Граф коммитов

728 Коммитов

Автор SHA1 Сообщение Дата
David Rientjes fd60775aea mm, thp: avoid unlikely branches for split_huge_pmd
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage.  This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.

Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Eric W. Biederman 84d77d3f06 ptrace: Don't allow accessing an undumpable mm
It is the reasonable expectation that if an executable file is not
readable there will be no way for a user without special privileges to
read the file.  This is enforced in ptrace_attach but if ptrace
is already attached before exec there is no enforcement for read-only
executables.

As the only way to read such an mm is through access_process_vm
spin a variant called ptrace_access_vm that will fail if the
target process is not being ptraced by the current process, or
the current process did not have sufficient privileges when ptracing
began to read the target processes mm.

In the ptrace implementations replace access_process_vm by
ptrace_access_vm.  There remain several ptrace sites that still use
access_process_vm as they are reading the target executables
instructions (for kernel consumption) or register stacks.  As such it
does not appear necessary to add a permission check to those calls.

This bug has always existed in Linux.

Fixes: v1.0
Cc: stable@vger.kernel.org
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-11-22 12:57:38 -06:00
Catalin Marinas fcd35857d6 lkdtm: Do not use flush_icache_range() on user addresses
The flush_icache_range() API is meant to be used on kernel addresses
only as it may not have the infrastructure (exception entries) to handle
user memory faults.

The lkdtm execute_user_location() function tests the kernel execution of
user space addresses by mmap'ing an anonymous page, copying some code
together with cache maintenance and attempting to run it. However, the
cache maintenance step may fail because of the incorrect API usage
described above. The patch changes lkdtm to use access_process_vm() for
copying the code into user space which would take care of the necessary
cache maintenance.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[kees: export access_process_vm() for module use]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-11-10 15:34:56 +01:00
Borislav Petkov 308a047c3f x86/pat, mm: Make track_pfn_insert() return void
It only returns 0 so we can save us the testing of its retval
everywhere.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: mcgrof@suse.com
Cc: dri-devel@lists.freedesktop.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Airlie <airlied@redhat.com>
Cc: dan.j.williams@intel.com
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20161026174839.rusfxkm3xt4ennhe@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-09 21:36:07 +01:00
Lorenzo Stoakes f307ab6dce mm: replace access_process_vm() write parameter with gup_flags
This removes the 'write' argument from access_process_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.

We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-19 08:31:25 -07:00
Lorenzo Stoakes 6347e8d5bc mm: replace access_remote_vm() write parameter with gup_flags
This removes the 'write' argument from access_remote_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.

We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-19 08:12:14 -07:00
Lorenzo Stoakes 442486ec10 mm: replace __access_remote_vm() write parameter with gup_flags
This removes the 'write' argument from __access_remote_vm() and replaces
it with 'gup_flags' as use of this function previously silently implied
FOLL_FORCE, whereas after this patch callers explicitly pass this flag.

We make this explicit as use of FOLL_FORCE can result in surprising
behaviour (and hence bugs) within the mm subsystem.

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-19 08:12:13 -07:00
Lorenzo Stoakes 9beae1ea89 mm: replace get_user_pages_remote() write/force parameters with gup_flags
This removes the 'write' and 'force' from get_user_pages_remote() and
replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-19 08:12:02 -07:00
Dan Williams 87744ab383 mm: fix cache mode tracking in vm_insert_mixed()
vm_insert_mixed() unlike vm_insert_pfn_prot() and vmf_insert_pfn_pmd(),
fails to check the pgprot_t it uses for the mapping against the one
recorded in the memtype tracking tree.  Add the missing call to
track_pfn_insert() to preclude cases where incompatible aliased mappings
are established for a given physical address range.

Link: http://lkml.kernel.org/r/147328717909.35069.14256589123570653697.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Michal Hocko 3f70dc38ce mm: make sure that kthreads will not refault oom reaped memory
There are only few use_mm() users in the kernel right now.  Most of them
write to the target memory but vhost driver relies on
copy_from_user/get_user from a kernel thread context.  This makes it
impossible to reap the memory of an oom victim which shares the mm with
the vhost kernel thread because it could see a zero page unexpectedly
and theoretically make an incorrect decision visible outside of the
killed task context.

To quote Michael S. Tsirkin:
: Getting an error from __get_user and friends is handled gracefully.
: Getting zero instead of a real value will cause userspace
: memory corruption.

The vhost kernel thread is bound to an open fd of the vhost device which
is not tight to the mm owner life cycle in general.  The device fd can
be inherited or passed over to another process which means that we
really have to be careful about unexpected memory corruption because
unlike for normal oom victims the result will be visible outside of the
oom victim context.

Make sure that no kthread context (users of use_mm) can ever see
corrupted data because of the oom reaper and hook into the page fault
path by checking MMF_UNSTABLE mm flag.  __oom_reap_task_mm will set the
flag before it starts unmapping the address space while the flag is
checked after the page fault has been handled.  If the flag is set then
SIGBUS is triggered so any g-u-p user will get a error code.

Regular tasks do not need this protection because all which share the mm
are killed when the mm is reaped and so the corruption will not outlive
them.

This patch shouldn't have any visible effect at this moment because the
OOM killer doesn't invoke oom reaper for tasks with mm shared with
kthreads yet.

Link: http://lkml.kernel.org/r/1472119394-11342-9-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Ingo Molnar 536e0e81e0 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 10:44:27 +02:00
Lorenzo Stoakes 38e0885465 mm: check VMA flags to avoid invalid PROT_NONE NUMA balancing
The NUMA balancing logic uses an arch-specific PROT_NONE page table flag
defined by pte_protnone() or pmd_protnone() to mark PTEs or huge page
PMDs respectively as requiring balancing upon a subsequent page fault.
User-defined PROT_NONE memory regions which also have this flag set will
not normally invoke the NUMA balancing code as do_page_fault() will send
a segfault to the process before handle_mm_fault() is even called.

However if access_remote_vm() is invoked to access a PROT_NONE region of
memory, handle_mm_fault() is called via faultin_page() and
__get_user_pages() without any access checks being performed, meaning
the NUMA balancing logic is incorrectly invoked on a non-NUMA memory
region.

A simple means of triggering this problem is to access PROT_NONE mmap'd
memory using /proc/self/mem which reliably results in the NUMA handling
functions being invoked when CONFIG_NUMA_BALANCING is set.

This issue was reported in bugzilla (issue 99101) which includes some
simple repro code.

There are BUG_ON() checks in do_numa_page() and do_huge_pmd_numa_page()
added at commit c0e7cad to avoid accidentally provoking strange
behaviour by attempting to apply NUMA balancing to pages that are in
fact PROT_NONE.  The BUG_ON()'s are consistently triggered by the repro.

This patch moves the PROT_NONE check into mm/memory.c rather than
invoking BUG_ON() as faulting in these pages via faultin_page() is a
valid reason for reaching the NUMA check with the PROT_NONE page table
flag set and is therefore not always a bug.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=99101
Reported-by: Trevor Saunders <tbsaunde@tbsaunde.org>
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-25 15:43:42 -07:00
Rik van Riel d59dc7bcfa sched/numa, mm: Revert to checking pmd/pte_write instead of VMA flags
Commit:

  4d94246699 ("mm: convert p[te|md]_mknonnuma and remaining page table manipulations")

changed NUMA balancing from _PAGE_NUMA to using PROT_NONE, and was quickly
found to introduce a regression with NUMA grouping.

It was followed up by these commits:

 53da3bc2ba ("mm: fix up numa read-only thread grouping logic")
 bea66fbd11 ("mm: numa: group related processes based on VMA flags instead of page table flags")
 b191f9b106 ("mm: numa: preserve PTE write permissions across a NUMA hinting fault")

The first of those two commits try alternate approaches to NUMA
grouping, which apparently do not work as well as looking at the PTE
write permissions.

The latter patch preserves the PTE write permissions across a NUMA
protection fault. However, it forgets to revert the condition for
whether or not to group tasks together back to what it was before
v3.19, even though the information is now preserved in the page tables
once again.

This patch brings the NUMA grouping heuristic back to what it was
before commit 4d94246699, which the changelogs of subsequent
commits suggest worked best.

We have all the information again. We should probably use it.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aarcange@redhat.com
Cc: linux-mm@kvack.org
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20160908213053.07c992a9@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-13 20:31:33 +02:00
Minchan Kim 1a8018fb4c mm: move swap-in anonymous page into active list
Every swap-in anonymous page starts from inactive lru list's head.  It
should be activated unconditionally when VM decide to reclaim because
page table entry for the page always usually has marked accessed bit.
Thus, their window size for getting a new referece is 2 * NR_inactive +
NR_active while others is NR_inactive + NR_active.

It's not fair that it has more chance to be referenced compared to other
newly allocated page which starts from active lru list's head.

Johannes:

: The page can still have a valid copy on the swap device, so prefering to
: reclaim that page over a fresh one could make sense.  But as you point
: out, having it start inactive instead of active actually ends up giving it
: *more* LRU time, and that seems to be without justification.

Rik:

: The reason newly read in swap cache pages start on the inactive list is
: that we do some amount of read-around, and do not know which pages will
: get used.
:
: However, immediately activating the ones that DO get used, like your patch
: does, is the right thing to do.

Link: http://lkml.kernel.org/r/1469762740-17860-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Vegard Nossum c5f88bd29a mm: fail prefaulting if page table allocation fails
I ran into this:

    BUG: sleeping function called from invalid context at mm/page_alloc.c:3784
    in_atomic(): 0, irqs_disabled(): 0, pid: 1434, name: trinity-c1
    2 locks held by trinity-c1/1434:
     #0:  (&mm->mmap_sem){......}, at: [<ffffffff810ce31e>] __do_page_fault+0x1ce/0x8f0
     #1:  (rcu_read_lock){......}, at: [<ffffffff81378f86>] filemap_map_pages+0xd6/0xdd0

    CPU: 0 PID: 1434 Comm: trinity-c1 Not tainted 4.7.0+ #58
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
    Call Trace:
      dump_stack+0x65/0x84
      panic+0x185/0x2dd
      ___might_sleep+0x51c/0x600
      __might_sleep+0x90/0x1a0
      __alloc_pages_nodemask+0x5b1/0x2160
      alloc_pages_current+0xcc/0x370
      pte_alloc_one+0x12/0x90
      __pte_alloc+0x1d/0x200
      alloc_set_pte+0xe3e/0x14a0
      filemap_map_pages+0x42b/0xdd0
      handle_mm_fault+0x17d5/0x28b0
      __do_page_fault+0x310/0x8f0
      trace_do_page_fault+0x18d/0x310
      do_async_page_fault+0x27/0xa0
      async_page_fault+0x28/0x30

The important bits from the above is that filemap_map_pages() is calling
into the page allocator while holding rcu_read_lock (sleeping is not
allowed inside RCU read-side critical sections).

According to Kirill Shutemov, the prefaulting code in do_fault_around()
is supposed to take care of this, but missing error handling means that
the allocation failure can go unnoticed.

We don't need to return VM_FAULT_OOM (or any other error) here, since we
can just let the normal fault path try again.

Fixes: 7267ec008b ("mm: postpone page table allocation until we have page to map")
Link: http://lkml.kernel.org/r/1469708107-11868-1-git-send-email-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Hillf Danton" <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Kirill A. Shutemov e496cf3d78 thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
For file mappings, we don't deposit page tables on THP allocation
because it's not strictly required to implement split_huge_pmd(): we can
just clear pmd and let following page faults to reconstruct the page
table.

But Power makes use of deposited page table to address MMU quirk.

Let's hide THP page cache, including huge tmpfs, under separate config
option, so it can be forbidden on Power.

We can revert the patch later once solution for Power found.

Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov 800d8c63b2 shmem: add huge pages support
Here's basic implementation of huge pages support for shmem/tmpfs.

It's all pretty streight-forward:

  - shmem_getpage() allcoates huge page if it can and try to inserd into
    radix tree with shmem_add_to_page_cache();

  - shmem_add_to_page_cache() puts the page onto radix-tree if there's
    space for it;

  - shmem_undo_range() removes huge pages, if it fully within range.
    Partial truncate of huge pages zero out this part of THP.

    This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
    behaviour. As we don't really create hole in this case,
    lseek(SEEK_HOLE) may have inconsistent results depending what
    pages happened to be allocated.

  - no need to change shmem_fault: core-mm will map an compound page as
    huge if VMA is suitable;

Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov af9e4d5f2d thp: handle file COW faults
File COW for THP is handled on pte level: just split the pmd.

It's not clear how benefitial would be allocation of huge pages on COW
faults.  And it would require some code to make them work.

I think at some point we can consider teaching khugepaged to collapse
pages in COW mappings, but allocating huge on fault is probably
overkill.

Link: http://lkml.kernel.org/r/1466021202-61880-16-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov 95ecedcd6a thp, vmstats: add counters for huge file pages
THP_FILE_ALLOC: how many times huge page was allocated and put page
cache.

THP_FILE_MAPPED: how many times file huge page was mapped.

Link: http://lkml.kernel.org/r/1466021202-61880-13-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov 1010245964 mm: introduce do_set_pmd()
With postponed page table allocation we have chance to setup huge pages.
do_set_pte() calls do_set_pmd() if following criteria met:

 - page is compound;
 - pmd entry in pmd_none();
 - vma has suitable size and alignment;

Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov dd78fedde4 rmap: support file thp
Naive approach: on mapping/unmapping the page as compound we update
->_mapcount on each 4k page.  That's not efficient, but it's not obvious
how we can optimize this.  We can look into optimization later.

PG_double_map optimization doesn't work for file pages since lifecycle
of file pages is different comparing to anon pages: file page can be
mapped again at any time.

Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov 7267ec008b mm: postpone page table allocation until we have page to map
The idea (and most of code) is borrowed again: from Hugh's patchset on
huge tmpfs[1].

Instead of allocation pte page table upfront, we postpone this until we
have page to map in hands.  This approach opens possibility to map the
page as huge if filesystem supports this.

Comparing to Hugh's patch I've pushed page table allocation a bit
further: into do_set_pte().  This way we can postpone allocation even in
faultaround case without moving do_fault_around() after __do_fault().

do_set_pte() got renamed to alloc_set_pte() as it can allocate page
table if required.

[1] http://lkml.kernel.org/r/alpine.LSU.2.11.1502202015090.14414@eggly.anvils

Link: http://lkml.kernel.org/r/1466021202-61880-10-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov bae473a423 mm: introduce fault_env
The idea borrowed from Peter's patch from patchset on speculative page
faults[1]:

Instead of passing around the endless list of function arguments,
replace the lot with a single structure so we can change context without
endless function signature changes.

The changes are mostly mechanical with exception of faultaround code:
filemap_map_pages() got reworked a bit.

This patch is preparation for the next one.

[1] http://lkml.kernel.org/r/20141020222841.302891540@infradead.org

Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov dcddffd41d mm: do not pass mm_struct into handle_mm_fault
We always have vma->vm_mm around.

Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Ebru Akagunduz 8a966ed746 mm: make swapin readahead to improve thp collapse rate
This patch makes swapin readahead to improve thp collapse rate.  When
khugepaged scanned pages, there can be a few of the pages in swap area.

With the patch THP can collapse 4kB pages into a THP when there are up
to max_ptes_swap swap ptes in a 2MB range.

The patch was tested with a test program that allocates 400B of memory,
writes to it, and then sleeps.  I force the system to swap out all.
Afterwards, the test program touches the area by writing, it skips a
page in each 20 pages of the area.

Without the patch, system did not swap in readahead.  THP rate was %65
of the program of the memory, it did not change over time.

With this patch, after 10 minutes of waiting khugepaged had collapsed
%99 of the program's memory.

[kirill.shutemov@linux.intel.com: trivial cleanup of exit path of the function]
[kirill.shutemov@linux.intel.com: __collapse_huge_page_swapin(): drop unused 'pte' parameter]
[kirill.shutemov@linux.intel.com: do not hold anon_vma lock during swap in]
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Aneesh Kumar K.V e77b0852b5 mm/mmu_gather: track page size with mmu gather and force flush if page size change
This allows an arch which needs to do special handing with respect to
different page size when flushing tlb to implement the same in mmu
gather.

Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Aneesh Kumar K.V e9d55e1570 mm: change the interface for __tlb_remove_page()
This updates the generic and arch specific implementation to return true
if we need to do a tlb flush.  That means if a __tlb_remove_page
indicate a flush is needed, the page we try to remove need to be tracked
and added again after the flush.  We need to track it because we have
already update the pte to none and we can't just loop back.

This change is done to enable us to do a tlb_flush when we try to flush
a range that consists of different page sizes.  For architectures like
ppc64, we can do a range based tlb flush and we need to track page size
for that.  When we try to remove a huge page, we will force a tlb flush
and starts a new mmu gather.

[aneesh.kumar@linux.vnet.ibm.com: mm-change-the-interface-for-__tlb_remove_page-v3]
  Link: http://lkml.kernel.org/r/1465049193-22197-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1464860389-29019-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Hugh Dickins 5a49973d71 mm: thp: refix false positive BUG in page_move_anon_rmap()
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again.  It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.

That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive.  But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).

Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.

And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.

Fixes: 0798d3c022 ("mm: thp: avoid false positive VM_BUG_ON_PAGE in page_move_anon_rmap()")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1607120444540.12528@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Kirill A. Shutemov 06d8fbc7cf Revert "mm: disable fault around on emulated access bit architecture"
This reverts commit d0834a6c2c.

After revert of 5c0a85fad9 ("mm: make faultaround produce old ptes")
faultaround doesn't have dependencies on hardware accessed bit, so let's
revert this one too.

Link: http://lkml.kernel.org/r/1465893750-44080-3-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Kirill A. Shutemov 315d09bf30 Revert "mm: make faultaround produce old ptes"
This reverts commit 5c0a85fad9.

The commit causes ~6% regression in unixbench.

Let's revert it for now and consider other solution for reclaim problem
later.

Link: http://lkml.kernel.org/r/1465893750-44080-2-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Linus Torvalds 478a1469a7 Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and use it
   similarly to how page lock is used for normal faults.  This fixes races
   between hole instantiation and read faults of the same index.
 
 - Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
   locking is implemented.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
 hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
 dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
 AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
 DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
 RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
 Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
 InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
 5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
 xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
 sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
 CXpuQFrxm69QYwNsqVu1
 =Pkd0
 -----END PGP SIGNATURE-----

Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull DAX locking updates from Ross Zwisler:
 "Filesystem DAX locking for 4.7

   - We use a bit in an exceptional radix tree entry as a lock bit and
     use it similarly to how page lock is used for normal faults.  This
     fixes races between hole instantiation and read faults of the same
     index.

   - Filesystem DAX PMD faults are disabled, and will be re-enabled when
     PMD locking is implemented"

* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  dax: Remove i_mmap_lock protection
  dax: Use radix tree entry lock to protect cow faults
  dax: New fault locking
  dax: Allow DAX code to replace exceptional entries
  dax: Define DAX lock bit for radix tree exceptional entry
  dax: Make huge page handling depend of CONFIG_BROKEN
  dax: Fix condition for filling of PMD holes
2016-05-26 20:00:28 -07:00
Minchan Kim d0834a6c2c mm: disable fault around on emulated access bit architecture
fault_around aims to reduce minor faults of file-backed pages via
speculative ahead pte mapping and relying on readahead logic.  However,
on non-HW access bit architecture the benefit is highly limited because
they should emulate the young bit with minor faults for reclaim's page
aging algorithm.  IOW, we cannot reduce minor faults on those
architectures.

I did quick a test on my ARM machine.

512M file mmap sequential every word read on eSATA drive 4 times.
stddev is stable.

  = fault_around 4096 =
  elapsed time(usec): 6747645

  = fault_around 65536 =
  elapsed time(usec): 6709263

  0.5% gain.

Even when I tested it with eMMC there is no gain because I guess with
slow storage the major fault is the dominant factor.

Also, fault_around has the side effect of shrinking slab more
aggressively and causes higher vmpressure, so if such speculation fails,
it can evict slab more which can result in page I/O (e.g., inode cache).
In the end, it would make void any benefit of fault_around.

So let's make the default "disabled" on those architectures.

Link: http://lkml.kernel.org/r/20160518014229.GB21538@bbox
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Kirill A. Shutemov 5c0a85fad9 mm: make faultaround produce old ptes
Currently, faultaround code produces young pte.  This can screw up
vmscan behaviour[1], as it makes vmscan think that these pages are hot
and not push them out on first round.

During sparse file access faultaround gets more pages mapped and all of
them are young.  Under memory pressure, this makes vmscan swap out anon
pages instead, or to drop other page cache pages which otherwise stay
resident.

Modify faultaround to produce old ptes, so they can easily be reclaimed
under memory pressure.

This can to some extend defeat the purpose of faultaround on machines
without hardware accessed bit as it will not help us with reducing the
number of minor page faults.

We may want to disable faultaround on such machines altogether, but
that's subject for separate patchset.

Minchan:
 "I tested 512M mmap sequential word read test on non-HW access bit
  system (i.e., ARM) and confirmed it doesn't increase minor fault any
  more.

  old: 4096 fault_around
  minor fault: 131291
  elapsed time: 6747645 usec

  new: 65536 fault_around
  minor fault: 131291
  elapsed time: 6709263 usec

  0.56% benefit"

[1] https://lkml.kernel.org/r/1460992636-711-1-git-send-email-vinmenon@codeaurora.org

Link: http://lkml.kernel.org/r/1463488366-47723-1-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Yongji Xie d5957d2fc2 mm: fix incorrect pfn passed to untrack_pfn() in remap_pfn_range()
We use generic hooks in remap_pfn_range() to help archs to track pfnmap
regions.  The code is something like:

  int remap_pfn_range()
  {
	...
	track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	...
	pfn -= addr >> PAGE_SHIFT;
	...
	untrack_pfn(vma, pfn, PAGE_ALIGN(size));
	...
  }

Here we can easily find the pfn is changed but not recovered before
untrack_pfn() is called.  That's incorrect.

There are no known runtime effects - this is from inspection.

Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Jan Kara 4d9a2c8746 dax: Remove i_mmap_lock protection
Currently faults are protected against truncate by filesystem specific
i_mmap_sem and page lock in case of hole page. Cow faults are protected
DAX radix tree entry locking. So there's no need for i_mmap_lock in DAX
code. Remove it.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:28:40 -06:00
Jan Kara bc2466e425 dax: Use radix tree entry lock to protect cow faults
When doing cow faults, we cannot directly fill in PTE as we do for other
faults as we rely on generic code to do proper accounting of the cowed page.
We also have no page to lock to protect against races with truncate as
other faults have and we need the protection to extend until the moment
generic code inserts cowed page into PTE thus at that point we have no
protection of fs-specific i_mmap_sem. So far we relied on using
i_mmap_lock for the protection however that is completely special to cow
faults. To make fault locking more uniform use DAX entry lock instead.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:27:49 -06:00
Andrea Arcangeli 6d0a07edd1 mm: thp: calculate the mapcount correctly for THP pages during WP faults
This will provide fully accuracy to the mapcount calculation in the
write protect faults, so page pinning will not get broken by false
positive copy-on-writes.

total_mapcount() isn't the right calculation needed in
reuse_swap_page(), so this introduces a page_trans_huge_mapcount()
that is effectively the full accurate return value for page_mapcount()
if dealing with Transparent Hugepages, however we only use the
page_trans_huge_mapcount() during COW faults where it strictly needed,
due to its higher runtime cost.

This also provide at practical zero cost the total_mapcount
information which is needed to know if we can still relocate the page
anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we
can reuse the page no matter if it's a pte or a pmd_trans_huge
triggering the fault, but we can only relocate the page anon_vma to
the local vma->anon_vma if we're sure it's only this "vma" mapping the
whole THP physical range.

Kirill A. Shutemov discovered the problem with moving the page
anon_vma to the local vma->anon_vma in a previous version of this
patch and another problem in the way page_move_anon_rmap() was called.

Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a
previous version, because reuse_swap_page must be a macro to call
page_trans_huge_mapcount from swap.h, so this uses a macro again
instead of an inline function. With this change at least it's a less
dangerous usage than it was before, because "page" is used only once
now, while with the previous code reuse_swap_page(page++) would have
called page_mapcount on page+1 and it would have increased page twice
instead of just once.

Dean Luick noticed an uninitialized variable that could result in a
rmap inefficiency for the non-THP case in a previous version.

Mike Marciniszyn said:

: Our RDMA tests are seeing an issue with memory locking that bisects to
: commit 61f5d698cc ("mm: re-enable THP")
:
: The test program registers two rather large MRs (512M) and RDMA
: writes data to a passive peer using the first and RDMA reads it back
: into the second MR and compares that data.  The sizes are chosen randomly
: between 0 and 1024 bytes.
:
: The test will get through a few (<= 4 iterations) and then gets a
: compare error.
:
: Tracing indicates the kernel logical addresses associated with the individual
: pages at registration ARE correct , the data in the "RDMA read response only"
: packets ARE correct.
:
: The "corruption" occurs when the packet crosse two pages that are not physically
: contiguous.   The second page reads back as zero in the program.
:
: It looks like the user VA at the point of the compare error no longer points to
: the same physical address as was registered.
:
: This patch totally resolves the issue!

Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Reviewed-by: Dean Luick <dean.luick@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Tested-by: Josh Collier <josh.d.collier@intel.com>
Cc: Marc Haber <mh+linux-kernel@zugschlus.de>
Cc: <stable@vger.kernel.org>	[4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 15:52:50 -07:00
Hugh Dickins 684283988f huge pagecache: mmap_sem is unlocked when truncation splits pmd
zap_pmd_range()'s CONFIG_DEBUG_VM !rwsem_is_locked(&mmap_sem) BUG() will
be invalid with huge pagecache, in whatever way it is implemented:
truncation of a hugely-mapped file to an unhugely-aligned size would
easily hit it.

(Although anon THP could in principle apply khugepaged to private file
mappings, which are not excluded by the MADV_HUGEPAGE restrictions, in
practice there's a vm_ops check which excludes them, so it never hits
this BUG() - there's no interface to "truncate" an anonymous mapping.)

We could complicate the test, to check i_mmap_rwsem also when there's a
vm_file; but my inclination was to make zap_pmd_range() more readable by
simply deleting this check.  A search has shown no report of the issue
in the years since commit e0897d75f0 ("mm, thp: print useful
information when mmap_sem is unlocked in zap_pmd_range") expanded it
from VM_BUG_ON() - though I cannot point to what commit I would say then
fixed the issue.

But there are a couple of other patches now floating around, neither yet
in the tree: let's agree to retain the check as a VM_BUG_ON_VMA(), as
Matthew Wilcox has done; but subject to a vma_is_anonymous() check, as
Kirill Shutemov has done.  And let's get this in, without waiting for
any particular huge pagecache implementation to reach the tree.

Matthew said "We can reproduce this BUG() in the current Linus tree with
DAX PMDs".

Signed-off-by: Hugh Dickins <hughd@google.com>
Tested-by: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Gerald Schaefer 28093f9f34 numa: fix /proc/<pid>/numa_maps for THP
In gather_pte_stats() a THP pmd is cast into a pte, which is wrong
because the layouts may differ depending on the architecture.  On s390
this will lead to inaccurate numa_maps accounting in /proc because of
misguided pte_present() and pte_dirty() checks on the fake pte.

On other architectures pte_present() and pte_dirty() may work by chance,
but there may be an issue with direct-access (dax) mappings w/o
underlying struct pages when HAVE_PTE_SPECIAL is set and THP is
available.  In vm_normal_page() the fake pte will be checked with
pte_special() and because there is no "special" bit in a pmd, this will
always return false and the VM_PFNMAP | VM_MIXEDMAP checking will be
skipped.  On dax mappings w/o struct pages, an invalid struct page
pointer would then be returned that can crash the kernel.

This patch fixes the numa_maps THP handling by introducing new "_pmd"
variants of the can_gather_numa_stats() and vm_normal_page() functions.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Kirill A. Shutemov ea1754a084 mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage
Mostly direct substitution with occasional adjustment or removing
outdated comments.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Michal Hocko aac4536355 mm, oom: introduce oom reaper
This patch (of 5):

This is based on the idea from Mel Gorman discussed during LSFMM 2015
and independently brought up by Oleg Nesterov.

The OOM killer currently allows to kill only a single task in a good
hope that the task will terminate in a reasonable time and frees up its
memory.  Such a task (oom victim) will get an access to memory reserves
via mark_oom_victim to allow a forward progress should there be a need
for additional memory during exit path.

It has been shown (e.g.  by Tetsuo Handa) that it is not that hard to
construct workloads which break the core assumption mentioned above and
the OOM victim might take unbounded amount of time to exit because it
might be blocked in the uninterruptible state waiting for an event (e.g.
lock) which is blocked by another task looping in the page allocator.

This patch reduces the probability of such a lockup by introducing a
specialized kernel thread (oom_reaper) which tries to reclaim additional
memory by preemptively reaping the anonymous or swapped out memory owned
by the oom victim under an assumption that such a memory won't be needed
when its owner is killed and kicked from the userspace anyway.  There is
one notable exception to this, though, if the OOM victim was in the
process of coredumping the result would be incomplete.  This is
considered a reasonable constrain because the overall system health is
more important than debugability of a particular application.

A kernel thread has been chosen because we need a reliable way of
invocation so workqueue context is not appropriate because all the
workers might be busy (e.g.  allocating memory).  Kswapd which sounds
like another good fit is not appropriate as well because it might get
blocked on locks during reclaim as well.

oom_reaper has to take mmap_sem on the target task for reading so the
solution is not 100% because the semaphore might be held or blocked for
write but the probability is reduced considerably wrt.  basically any
lock blocking forward progress as described above.  In order to prevent
from blocking on the lock without any forward progress we are using only
a trylock and retry 10 times with a short sleep in between.  Users of
mmap_sem which need it for write should be carefully reviewed to use
_killable waiting as much as possible and reduce allocations requests
done with the lock held to absolute minimum to reduce the risk even
further.

The API between oom killer and oom reaper is quite trivial.
wake_oom_reaper updates mm_to_reap with cmpxchg to guarantee only
NULL->mm transition and oom_reaper clear this atomically once it is done
with the work.  This means that only a single mm_struct can be reaped at
the time.  As the operation is potentially disruptive we are trying to
limit it to the ncessary minimum and the reaper blocks any updates while
it operates on an mm.  mm_struct is pinned by mm_count to allow parallel
exit_mmap and a race is detected by atomic_inc_not_zero(mm_users).

Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Linus Torvalds 643ad15d47 Merge branch 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 protection key support from Ingo Molnar:
 "This tree adds support for a new memory protection hardware feature
  that is available in upcoming Intel CPUs: 'protection keys' (pkeys).

  There's a background article at LWN.net:

      https://lwn.net/Articles/643797/

  The gist is that protection keys allow the encoding of
  user-controllable permission masks in the pte.  So instead of having a
  fixed protection mask in the pte (which needs a system call to change
  and works on a per page basis), the user can map a (handful of)
  protection mask variants and can change the masks runtime relatively
  cheaply, without having to change every single page in the affected
  virtual memory range.

  This allows the dynamic switching of the protection bits of large
  amounts of virtual memory, via user-space instructions.  It also
  allows more precise control of MMU permission bits: for example the
  executable bit is separate from the read bit (see more about that
  below).

  This tree adds the MM infrastructure and low level x86 glue needed for
  that, plus it adds a high level API to make use of protection keys -
  if a user-space application calls:

        mmap(..., PROT_EXEC);

  or

        mprotect(ptr, sz, PROT_EXEC);

  (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
  this special case, and will set a special protection key on this
  memory range.  It also sets the appropriate bits in the Protection
  Keys User Rights (PKRU) register so that the memory becomes unreadable
  and unwritable.

  So using protection keys the kernel is able to implement 'true'
  PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
  PROT_READ as well.  Unreadable executable mappings have security
  advantages: they cannot be read via information leaks to figure out
  ASLR details, nor can they be scanned for ROP gadgets - and they
  cannot be used by exploits for data purposes either.

  We know about no user-space code that relies on pure PROT_EXEC
  mappings today, but binary loaders could start making use of this new
  feature to map binaries and libraries in a more secure fashion.

  There is other pending pkeys work that offers more high level system
  call APIs to manage protection keys - but those are not part of this
  pull request.

  Right now there's a Kconfig that controls this feature
  (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
  (like most x86 CPU feature enablement code that has no runtime
  overhead), but it's not user-configurable at the moment.  If there's
  any serious problem with this then we can make it configurable and/or
  flip the default"

* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
  x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
  mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
  x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
  mm/core, x86/mm/pkeys: Add execute-only protection keys support
  x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
  x86/mm/pkeys: Allow kernel to modify user pkey rights register
  x86/fpu: Allow setting of XSAVE state
  x86/mm: Factor out LDT init from context init
  mm/core, x86/mm/pkeys: Add arch_validate_pkey()
  mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
  x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
  x86/mm/pkeys: Add Kconfig prompt to existing config option
  x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
  x86/mm/pkeys: Dump PKRU with other kernel registers
  mm/core, x86/mm/pkeys: Differentiate instruction fetches
  x86/mm/pkeys: Optimize fault handling in access_error()
  mm/core: Do not enforce PKEY permissions on remote mm access
  um, pkeys: Add UML arch_*_access_permitted() methods
  mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
  x86/mm/gup: Simplify get_user_pages() PTE bit handling
  ...
2016-03-20 19:08:56 -07:00
Joe Perches 1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov 3ed3a4f0dd mm: cleanup *pte_alloc* interfaces
There are few things about *pte_alloc*() helpers worth cleaning up:

 - 'vma' argument is unused, let's drop it;

 - most __pte_alloc() callers do speculative check for pmd_none(),
   before taking ptl: let's introduce pte_alloc() macro which does
   the check.

   The only direct user of __pte_alloc left is userfaultfd, which has
   different expectation about atomicity wrt pmd.

 - pte_alloc_map() and pte_alloc_map_lock() are redefined using
   pte_alloc().

[sudeep.holla@arm.com: fix build for arm64 hugetlbpage]
[sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Linus Torvalds 271ecc5253 Merge branch 'akpm' (patches from Andrew)
Merge first patch-bomb from Andrew Morton:

 - some misc things

 - ofs2 updates

 - about half of MM

 - checkpatch updates

 - autofs4 update

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (120 commits)
  autofs4: fix string.h include in auto_dev-ioctl.h
  autofs4: use pr_xxx() macros directly for logging
  autofs4: change log print macros to not insert newline
  autofs4: make autofs log prints consistent
  autofs4: fix some white space errors
  autofs4: fix invalid ioctl return in autofs4_root_ioctl_unlocked()
  autofs4: fix coding style line length in autofs4_wait()
  autofs4: fix coding style problem in autofs4_get_set_timeout()
  autofs4: coding style fixes
  autofs: show pipe inode in mount options
  kallsyms: add support for relative offsets in kallsyms address table
  kallsyms: don't overload absolute symbol type for percpu symbols
  x86: kallsyms: disable absolute percpu symbols on !SMP
  checkpatch: fix another left brace warning
  checkpatch: improve UNSPECIFIED_INT test for bare signed/unsigned uses
  checkpatch: warn on bare unsigned or signed declarations without int
  checkpatch: exclude asm volatile from complex macro check
  mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
  mm: migrate: consolidate mem_cgroup_migrate() calls
  mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
  ...
2016-03-16 11:51:08 -07:00
Matthew Wilcox 88193f7ce6 mm: use linear_page_index() in do_fault()
do_fault() assumes that PAGE_SIZE is the same as PAGE_CACHE_SIZE.  Use
linear_page_index() to calculate pgoff in the correct units.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mika Penttilä 9cb65bc3b1 mm/memory.c: make apply_to_page_range() more robust
Arm and arm64 used to trigger this BUG_ON() - this has now been fixed.

But a WARN_ON() here is sufficient to catch future buggy callers.

Signed-off-by: Mika Penttilä <mika.penttila@nextfour.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Ingo Molnar ec87e1cf7d Linux 4.5-rc7
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJW3LO0AAoJEHm+PkMAQRiGhewIAIVHA1+qSSXEHTFeuLRuYpiz
 +ptQUIjPJdakWm/XqOnwSG8SWUuD4XL6ysfNmLSZIdqXYBAPpAuwT1UA2FZhz0dN
 soZxMNleAvzHWRDFLqwjVdOVlTxS6CTTdEQNzi+3R0ZCADllsRcuj/GBIY+M8cr6
 LvxK8BnhDU+Au3gZQjaujTMO7fKG6gOq4wKz/U7RIG37A6rwW577kEfLg4ZgFwt9
 RVjsky5mrX9+4l3QFtox9ZC383P/0VZ6+vXwN2QH1/joDK4EvA8pCwsGTyjRJiqi
 fArHbS+mHyAtbPWJmDbVlQ5dkZJAqRgtWBydjQYoC16S4Bwdce2/FbhBiTgEQAo=
 =sqln
 -----END PGP SIGNATURE-----

Merge tag 'v4.5-rc7' into x86/asm, to pick up SMAP fix

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-07 09:27:30 +01:00
Andrea Arcangeli ad33bb04b2 mm: thp: fix SMP race condition between THP page fault and MADV_DONTNEED
pmd_trans_unstable()/pmd_none_or_trans_huge_or_clear_bad() were
introduced to locklessy (but atomically) detect when a pmd is a regular
(stable) pmd or when the pmd is unstable and can infinitely transition
from pmd_none() and pmd_trans_huge() from under us, while only holding
the mmap_sem for reading (for writing not).

While holding the mmap_sem only for reading, MADV_DONTNEED can run from
under us and so before we can assume the pmd to be a regular stable pmd
we need to compare it against pmd_none() and pmd_trans_huge() in an
atomic way, with pmd_trans_unstable().  The old pmd_trans_huge() left a
tiny window for a race.

Useful applications are unlikely to notice the difference as doing
MADV_DONTNEED concurrently with a page fault would lead to undefined
behavior.

[akpm@linux-foundation.org: tidy up comment grammar/layout]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-27 10:28:52 -08:00
Dave Hansen d61172b4b6 mm/core, x86/mm/pkeys: Differentiate instruction fetches
As discussed earlier, we attempt to enforce protection keys in
software.

However, the code checks all faults to ensure that they are not
violating protection key permissions.  It was assumed that all
faults are either write faults where we check PKRU[key].WD (write
disable) or read faults where we check the AD (access disable)
bit.

But, there is a third category of faults for protection keys:
instruction faults.  Instruction faults never run afoul of
protection keys because they do not affect instruction fetches.

So, plumb the PF_INSTR bit down in to the
arch_vma_access_permitted() function where we do the protection
key checks.

We also add a new FAULT_FLAG_INSTRUCTION.  This is because
handle_mm_fault() is not passed the architecture-specific
error_code where we keep PF_INSTR, so we need to encode the
instruction fetch information in to the arch-generic fault
flags.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210224.96928009@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-18 19:46:29 +01:00
Dave Hansen 1b2ee1266e mm/core: Do not enforce PKEY permissions on remote mm access
We try to enforce protection keys in software the same way that we
do in hardware.  (See long example below).

But, we only want to do this when accessing our *own* process's
memory.  If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then
tried to PTRACE_POKE a target process which just happened to have
some mprotect_pkey(pkey=6) memory, we do *not* want to deny the
debugger access to that memory.  PKRU is fundamentally a
thread-local structure and we do not want to enforce it on access
to _another_ thread's data.

This gets especially tricky when we have workqueues or other
delayed-work mechanisms that might run in a random process's context.
We can check that we only enforce pkeys when operating on our *own* mm,
but delayed work gets performed when a random user context is active.
We might end up with a situation where a delayed-work gup fails when
running randomly under its "own" task but succeeds when running under
another process.  We want to avoid that.

To avoid that, we use the new GUP flag: FOLL_REMOTE and add a
fault flag: FAULT_FLAG_REMOTE.  They indicate that we are
walking an mm which is not guranteed to be the same as
current->mm and should not be subject to protection key
enforcement.

Thanks to Jerome Glisse for pointing out this scenario.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geliang Tang <geliangtang@163.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: iommu@lists.linux-foundation.org
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-18 19:46:28 +01:00
Dave Hansen 33a709b25a mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
Today, for normal faults and page table walks, we check the VMA
and/or PTE to ensure that it is compatible with the action.  For
instance, if we get a write fault on a non-writeable VMA, we
SIGSEGV.

We try to do the same thing for protection keys.  Basically, we
try to make sure that if a user does this:

	mprotect(ptr, size, PROT_NONE);
	*ptr = foo;

they see the same effects with protection keys when they do this:

	mprotect(ptr, size, PROT_READ|PROT_WRITE);
	set_pkey(ptr, size, 4);
	wrpkru(0xffffff3f); // access disable pkey 4
	*ptr = foo;

The state to do that checking is in the VMA, but we also
sometimes have to do it on the page tables only, like when doing
a get_user_pages_fast() where we have no VMA.

We add two functions and expose them to generic code:

	arch_pte_access_permitted(pte_flags, write)
	arch_vma_access_permitted(vma, write)

These are, of course, backed up in x86 arch code with checks
against the PTE or VMA's protection key.

But, there are also cases where we do not want to respect
protection keys.  When we ptrace(), for instance, we do not want
to apply the tracer's PKRU permissions to the PTEs from the
process being traced.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20160212210219.14D5D715@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-18 09:32:44 +01:00
Ingo Molnar 3a2f2ac9b9 Merge branch 'x86/urgent' into x86/asm, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-18 09:28:03 +01:00
Dave Hansen 1e9877902d mm/gup: Introduce get_user_pages_remote()
For protection keys, we need to understand whether protections
should be enforced in software or not.  In general, we enforce
protections when working on our own task, but not when on others.
We call these "current" and "remote" operations.

This patch introduces a new get_user_pages() variant:

        get_user_pages_remote()

Which is a replacement for when get_user_pages() is called on
non-current tsk/mm.

We also introduce a new gup flag: FOLL_REMOTE which can be used
for the "__" gup variants to get this new behavior.

The uprobes is_trap_at_addr() location holds mmap_sem and
calls get_user_pages(current->mm) on an instruction address.  This
makes it a pretty unique gup caller.  Being an instruction access
and also really originating from the kernel (vs. the app), I opted
to consider this a 'remote' access where protection keys will not
be enforced.

Without protection keys, this patch should not change any behavior.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: jack@suse.cz
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210154.3F0E51EA@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-16 10:04:09 +01:00
Ingo Molnar 1fe3f29e4a Merge branches 'x86/fpu', 'x86/mm' and 'x86/asm' into x86/pkeys
Provide a stable basis for the pkeys patches, which touches various
x86 details.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-16 09:37:37 +01:00
Hugh Dickins 4643536474 mm: retire GUP WARN_ON_ONCE that outlived its usefulness
Trinity is now hitting the WARN_ON_ONCE we added in v3.15 commit
cda540ace6 ("mm: get_user_pages(write,force) refuse to COW in shared
areas").  The warning has served its purpose, nobody was harmed by that
change, so just remove the warning to generate less noise from Trinity.

Which reminds me of the comment I wrongly left behind with that commit
(but was spotted at the time by Kirill), which has since moved into a
separate function, and become even more obscure: delete it.

Reported-by: Dave Jones <davej@codemonkey.org.uk>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:57:14 -08:00
Dan Williams 03fc2da63b mm: fix pfn_t to page conversion in vm_insert_mixed
pfn_t_to_page() honors the flags in the pfn_t value to determine if a
pfn is backed by a page.  However, vm_insert_mixed() was originally
written to use pfn_valid() to make this determination.  To restore the
old/correct behavior, ignore the pfn_t flags in the !pfn_t_devmap() case
and fallback to trusting pfn_valid().

Fixes: 01c8f1c44b ("mm, dax, gpu: convert vm_insert_mixed to pfn_t")
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Reported-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Tested-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-01-31 09:07:15 -08:00
Ingo Molnar 76b36fa896 Linux 4.5-rc1
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJWpTzxAAoJEHm+PkMAQRiGKJEH/0vq8pgt1F4UYSMZLZ0bot5B
 iGNq/hPW91xcCVYXf5xfc6LzePd9L1rnKpP0ml+qmTInYw8YaCI/hCY6w32QfhP9
 3V3q1052T2eZJALqQQd0UH+F/ylTB8dHAPB+n8PBRxPEqpHb/ox+Ry70xbZefvaQ
 eOKSNBkZEIOFjURZZfeU0NrIzf8nKti8Dw84utGU2N+OICKGXzUmPLoObR0BiMHn
 2Xu54S4OPFKB49yfnW55PGiI+dawbVD+iSNEJtK4vMk5Ue7lxHXZ1njVeOdXd2Ls
 ggy3PPRt0LhDYLHQvr8Ir9uySLw7vUI6bhpvFm/freN4rxGvgxOZbhoQgtzqG/k=
 =1oU3
 -----END PGP SIGNATURE-----

Merge tag 'v4.5-rc1' into x86/asm, to refresh the branch before merging new changes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-29 09:41:18 +01:00
Vladimir Davydov 5ccc5abaaf mm: free swap cache aggressively if memcg swap is full
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages.  We should follow the same trend in case of memory cgroup, which
has its own swap limit.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Dan Williams 5c7fb56e5e mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd
A dax-huge-page mapping while it uses some thp helpers is ultimately not
a transparent huge page.  The distinction is especially important in the
get_user_pages() path.  pmd_devmap() is used to distinguish dax-pmds
from pmd_huge() and pmd_trans_huge() which have slightly different
semantics.

Explicitly mark the pmd_trans_huge() helpers that dax needs by adding
pmd_devmap() checks.

[kirill.shutemov@linux.intel.com: fix regression in handling mlocked pages in  __split_huge_pmd()]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Dan Williams f25748e3c3 mm, dax: convert vmf_insert_pfn_pmd() to pfn_t
Similar to the conversion of vm_insert_mixed() use pfn_t in the
vmf_insert_pfn_pmd() to tag the resulting pte with _PAGE_DEVICE when the
pfn is backed by a devm_memremap_pages() mapping.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Dan Williams 01c8f1c44b mm, dax, gpu: convert vm_insert_mixed to pfn_t
Convert the raw unsigned long 'pfn' argument to pfn_t for the purpose of
evaluating the PFN_MAP and PFN_DEV flags.  When both are set it triggers
_PAGE_DEVMAP to be set in the resulting pte.

There are no functional changes to the gpu drivers as a result of this
conversion.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov e90309c9f7 thp: allow mlocked THP again
Before THP refcounting rework, THP was not allowed to cross VMA
boundary.  So, if we have THP and we split it, PG_mlocked can be safely
transferred to small pages.

With new THP refcounting and naive approach to mlocking we can end up
with this scenario:
 1. we have a mlocked THP, which belong to one VM_LOCKED VMA.
 2. the process does munlock() on the *part* of the THP:
      - the VMA is split into two, one of them VM_LOCKED;
      - huge PMD split into PTE table;
      - THP is still mlocked;
 3. split_huge_page():
      - it transfers PG_mlocked to *all* small pages regrardless if it
	blong to any VM_LOCKED VMA.

We probably could munlock() all small pages on split_huge_page(), but I
think we have accounting issue already on step two.

Instead of forbidding mlocked pages altogether, we just avoid mlocking
PTE-mapped THPs and munlock THPs on split_huge_pmd().

This means PTE-mapped THPs will be on normal lru lists and will be split
under memory pressure by vmscan.  After the split vmscan will detect
unevictable small pages and mlock them.

With this approach we shouldn't hit situation like described above.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov e81c48024f mm, numa: skip PTE-mapped THP on numa fault
We're going to have THP mapped with PTEs.  It will confuse
numabalancing.  Let's skip them for now.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 4b471e8898 mm, thp: remove infrastructure for handling splitting PMDs
With new refcounting we don't need to mark PMDs splitting.  Let's drop
code to handle this.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 78ddc53473 thp: rename split_huge_page_pmd() to split_huge_pmd()
We are going to decouple splitting THP PMD from splitting underlying
compound page.

This patch renames split_huge_page_pmd*() functions to split_huge_pmd*()
to reflect the fact that it doesn't imply page splitting, only PMD.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 7479df6da9 thp, mlock: do not allow huge pages in mlocked area
With new refcounting THP can belong to several VMAs.  This makes tricky
to track THP pages, when they partially mlocked.  It can lead to leaking
mlocked pages to non-VM_LOCKED vmas and other problems.

With this patch we will split all pages on mlock and avoid
fault-in/collapse new THP in VM_LOCKED vmas.

I've tried alternative approach: do not mark THP pages mlocked and keep
them on normal LRUs.  This way vmscan could try to split huge pages on
memory pressure and free up subpages which doesn't belong to VM_LOCKED
vmas.  But this is user-visible change: we screw up Mlocked accouting
reported in meminfo, so I had to leave this approach aside.

We can bring something better later, but this should be good enough for
now.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 1c290f6421 mm: sanitize page->mapping for tail pages
We don't define meaning of page->mapping for tail pages.  Currently it's
always NULL, which can be inconsistent with head page and potentially
lead to problems.

Let's poison the pointer to catch all illigal uses.

page_rmapping(), page_mapping() and page_anon_vma() are changed to look
on head page.

The only illegal use I've caught so far is __GPF_COMP pages from sound
subsystem, mapped with PTEs.  do_shared_fault() is changed to use
page_rmapping() instead of direct access to fault_page->mapping.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Michal Hocko c20cd45eb0 mm: allow GFP_{FS,IO} for page_cache_read page cache allocation
page_cache_read has been historically using page_cache_alloc_cold to
allocate a new page.  This means that mapping_gfp_mask is used as the
base for the gfp_mask.  Many filesystems are setting this mask to
GFP_NOFS to prevent from fs recursion issues.  page_cache_read is called
from the vm_operations_struct::fault() context during the page fault.
This context doesn't need the reclaim protection normally.

ceph and ocfs2 which call filemap_fault from their fault handlers seem
to be OK because they are not taking any fs lock before invoking generic
implementation.  xfs which takes XFS_MMAPLOCK_SHARED is safe from the
reclaim recursion POV because this lock serializes truncate and punch
hole with the page faults and it doesn't get involved in the reclaim.

There is simply no reason to deliberately use a weaker allocation
context when a __GFP_FS | __GFP_IO can be used.  The GFP_NOFS protection
might be even harmful.  There is a push to fail GFP_NOFS allocations
rather than loop within allocator indefinitely with a very limited
reclaim ability.  Once we start failing those requests the OOM killer
might be triggered prematurely because the page cache allocation failure
is propagated up the page fault path and end up in
pagefault_out_of_memory.

We cannot play with mapping_gfp_mask directly because that would be racy
wrt.  parallel page faults and it might interfere with other users who
really rely on NOFS semantic from the stored gfp_mask.  The mask is also
inode proper so it would even be a layering violation.  What we can do
instead is to push the gfp_mask into struct vm_fault and allow fs layer
to overwrite it should the callback need to be called with a different
allocation context.

Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO)
because this should be safe from the page fault path normally.  Why do
we care about mapping_gfp_mask at all then? Because this doesn't hold
only reclaim protection flags but it also might contain zone and
movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have
to respect those.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Jan Kara <jack@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Jerome Marchand eca56ff906 mm, shmem: add internal shmem resident memory accounting
Currently looking at /proc/<pid>/status or statm, there is no way to
distinguish shmem pages from pages mapped to a regular file (shmem pages
are mapped to /dev/zero), even though their implication in actual memory
use is quite different.

The internal accounting currently counts shmem pages together with
regular files.  As a preparation to extend the userspace interfaces,
this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for
shmem pages separately from MM_FILEPAGES.  The next patch will expose it
to userspace - this patch doesn't change the exported values yet, by
adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was
used before.  The only user-visible change after this patch is the OOM
killer message that separates the reported "shmem-rss" from "file-rss".

[vbabka@suse.cz: forward-porting, tweak changelog]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Andy Lutomirski 1745cbc5d0 mm: Add vm_insert_pfn_prot()
The x86 vvar vma contains pages with differing cacheability
flags.  x86 currently implements this by manually inserting all
the ptes using (io_)remap_pfn_range when the vma is set up.

x86 wants to move to using .fault with VM_FAULT_NOPAGE to set up
the mappings as needed.  The correct API to use to insert a pfn
in .fault is vm_insert_pfn(), but vm_insert_pfn() can't override the
vma's cache mode, and the HPET page in particular needs to be
uncached despite the fact that the rest of the VMA is cached.

Add vm_insert_pfn_prot() to support varying cacheability within
the same non-COW VMA in a more sane manner.

x86 could alternatively use multiple VMAs, but that's messy,
would break CRIU, and would create unnecessary VMAs that would
waste memory.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/d2938d1eb37be7a5e4f86182db646551f11e45aa.1451446564.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-12 11:59:34 +01:00
Yigal Korman 0df9d41ab5 mm, dax: fix DAX deadlocks (COW fault)
DAX handling of COW faults has wrong locking sequence:
	dax_fault does i_mmap_lock_read
	do_cow_fault does i_mmap_unlock_write

Ross's commit[1] missed a fix[2] that Kirill added to Matthew's
commit[3].

Original COW locking logic was introduced by Matthew here[4].

This should be applied to v4.3 as well.

[1] 0f90cc6609 mm, dax: fix DAX deadlocks
[2] 52a2b53ffd mm, dax: use i_mmap_unlock_write() in do_cow_fault()
[3] 843172978b dax: fix race between simultaneous faults
[4] 2e4cdab058 mm: allow page fault handlers to perform the COW

Cc: <stable@vger.kernel.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-11-18 16:54:36 -08:00
Ross Zwisler 0f90cc6609 mm, dax: fix DAX deadlocks
The following two locking commits in the DAX code:

commit 843172978b ("dax: fix race between simultaneous faults")
commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for DAX")

introduced a number of deadlocks and other issues which need to be fixed
for the v4.3 kernel.  The list of issues in DAX after these commits
(some newly introduced by the commits, some preexisting) can be found
here:

  https://lkml.org/lkml/2015/9/25/602 (Subject: "Re: [PATCH] dax: fix deadlock in __dax_fault").

This undoes most of the changes introduced by those two commits,
essentially returning us to the DAX locking scheme that was used in
v4.2.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-16 11:42:28 -07:00
Kirill A. Shutemov fb6dd5fa41 mm: use vma_is_anonymous() in create_huge_pmd() and wp_huge_pmd()
Let's use helper rather than direct check of vma->vm_ops to distinguish
anonymous VMA.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Kirill A. Shutemov 52a2b53ffd mm, dax: use i_mmap_unlock_write() in do_cow_fault()
__dax_fault() takes i_mmap_lock for write. Let's pair it with write
unlock on do_cow_fault() side.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Kirill A. Shutemov 46c043ede4 mm: take i_mmap_lock in unmap_mapping_range() for DAX
DAX is not so special: we need i_mmap_lock to protect mapping->i_mmap.

__dax_pmd_fault() uses unmap_mapping_range() shoot out zero page from
all mappings.  We need to drop i_mmap_lock there to avoid lock deadlock.

Re-aquiring the lock should be fine since we check i_size after the
point.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox 843172978b dax: fix race between simultaneous faults
If two threads write-fault on the same hole at the same time, the winner
of the race will return to userspace and complete their store, only to
have the loser overwrite their store with zeroes.  Fix this for now by
taking the i_mmap_sem for write instead of read, and do so outside the
call to get_block().  Now the loser of the race will see the block has
already been zeroed, and will not zero it again.

This severely limits our scalability.  I have ideas for improving it, but
those can wait for a later patch.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox b96375f74a mm: add a pmd_fault handler
Allow non-anonymous VMAs to provide huge pages in response to a page fault.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Oleg Nesterov b533062854 mm: introduce vma_is_anonymous(vma) helper
special_mapping_fault() is absolutely broken.  It seems it was always
wrong, but this didn't matter until vdso/vvar started to use more than
one page.

And after this change vma_is_anonymous() becomes really trivial, it
simply checks vm_ops == NULL.  However, I do think the helper makes
sense.  There are a lot of ->vm_ops != NULL checks, the helper makes the
caller's code more understandable (self-documented) and this is more
grep-friendly.

This patch (of 3):

Preparation.  Add the new simple helper, vma_is_anonymous(vma), and change
handle_pte_fault() to use it.  It will have more users.

The name is not accurate, say a hpet_mmap()'ed vma is not anonymous.
Perhaps it should be named vma_has_fault() instead.  But it matches the
logic in mmap.c/memory.c (see next changes).  "True" just means that a
page fault will use do_anonymous_page().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Nicholas Krause ca1d6c7d9d mm/memory.c: make tlb_next_batch() return bool
This makes the tlb_next_batch() bool due to this particular function only
ever returning either one or zero as its return value.

Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Andrea Arcangeli 6b251fc96c userfaultfd: call handle_userfault() for userfaultfd_missing() faults
This is where the page faults must be modified to call
handle_userfault() if userfaultfd_missing() is true (so if the
vma->vm_flags had VM_UFFD_MISSING set).

handle_userfault() then takes care of blocking the page fault and
delivering it to userland.

The fault flags must also be passed as parameter so the "read|write"
kind of fault can be passed to userland.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Kirill A. Shutemov 6b7339f4c3 mm: avoid setting up anonymous pages into file mapping
Reading page fault handler code I've noticed that under right
circumstances kernel would map anonymous pages into file mappings: if
the VMA doesn't have vm_ops->fault() and the VMA wasn't fully populated
on ->mmap(), kernel would handle page fault to not populated pte with
do_anonymous_page().

Let's change page fault handler to use do_anonymous_page() only on
anonymous VMA (->vm_ops == NULL) and make sure that the VMA is not
shared.

For file mappings without vm_ops->fault() or shred VMA without vm_ops,
page fault on pte_none() entry would lead to SIGBUS.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-09 11:12:48 -07:00
Linus Torvalds 1dc51b8288 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 "Assorted VFS fixes and related cleanups (IMO the most interesting in
  that part are f_path-related things and Eric's descriptor-related
  stuff).  UFS regression fixes (it got broken last cycle).  9P fixes.
  fs-cache series, DAX patches, Jan's file_remove_suid() work"

[ I'd say this is much more than "fixes and related cleanups".  The
  file_table locking rule change by Eric Dumazet is a rather big and
  fundamental update even if the patch isn't huge.   - Linus ]

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
  9p: cope with bogus responses from server in p9_client_{read,write}
  p9_client_write(): avoid double p9_free_req()
  9p: forgetting to cancel request on interrupted zero-copy RPC
  dax: bdev_direct_access() may sleep
  block: Add support for DAX reads/writes to block devices
  dax: Use copy_from_iter_nocache
  dax: Add block size note to documentation
  fs/file.c: __fget() and dup2() atomicity rules
  fs/file.c: don't acquire files->file_lock in fd_install()
  fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
  vfs: avoid creation of inode number 0 in get_next_ino
  namei: make set_root_rcu() return void
  make simple_positive() public
  ufs: use dir_pages instead of ufs_dir_pages()
  pagemap.h: move dir_pages() over there
  remove the pointless include of lglock.h
  fs: cleanup slight list_entry abuse
  xfs: Correctly lock inode when removing suid and file capabilities
  fs: Call security_ops->inode_killpriv on truncate
  fs: Provide function telling whether file_remove_privs() will do anything
  ...
2015-07-04 19:36:06 -07:00
Mel Gorman eb3c24f305 mm, memcg: Try charging a page before setting page up to date
Historically memcg overhead was high even if memcg was unused.  This has
improved a lot but it still showed up in a profile summary as being a
problem.

/usr/src/linux-4.0-vanilla/mm/memcontrol.c                           6.6441   395842
  mem_cgroup_try_charge                                                        2.950%   175781
  __mem_cgroup_count_vm_event                                                  1.431%    85239
  mem_cgroup_page_lruvec                                                       0.456%    27156
  mem_cgroup_commit_charge                                                     0.392%    23342
  uncharge_list                                                                0.323%    19256
  mem_cgroup_update_lru_size                                                   0.278%    16538
  memcg_check_events                                                           0.216%    12858
  mem_cgroup_charge_statistics.isra.22                                         0.188%    11172
  try_charge                                                                   0.150%     8928
  commit_charge                                                                0.141%     8388
  get_mem_cgroup_from_mm                                                       0.121%     7184

That is showing that 6.64% of system CPU cycles were in memcontrol.c and
dominated by mem_cgroup_try_charge.  The annotation shows that the bulk
of the cost was checking PageSwapCache which is expected to be cache hot
but is very expensive.  The problem appears to be that __SetPageUptodate
is called just before the check which is a write barrier.  It is
required to make sure struct page and page data is written before the
PTE is updated and the data visible to userspace.  memcg charging does
not require or need the barrier but gets unfairly hit with the cost so
this patch attempts the charging before the barrier.  Aside from the
accidental cost to memcg there is the added benefit that the barrier is
avoided if the page cannot be charged.  When applied the relevant
profile summary is as follows.

/usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c                  3.7907   223277
  __mem_cgroup_count_vm_event                                                  1.143%    67312
  mem_cgroup_page_lruvec                                                       0.465%    27403
  mem_cgroup_commit_charge                                                     0.381%    22452
  uncharge_list                                                                0.332%    19543
  mem_cgroup_update_lru_size                                                   0.284%    16704
  get_mem_cgroup_from_mm                                                       0.271%    15952
  mem_cgroup_try_charge                                                        0.237%    13982
  memcg_check_events                                                           0.222%    13058
  mem_cgroup_charge_statistics.isra.22                                         0.185%    10920
  commit_charge                                                                0.140%     8235
  try_charge                                                                   0.131%     7716

That brings the overhead down to 3.79% and leaves the memcg fault
accounting to the root cgroup but it's an improvement.  The difference
in headline performance of the page fault microbench is marginal as
memcg is such a small component of it.

pft faults
                                       4.0.0                  4.0.0
                                     vanilla            chargefirst
Hmean    faults/cpu-1 1443258.1051 (  0.00%) 1509075.7561 (  4.56%)
Hmean    faults/cpu-3 1340385.9270 (  0.00%) 1339160.7113 ( -0.09%)
Hmean    faults/cpu-5  875599.0222 (  0.00%)  874174.1255 ( -0.16%)
Hmean    faults/cpu-7  601146.6726 (  0.00%)  601370.9977 (  0.04%)
Hmean    faults/cpu-8  510728.2754 (  0.00%)  510598.8214 ( -0.03%)
Hmean    faults/sec-1 1432084.7845 (  0.00%) 1497935.5274 (  4.60%)
Hmean    faults/sec-3 3943818.1437 (  0.00%) 3941920.1520 ( -0.05%)
Hmean    faults/sec-5 3877573.5867 (  0.00%) 3869385.7553 ( -0.21%)
Hmean    faults/sec-7 3991832.0418 (  0.00%) 3992181.4189 (  0.01%)
Hmean    faults/sec-8 3987189.8167 (  0.00%) 3986452.2204 ( -0.02%)

It's only visible at single threaded. The overhead is there for higher
threads but other factors dominate.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Miklos Szeredi 9bf39ab2ad vfs: add file_path() helper
Turn
	d_path(&file->f_path, ...);
into
	file_path(file, ...);

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-06-23 18:00:05 -04:00
David Hildenbrand 9ec23531fd sched/preempt, mm/fault: Trigger might_sleep() in might_fault() with disabled pagefaults
Commit 662bbcb274 ("mm, sched: Allow uaccess in atomic with
pagefault_disable()") removed might_sleep() checks for all user access
code (that uses might_fault()).

The reason was to disable wrong "sleep in atomic" warnings in the
following scenario:

    pagefault_disable()
    rc = copy_to_user(...)
    pagefault_enable()

Which is valid, as pagefault_disable() increments the preempt counter
and therefore disables the pagefault handler. copy_to_user() will not
sleep and return an error code if a page is not available.

However, as all might_sleep() checks are removed,
CONFIG_DEBUG_ATOMIC_SLEEP would no longer detect the following scenario:

    spin_lock(&lock);
    rc = copy_to_user(...)
    spin_unlock(&lock)

If the kernel is compiled with preemption turned on, preempt_disable()
will make in_atomic() detect disabled preemption. The fault handler would
correctly never sleep on user access.
However, with preemption turned off, preempt_disable() is usually a NOP
(with !CONFIG_PREEMPT_COUNT), therefore in_atomic() will not be able to
detect disabled preemption nor disabled pagefaults. The fault handler
could sleep.
We really want to enable CONFIG_DEBUG_ATOMIC_SLEEP checks for user access
functions again, otherwise we can end up with horrible deadlocks.

Root of all evil is that pagefault_disable() acts almost as
preempt_disable(), depending on preemption being turned on/off.

As we now have pagefault_disabled(), we can use it to distinguish
whether user acces functions might sleep.

Convert might_fault() into a makro that calls __might_fault(), to
allow proper file + line messages in case of a might_sleep() warning.

Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David.Laight@ACULAB.COM
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: benh@kernel.crashing.org
Cc: bigeasy@linutronix.de
Cc: borntraeger@de.ibm.com
Cc: daniel.vetter@intel.com
Cc: heiko.carstens@de.ibm.com
Cc: herbert@gondor.apana.org.au
Cc: hocko@suse.cz
Cc: hughd@google.com
Cc: mst@redhat.com
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: schwidefsky@de.ibm.com
Cc: yang.shi@windriver.com
Link: http://lkml.kernel.org/r/1431359540-32227-3-git-send-email-dahi@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 08:39:14 +02:00
Boaz Harrosh dd9061846a mm: new pfn_mkwrite same as page_mkwrite for VM_PFNMAP
This will allow FS that uses VM_PFNMAP | VM_MIXEDMAP (no page structs) to
get notified when access is a write to a read-only PFN.

This can happen if we mmap() a file then first mmap-read from it to
page-in a read-only PFN, than we mmap-write to the same page.

We need this functionality to fix a DAX bug, where in the scenario above
we fail to set ctime/mtime though we modified the file.  An xfstest is
attached to this patchset that shows the failure and the fix.  (A DAX
patch will follow)

This functionality is extra important for us, because upon dirtying of a
pmem page we also want to RDMA the page to a remote cluster node.

We define a new pfn_mkwrite and do not reuse page_mkwrite because
  1 - The name ;-)
  2 - But mainly because it would take a very long and tedious
      audit of all page_mkwrite functions of VM_MIXEDMAP/VM_PFNMAP
      users. To make sure they do not now CRASH. For example current
      DAX code (which this is for) would crash.
      If we would want to reuse page_mkwrite, We will need to first
      patch all users, so to not-crash-on-no-page. Then enable this
      patch. But even if I did that I would not sleep so well at night.
      Adding a new vector is the safest thing to do, and is not that
      expensive. an extra pointer at a static function vector per driver.
      Also the new vector is better for performance, because else we
      Will call all current Kernel vectors, so to:
        check-ha-no-page-do-nothing and return.

No need to call it from do_shared_fault because do_wp_page is called to
change pte permissions anyway.

Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Boaz Harrosh <boaz@plexistor.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:20 -07:00
Konstantin Khlebnikov 2682582a6e mm/memory: also print a_ops->readpage in print_bad_pte()
A lot of filesystems use generic_file_mmap() and filemap_fault(),
f_op->mmap and vm_ops->fault aren't enough to identify filesystem.

This prints file name, vm_ops->fault, f_op->mmap and a_ops->readpage
(which is almost always implemented and filesystem-specific).

Example:

[   23.676410] BUG: Bad page map in process sh  pte:1b7e6025 pmd:19bbd067
[   23.676887] page:ffffea00006df980 count:4 mapcount:1 mapping:ffff8800196426c0 index:0x97
[   23.677481] flags: 0x10000000000000c(referenced|uptodate)
[   23.677896] page dumped because: bad pte
[   23.678205] addr:00007f52fcb17000 vm_flags:00000075 anon_vma:          (null) mapping:ffff8800196426c0 index:97
[   23.678922] file:libc-2.19.so fault:filemap_fault mmap:generic_file_readonly_mmap readpage:v9fs_vfs_readpage

[akpm@linux-foundation.org: use pr_alert, per Kirill]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:20 -07:00
Jason Low 4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Shachar Raindel 93e478d4c3 mm: refactor do_wp_page handling of shared vma into a function
The do_wp_page function is extremely long.  Extract the logic for
handling a page belonging to a shared vma into a function of its own.

This helps the readability of the code, without doing any functional
change in it.

Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Shachar Raindel 2f38ab2c3c mm: refactor do_wp_page, extract the page copy flow
In some cases, do_wp_page had to copy the page suffering a write fault
to a new location.  If the function logic decided that to do this, it
was done by jumping with a "goto" operation to the relevant code block.
This made the code really hard to understand.  It is also against the
kernel coding style guidelines.

This patch extracts the page copy and page table update logic to a
separate function.  It also clean up the naming, from "gotten" to
"wp_page_copy", and adds few comments.

Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Shachar Raindel 2876680527 mm: refactor do_wp_page - rewrite the unlock flow
When do_wp_page is ending, in several cases it needs to unlock the pages
and ptls it was accessing.

Currently, this logic was "called" by using a goto jump.  This makes
following the control flow of the function harder.  Readability was
further hampered by the unlock case containing large amount of logic
needed only in one of the 3 cases.

Using goto for cleanup is generally allowed.  However, moving the
trivial unlocking flows to the relevant call sites allow deeper
refactoring in the next patch.

Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Shachar Raindel 4e047f8977 mm: refactor do_wp_page, extract the reuse case
Currently do_wp_page contains 265 code lines.  It also contains 9 goto
statements, of which 5 are targeting labels which are not cleanup
related.  This makes the function extremely difficult to understand.

The following patches are an attempt at breaking the function to its
basic components, and making it easier to understand.

The patches are straight forward function extractions from do_wp_page.
As we extract functions, we remove unneeded parameters and simplify the
code as much as possible.  However, the functionality is supposed to
remain completely unchanged.  The patches also attempt to document the
functionality of each extracted function.  In patch 2, we split the
unlock logic to the contain logic relevant to specific needs of each use
case, instead of having huge number of conditional decisions in a single
unlock flow.

This patch (of 4):

When do_wp_page is ending, in several cases it needs to reuse the existing
page.  This is achieved by making the page table writable, and possibly
updating the page-cache state.

Currently, this logic was "called" by using a goto jump.  This makes
following the control flow of the function harder.  It is also against the
coding style guidelines for using goto.

As the code can easily be refactored into a specialized function, refactor
it out and simplify the code flow in do_wp_page.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Haggai Eran <haggaie@mellanox.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Michel Lespinasse <walken@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Mel Gorman 074c238177 mm: numa: slow PTE scan rate if migration failures occur
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226

  Across the board the 4.0-rc1 numbers are much slower, and the degradation
  is far worse when using the large memory footprint configs. Perf points
  straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:

   -   56.07%    56.07%  [kernel]            [k] default_send_IPI_mask_sequence_phys
      - default_send_IPI_mask_sequence_phys
         - 99.99% physflat_send_IPI_mask
            - 99.37% native_send_call_func_ipi
                 smp_call_function_many
               - native_flush_tlb_others
                  - 99.85% flush_tlb_page
                       ptep_clear_flush
                       try_to_unmap_one
                       rmap_walk
                       try_to_unmap
                       migrate_pages
                       migrate_misplaced_page
                     - handle_mm_fault
                        - 99.73% __do_page_fault
                             trace_do_page_fault
                             do_async_page_fault
                           + async_page_fault
              0.63% native_send_call_func_single_ipi
                 generic_exec_single
                 smp_call_function_single

This is showing excessive migration activity even though excessive
migrations are meant to get throttled.  Normally, the scan rate is tuned
on a per-task basis depending on the locality of faults.  However, if
migrations fail for any reason then the PTE scanner may scan faster if
the faults continue to be remote.  This means there is higher system CPU
overhead and fault trapping at exactly the time we know that migrations
cannot happen.  This patch tracks when migration failures occur and
slows the PTE scanner.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman b191f9b106 mm: numa: preserve PTE write permissions across a NUMA hinting fault
Protecting a PTE to trap a NUMA hinting fault clears the writable bit
and further faults are needed after trapping a NUMA hinting fault to set
the writable bit again.  This patch preserves the writable bit when
trapping NUMA hinting faults.  The impact is obvious from the number of
minor faults trapped during the basis balancing benchmark and the system
CPU usage;

  autonumabench
                                             4.0.0-rc4             4.0.0-rc4
                                              baseline              preserve
  Time System-NUMA01                  107.13 (  0.00%)      103.13 (  3.73%)
  Time System-NUMA01_THEADLOCAL       131.87 (  0.00%)       83.30 ( 36.83%)
  Time System-NUMA02                    8.95 (  0.00%)       10.72 (-19.78%)
  Time System-NUMA02_SMT                4.57 (  0.00%)        3.99 ( 12.69%)
  Time Elapsed-NUMA01                 515.78 (  0.00%)      517.26 ( -0.29%)
  Time Elapsed-NUMA01_THEADLOCAL      384.10 (  0.00%)      384.31 ( -0.05%)
  Time Elapsed-NUMA02                  48.86 (  0.00%)       48.78 (  0.16%)
  Time Elapsed-NUMA02_SMT              47.98 (  0.00%)       48.12 ( -0.29%)

               4.0.0-rc4   4.0.0-rc4
                baseline    preserve
  User          44383.95    43971.89
  System          252.61      201.24
  Elapsed         998.68     1000.94

  Minor Faults   2597249     1981230
  Major Faults       365         364

There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
workload

                                      4.0.0-rc4             4.0.0-rc4
                                       baseline              preserve
  Amean    real-xfsrepair      454.14 (  0.00%)      442.36 (  2.60%)
  Amean    syst-xfsrepair      277.20 (  0.00%)      204.68 ( 26.16%)

The patch looks hacky but the alternatives looked worse.  The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse.  It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman bea66fbd11 mm: numa: group related processes based on VMA flags instead of page table flags
These are three follow-on patches based on the xfsrepair workload Dave
Chinner reported was problematic in 4.0-rc1 due to changes in page table
management -- https://lkml.org/lkml/2015/3/1/226.

Much of the problem was reduced by commit 53da3bc2ba ("mm: fix up numa
read-only thread grouping logic") and commit ba68bc0115 ("mm: thp:
Return the correct value for change_huge_pmd").  It was known that the
performance in 3.19 was still better even if is far less safe.  This
series aims to restore the performance without compromising on safety.

For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the
three patches applied on top

  autonumabench
                                                3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                               vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
  Time System-NUMA01                  124.00 (  0.00%)      161.86 (-30.53%)      107.13 ( 13.60%)      103.13 ( 16.83%)      145.01 (-16.94%)
  Time System-NUMA01_THEADLOCAL       115.54 (  0.00%)      107.64 (  6.84%)      131.87 (-14.13%)       83.30 ( 27.90%)       92.35 ( 20.07%)
  Time System-NUMA02                    9.35 (  0.00%)       10.44 (-11.66%)        8.95 (  4.28%)       10.72 (-14.65%)        8.16 ( 12.73%)
  Time System-NUMA02_SMT                3.87 (  0.00%)        4.63 (-19.64%)        4.57 (-18.09%)        3.99 ( -3.10%)        3.36 ( 13.18%)
  Time Elapsed-NUMA01                 570.06 (  0.00%)      567.82 (  0.39%)      515.78 (  9.52%)      517.26 (  9.26%)      543.80 (  4.61%)
  Time Elapsed-NUMA01_THEADLOCAL      393.69 (  0.00%)      384.83 (  2.25%)      384.10 (  2.44%)      384.31 (  2.38%)      380.73 (  3.29%)
  Time Elapsed-NUMA02                  49.09 (  0.00%)       49.33 ( -0.49%)       48.86 (  0.47%)       48.78 (  0.63%)       50.94 ( -3.77%)
  Time Elapsed-NUMA02_SMT              47.51 (  0.00%)       47.15 (  0.76%)       47.98 ( -0.99%)       48.12 ( -1.28%)       49.56 ( -4.31%)

                3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
               vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  User        46334.60    46391.94    44383.95    43971.89    44372.12
  System        252.84      284.66      252.61      201.24      249.00
  Elapsed      1062.14     1050.96      998.68     1000.94     1026.78

Overall the system CPU usage is comparable and the test is naturally a
bit variable.  The slowing of the scanner hurts numa01 but on this
machine it is an adverse workload and patches that dramatically help it
often hurt absolutely everything else.

Due to patch 2, the fault activity is interesting

                                  3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                 vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Minor Faults                   2097811     2656646     2597249     1981230     1636841
  Major Faults                       362         450         365         364         365

Note the impact preserving the write bit across protection updates and
fault reduces faults.

  NUMA alloc hit                 1229008     1217015     1191660     1178322     1199681
  NUMA alloc miss                      0           0           0           0           0
  NUMA interleave hit                  0           0           0           0           0
  NUMA alloc local               1228514     1216317     1190871     1177448     1199021
  NUMA base PTE updates        245706197   240041607   238195516   244704842   115012800
  NUMA huge PMD updates           479530      468448      464868      477573      224487
  NUMA page range updates      491225557   479886983   476207932   489222218   229950144
  NUMA hint faults                659753      656503      641678      656926      294842
  NUMA hint local faults          381604      373963      360478      337585      186249
  NUMA hint local percent             57          56          56          51          63
  NUMA pages migrated            5412140     6374899     6266530     5277468     5755096
  AutoNUMA cost                    5121%       5083%       4994%       5097%       2388%

Here the impact of slowing the PTE scanner on migratrion failures is
obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are
massively reduced even though the headline performance is very similar.

As xfsrepair was the reported workload here is the impact of the series
on it.

  xfsrepair
                                         3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                        vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
  Min      real-fsmark        1183.29 (  0.00%)     1165.73 (  1.48%)     1152.78 (  2.58%)     1153.64 (  2.51%)     1177.62 (  0.48%)
  Min      syst-fsmark        4107.85 (  0.00%)     4027.75 (  1.95%)     3986.74 (  2.95%)     3979.16 (  3.13%)     4048.76 (  1.44%)
  Min      real-xfsrepair      441.51 (  0.00%)      463.96 ( -5.08%)      449.50 ( -1.81%)      440.08 (  0.32%)      439.87 (  0.37%)
  Min      syst-xfsrepair      195.76 (  0.00%)      278.47 (-42.25%)      262.34 (-34.01%)      203.70 ( -4.06%)      143.64 ( 26.62%)
  Amean    real-fsmark        1188.30 (  0.00%)     1177.34 (  0.92%)     1157.97 (  2.55%)     1158.21 (  2.53%)     1182.22 (  0.51%)
  Amean    syst-fsmark        4111.37 (  0.00%)     4055.70 (  1.35%)     3987.19 (  3.02%)     3998.72 (  2.74%)     4061.69 (  1.21%)
  Amean    real-xfsrepair      450.88 (  0.00%)      468.32 ( -3.87%)      454.14 ( -0.72%)      442.36 (  1.89%)      440.59 (  2.28%)
  Amean    syst-xfsrepair      199.66 (  0.00%)      290.60 (-45.55%)      277.20 (-38.84%)      204.68 ( -2.51%)      150.55 ( 24.60%)
  Stddev   real-fsmark           4.12 (  0.00%)       10.82 (-162.29%)       4.14 ( -0.28%)        5.98 (-45.05%)        4.60 (-11.53%)
  Stddev   syst-fsmark           2.63 (  0.00%)       20.32 (-671.82%)       0.37 ( 85.89%)       16.47 (-525.59%)      15.05 (-471.79%)
  Stddev   real-xfsrepair        6.87 (  0.00%)        4.55 ( 33.75%)        3.46 ( 49.58%)        1.78 ( 74.12%)        0.52 ( 92.50%)
  Stddev   syst-xfsrepair        3.02 (  0.00%)       10.30 (-241.37%)      13.17 (-336.37%)       0.71 ( 76.63%)        5.00 (-65.61%)
  CoeffVar real-fsmark           0.35 (  0.00%)        0.92 (-164.73%)       0.36 ( -2.91%)        0.52 (-48.82%)        0.39 (-12.10%)
  CoeffVar syst-fsmark           0.06 (  0.00%)        0.50 (-682.41%)       0.01 ( 85.45%)        0.41 (-543.22%)       0.37 (-478.78%)
  CoeffVar real-xfsrepair        1.52 (  0.00%)        0.97 ( 36.21%)        0.76 ( 49.94%)        0.40 ( 73.62%)        0.12 ( 92.33%)
  CoeffVar syst-xfsrepair        1.51 (  0.00%)        3.54 (-134.54%)       4.75 (-214.31%)       0.34 ( 77.20%)        3.32 (-119.63%)
  Max      real-fsmark        1193.39 (  0.00%)     1191.77 (  0.14%)     1162.90 (  2.55%)     1166.66 (  2.24%)     1188.50 (  0.41%)
  Max      syst-fsmark        4114.18 (  0.00%)     4075.45 (  0.94%)     3987.65 (  3.08%)     4019.45 (  2.30%)     4082.80 (  0.76%)
  Max      real-xfsrepair      457.80 (  0.00%)      474.60 ( -3.67%)      457.82 ( -0.00%)      444.42 (  2.92%)      441.03 (  3.66%)
  Max      syst-xfsrepair      203.11 (  0.00%)      303.65 (-49.50%)      294.35 (-44.92%)      205.33 ( -1.09%)      155.28 ( 23.55%)

The really relevant lines as syst-xfsrepair which is the system CPU
usage when running xfsrepair.  Note that on my machine the overhead was
45% higher on 4.0-rc4 which may be part of what Dave is seeing.  Once we
preserve the write bit across faults, it's only 2.51% higher on average.
With the full series applied, system CPU usage is 24.6% lower on
average.

Again, the impact of preserving the write bit on minor faults is obvious
and the impact of slowing scanning after migration failures is obvious
on the PTE updates.  Note also that the number of pages migrated is much
reduced even though the headline performance is comparable.

                                  3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                 vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Minor Faults                 153466827   254507978   249163829   153501373   105737890
  Major Faults                       610         702         690         649         724
  NUMA base PTE updates        217735049   210756527   217729596   216937111   144344993
  NUMA huge PMD updates           129294       85044      106921      127246       79887
  NUMA pages migrated           21938995    29705270    28594162    22687324    16258075

                        3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                       vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Mean sdb-avgqusz       13.47        2.54        2.55        2.47        2.49
  Mean sdb-avgrqsz      202.32      140.22      139.50      139.02      138.12
  Mean sdb-await         25.92        5.09        5.33        5.02        5.22
  Mean sdb-r_await        4.71        0.19        0.83        0.51        0.11
  Mean sdb-w_await      104.13        5.21        5.38        5.05        5.32
  Mean sdb-svctm          0.59        0.13        0.14        0.13        0.14
  Mean sdb-rrqm           0.16        0.00        0.00        0.00        0.00
  Mean sdb-wrqm           3.59     1799.43     1826.84     1812.21     1785.67
  Max  sdb-avgqusz      111.06       12.13       14.05       11.66       15.60
  Max  sdb-avgrqsz      255.60      190.34      190.01      187.33      191.78
  Max  sdb-await        168.24       39.28       49.22       44.64       65.62
  Max  sdb-r_await      660.00       52.00      280.00       76.00       12.00
  Max  sdb-w_await     7804.00       39.28       49.22       44.64       65.62
  Max  sdb-svctm          4.00        2.82        2.86        1.98        2.84
  Max  sdb-rrqm           8.30        0.00        0.00        0.00        0.00
  Max  sdb-wrqm          34.20     5372.80     5278.60     5386.60     5546.15

FWIW, I also checked SPECjbb in different configurations but it's
similar observations -- minor faults lower, PTE update activity lower
and performance is roughly comparable against 3.19.

This patch (of 3):

Threads that share writable data within pages are grouped together as
related tasks.  This decision is based on whether the PTE is marked
dirty which is subject to timing races between the PTE scanner update
and when the application writes the page.  If the page is file-backed,
then background flushes and sync also affect placement.  This is
unpredictable behaviour which is impossible to reason about so this
patch makes grouping decisions based on the VMA flags.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00