keying the
header line.
(2) It's only holding the RCU read lock, so it can't just walk over the
list without following the proper RCU methods.
Fix these by using an hlist instead of an ordinary list and using the
appropriate accessor functions to follow it with RCU.
Since the code that adds a cell to the list must also necessarily change,
sort the list on insertion whilst we're at it.
Fixes: 989782dcdc ("afs: Overhaul cell database management")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fix the cell specification mechanism to allow cells to be pre-created
without having to specify at least one address (the addresses will be
upcalled for).
This allows the cell information preload service to avoid the need to issue
loads of DNS lookups during boot to get the addresses for each cell (500+
lookups for the 'standard' cell list[*]). The lookups can be done later as
each cell is accessed through the filesystem.
Also remove the print statement that prints a line every time a new cell is
added.
[*] There are 144 cells in the list. Each cell is first looked up for an
SRV record, and if that fails, for an AFSDB record. These get a list
of server names, each of which then has to be looked up to get the
addresses for that server. E.g.:
dig srv _afs3-vlserver._udp.grand.central.org
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show all of a server's addresses in /proc/fs/afs/servers, placing the
second plus addresses on padded lines of their own. The current address is
marked with a star.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement network namespacing within AFS, but don't yet let mounts occur
outside the init namespace. An additional patch will be required propagate
the network namespace across automounts.
Signed-off-by: David Howells <dhowells@redhat.com>
The afs_net::ws_cell member is sometimes used under RCU conditions from
within an seq-readlock. It isn't, however, marked __rcu and it isn't set
using the proper RCU barrier-imposing functions.
Fix this by annotating it with __rcu and using appropriate barriers to
make sure accesses are correctly ordered.
Without this, the code can produce the following warning:
>> fs/afs/proc.c:151:24: sparse: incompatible types in comparison expression (different address spaces)
Fixes: f044c8847b ("afs: Lay the groundwork for supporting network namespaces")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Rearrange fs/afs/proc.c to move the show routines up to the top of each
block so the order is show, iteration, ops, file ops, fops.
Signed-off-by: David Howells <dhowells@redhat.com>
In fs/afs/proc.c, move functions that create and remove /proc files to the
end of the source file as a first stage in getting rid of all the forward
declarations.
Signed-off-by: David Howells <dhowells@redhat.com>
Use remove_proc_subtree to remove the whole subtree on cleanup, and
unwind the registration loop into individual calls. Switch to use
proc_create_seq where applicable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add statistics to /proc/fs/afs/stats for data transfer RPC operations. New
lines are added that look like:
file-rd : n=55794 nb=10252282150
file-wr : n=9789 nb=3247763645
where n= indicates the number of ops completed and nb= indicates the number
of bytes successfully transferred. file-rd is the counts for read/fetch
operations and file-wr the counts for write/store operations.
Note that directory and symlink downloading are included in the file-rd
stats at the moment.
Signed-off-by: David Howells <dhowells@redhat.com>
Locally edit the contents of an AFS directory upon a successful inode
operation that modifies that directory (such as mkdir, create and unlink)
so that we can avoid the current practice of re-downloading the directory
after each change.
This is viable provided that the directory version number we get back from
the modifying RPC op is exactly incremented by 1 from what we had
previously. The data in the directory contents is in a defined format that
we have to parse locally to perform lookups and readdir, so modifying isn't
a problem.
If the edit fails, we just clear the VALID flag on the directory and it
will be reloaded next time it is needed.
Signed-off-by: David Howells <dhowells@redhat.com>
AFS directories are structured blobs that are downloaded just like files
and then parsed by the lookup and readdir code and, as such, are currently
handled in the pagecache like any other file, with the entire directory
content being thrown away each time the directory changes.
However, since the blob is a known structure and since the data version
counter on a directory increases by exactly one for each change committed
to that directory, we can actually edit the directory locally rather than
fetching it from the server after each locally-induced change.
What we can't do, though, is mix data from the server and data from the
client since the server is technically at liberty to rearrange or compress
a directory if it sees fit, provided it updates the data version number
when it does so and breaks the callback (ie. sends a notification).
Further, lookup with lookup-ahead, readdir and, when it arrives, local
editing are likely want to scan the whole of a directory.
So directory handling needs to be improved to maintain the coherency of the
directory blob prior to permitting local directory editing.
To this end:
(1) If any directory page gets discarded, invalidate and reread the entire
directory.
(2) If readpage notes that if when it fetches a single page that the
version number has changed, the entire directory is flagged for
invalidation.
(3) Read as much of the directory in one go as we can.
Note that this removes local caching of directories in fscache for the
moment as we can't pass the pages to fscache_read_or_alloc_pages() since
page->lru is in use by the LRU.
Signed-off-by: David Howells <dhowells@redhat.com>
Introduce a proc file that displays a bunch of statistics for the AFS
filesystem in the current network namespace.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement @cell substitution handling such that if @cell is seen as a name
in a dynamic root mount, then the name of the root cell for that network
namespace will be substituted for @cell during lookup.
The substitution of @cell for the current net namespace is set by writing
the cell name to /proc/fs/afs/rootcell. The value can be obtained by
reading the file.
For example:
# mount -t afs none /kafs -o dyn
# echo grand.central.org >/proc/fs/afs/rootcell
# ls /kafs/@cell
archive/ cvs/ doc/ local/ project/ service/ software/ user/ www/
# cat /proc/fs/afs/rootcell
grand.central.org
Signed-off-by: David Howells <dhowells@redhat.com>
Implement the AFS feature by which @sys at the end of a pathname component
may be substituted for one of a list of values, typically naming the
operating system. Up to 16 alternatives may be specified and these are
tried in turn until one works. Each network namespace has[*] a separate
independent list.
Upon creation of a new network namespace, the list of values is
initialised[*] to a single OpenAFS-compatible string representing arch type
plus "_linux26". For example, on x86_64, the sysname is "amd64_linux26".
[*] Or will, once network namespace support is finalised in kAFS.
The list may be set by:
# for i in foo bar linux-x86_64; do echo $i; done >/proc/fs/afs/sysname
for which separate writes to the same fd are amalgamated and applied on
close. The LF character may be used as a separator to specify multiple
items in the same write() call.
The list may be cleared by:
# echo >/proc/fs/afs/sysname
and read by:
# cat /proc/fs/afs/sysname
foo
bar
linux-x86_64
Signed-off-by: David Howells <dhowells@redhat.com>
AFS cells that are added or set as the workstation cell through /proc are
pinned against removal by setting the AFS_CELL_FL_NO_GC flag on them and
taking a ref. The ref should be only taken if the flag wasn't already set.
Fix this by making it conditional.
Without this an assertion failure will occur during module removal
indicating that the refcount is too elevated.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix warnings raised by checker, including:
(*) Warnings raised by unequal comparison for the purposes of sorting,
where the endianness doesn't matter:
fs/afs/addr_list.c:246:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:246:30: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:248:21: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:248:49: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:283:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:283:30: warning: restricted __be16 degrades to integer
(*) afs_set_cb_interest() is not actually used and can be removed.
(*) afs_cell_gc_delay() should be provided with a sysctl.
(*) afs_cell_destroy() needs to use rcu_access_pointer() to read
cell->vl_addrs.
(*) afs_init_fs_cursor() should be static.
(*) struct afs_vnode::permit_cache needs to be marked __rcu.
(*) afs_server_rcu() needs to use rcu_access_pointer().
(*) afs_destroy_server() should use rcu_access_pointer() on
server->addresses as the server object is no longer accessible.
(*) afs_find_server() casts __be16/__be32 values to int in order to
directly compare them for the purpose of finding a match in a list,
but is should also annotate the cast with __force to avoid checker
warnings.
(*) afs_check_permit() accesses vnode->permit_cache outside of the RCU
readlock, though it doesn't then access the value; the extraneous
access is deleted.
False positives:
(*) Conditional locking around the code in xdr_decode_AFSFetchStatus. This
can be dealt with in a separate patch.
fs/afs/fsclient.c:148:9: warning: context imbalance in 'xdr_decode_AFSFetchStatus' - different lock contexts for basic block
(*) Incorrect handling of seq-retry lock context balance:
fs/afs/inode.c:455:38: warning: context imbalance in 'afs_getattr' - different
lock contexts for basic block
fs/afs/server.c:52:17: warning: context imbalance in 'afs_find_server' - different lock contexts for basic block
fs/afs/server.c:128:17: warning: context imbalance in 'afs_find_server_by_uuid' - different lock contexts for basic block
Errors:
(*) afs_lookup_cell_rcu() needs to break out of the seq-retry loop, not go
round again if it successfully found the workstation cell.
(*) Fix UUID decode in afs_deliver_cb_probe_uuid().
(*) afs_cache_permit() has a missing rcu_read_unlock() before one of the
jumps to the someone_else_changed_it label. Move the unlock to after
the label.
(*) afs_vl_get_addrs_u() is using ntohl() rather than htonl() when
encoding to XDR.
(*) afs_deliver_yfsvl_get_endpoints() is using htonl() rather than ntohl()
when decoding from XDR.
Signed-off-by: David Howells <dhowells@redhat.com>
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
Add an RCU replaceable address list structure to hold a list of server
addresses. The list also holds the
To this end:
(1) A cell's VL server address list can be loaded directly via insmod or
echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB
or SRV records.
(2) Anyone wanting to use a cell's VL server address must wait until the
cell record comes online and has tried to obtain some addresses.
(3) An FS server's address list, for the moment, has a single entry that
is the key to the server list. This will change in the future when a
server is instead keyed on its UUID and the VL.GetAddrsU operation is
used.
(4) An 'address cursor' concept is introduced to handle iteration through
the address list. This is passed to the afs_make_call() as, in the
future, stuff (such as abort code) that doesn't outlast the call will
be returned in it.
In the future, we might want to annotate the list with information about
how each address fares. We might then want to propagate such annotations
over address list replacement.
Whilst we're at it, we allow IPv6 addresses to be specified in
colon-delimited lists by enclosing them in square brackets.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul the way that the in-kernel AFS client keeps track of cells in the
following manner:
(1) Cells are now held in an rbtree to make walking them quicker and RCU
managed (though this is probably overkill).
(2) Cells now have a manager work item that:
(A) Looks after fetching and refreshing the VL server list.
(B) Manages cell record lifetime, including initialising and
destruction.
(B) Manages cell record caching whereby threads are kept around for a
certain time after last use and then destroyed.
(C) Manages the FS-Cache index cookie for a cell. It is not permitted
for a cookie to be in use twice, so we have to be careful to not
allow a new cell record to exist at the same time as an old record
of the same name.
(3) Each AFS network namespace is given a manager work item that manages
the cells within it, maintaining a single timer to prod cells into
updating their DNS records.
This uses the reduce_timer() facility to make the timer expire at the
soonest timed event that needs happening.
(4) When a module is being unloaded, cells and cell managers are now
counted out using dec_after_work() to make sure the module text is
pinned until after the data structures have been cleaned up.
(5) Each cell's VL server list is now protected by a seqlock rather than a
semaphore.
Signed-off-by: David Howells <dhowells@redhat.com>
Allow VL server specifications to be given IPv6 addresses as well as IPv4
addresses, for example as:
echo add foo.org 1111:2222:3333:0:4444:5555:6666:7777 >/proc/fs/afs/cells
Note that ':' is the expected separator for separating IPv4 addresses, but
if a ',' is detected or no '.' is detected in the string, the delimiter is
switched to ','.
This also works with DNS AFSDB or SRV record strings fetched by upcall from
userspace.
Signed-off-by: David Howells <dhowells@redhat.com>
Keep and pass sockaddr_rxrpc addresses around rather than keeping and
passing in_addr addresses to allow for the use of IPv6 and non-standard
port numbers in future.
This also allows the port and service_id fields to be removed from the
afs_call struct.
Signed-off-by: David Howells <dhowells@redhat.com>
Push the network namespace pointer to more places in AFS, including the
afs_server structure (which doesn't hold a ref on the netns).
In particular, afs_put_cell() now takes requires a net ns parameter so that
it can safely alter the netns after decrementing the cell usage count - the
cell will be deallocated by a background thread after being cached for a
period, which means that it's not safe to access it after reducing its
usage count.
Signed-off-by: David Howells <dhowells@redhat.com>
Lay the groundwork for supporting network namespaces (netns) to the AFS
filesystem by moving various global features to a network-namespace struct
(afs_net) and providing an instance of this as a temporary global variable
that everything uses via accessor functions for the moment.
The following changes have been made:
(1) Store the netns in the superblock info. This will be obtained from
the mounter's nsproxy on a manual mount and inherited from the parent
superblock on an automount.
(2) The cell list is made per-netns. It can be viewed through
/proc/net/afs/cells and also be modified by writing commands to that
file.
(3) The local workstation cell is set per-ns in /proc/net/afs/rootcell.
This is unset by default.
(4) The 'rootcell' module parameter, which sets a cell and VL server list
modifies the init net namespace, thereby allowing an AFS root fs to be
theoretically used.
(5) The volume location lists and the file lock manager are made
per-netns.
(6) The AF_RXRPC socket and associated I/O bits are made per-ns.
The various workqueues remain global for the moment.
Changes still to be made:
(1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced
from the old name.
(2) A per-netns subsys needs to be registered for AFS into which it can
store its per-netns data.
(3) Rather than the AF_RXRPC socket being opened on module init, it needs
to be opened on the creation of a superblock in that netns.
(4) The socket needs to be closed when the last superblock using it is
destroyed and all outstanding client calls on it have been completed.
This prevents a reference loop on the namespace.
(5) It is possible that several namespaces will want to use AFS, in which
case each one will need its own UDP port. These can either be set
through /proc/net/afs/cm_port or the kernel can pick one at random.
The init_ns gets 7001 by default.
Other issues that need resolving:
(1) The DNS keyring needs net-namespacing.
(2) Where do upcalls go (eg. DNS request-key upcall)?
(3) Need something like open_socket_in_file_ns() syscall so that AFS
command line tools attempting to operate on an AFS file/volume have
their RPC calls go to the right place.
Signed-off-by: David Howells <dhowells@redhat.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A _lot_ of ->write() instances were open-coding it; some are
converted to memdup_user_nul(), a lot more remain...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Both proc files are writeable and used for configuring cells. But
there is missing correct mode flag for writeable files. Without
this patch both proc files are read only.
[ It turns out they aren't really read-only, since root can write to
them even if the write bit isn't set due to CAP_DAC_OVERRIDE ]
Signed-off-by: Pali Rohár <pali.rohar@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kill pointless method instances and don't bother with ->owner - it's
ignored for procfs files anyway, make use of remove_proc_subtree() for
removal, get rid of cell->proc_dir.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only part of proc_dir_entry the code outside of fs/proc
really cares about is PDE(inode)->data. Provide a helper
for that; static inline for now, eventually will be moved
to fs/proc, along with the knowledge of struct proc_dir_entry
layout.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Implement the ability for the root directory of a mounted AFS filesystem to
accept lookups of arbitrary directory names, to interpet the names as the names
of cells, to look the cell names up in the DNS for AFSDB records and to mount
the root.cell volume of the nominated cell on the pseudo-directory created by
lookup.
This facility is requested by passing:
-o autocell
to the mountpoint for which this is desired, usually the /afs mount.
To use this facility, a DNS upcall program is required for AFSDB records. This
can be obtained from:
http://people.redhat.com/~dhowells/afs/dns.afsdb.c
It should be compiled with -lresolv and -lkeyutils and installed as, say:
/usr/sbin/dns.afsdb
Then the following line needs to be added to /sbin/request-key.conf:
create dns_resolver afsdb:* * /usr/sbin/dns.afsdb %k
This can be tested by mounting AFS, say:
insmod dns_resolver.ko
insmod af-rxrpc.ko
insmod kafs.ko rootcell=grand.central.org
mount -t afs "#grand.central.org:root.cell." /afs -o autocell
and doing:
ls /afs/grand.central.org/
which should show:
archive/ cvs/ doc/ local/ project/ service/ software/ user/ www/
if it works.
Signed-off-by: Wang Lei <wang840925@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Make all seq_operations structs const, to help mitigate against
revectoring user-triggerable function pointers.
This is derived from the grsecurity patch, although generated from scratch
because it's simpler than extracting the changes from there.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>