Lets try this again. We can deadlock the box if we send on a box and try to
write onto the same fs with the app that is trying to listen to the send pipe.
This is because the writer could get stuck waiting for a transaction commit
which is being blocked by the send. So fix this by making sure looking at the
commit roots is always going to be consistent. We do this by keeping track of
which roots need to have their commit roots swapped during commit, and then
taking the commit_root_sem and swapping them all at once. Then make sure we
take a read lock on the commit_root_sem in cases where we search the commit root
to make sure we're always looking at a consistent view of the commit roots.
Previously we had problems with this because we would swap a fs tree commit root
and then swap the extent tree commit root independently which would cause the
backref walking code to screw up sometimes. With this patch we no longer
deadlock and pass all the weird send/receive corner cases. Thanks,
Reportedy-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
So I have an awful exercise script that will run snapshot, balance and
send/receive in parallel. This sometimes would crash spectacularly and when it
came back up the fs would be completely hosed. Turns out this is because of a
bad interaction of balance and send/receive. Send will hold onto its entire
path for the whole send, but its blocks could get relocated out from underneath
it, and because it doesn't old tree locks theres nothing to keep this from
happening. So it will go to read in a slot with an old transid, and we could
have re-allocated this block for something else and it could have a completely
different transid. But because we think it is invalid we clear uptodate and
re-read in the block. If we do this before we actually write out the new block
we could write back stale data to the fs, and boom we're screwed.
Now we definitely need to fix this disconnect between send and balance, but we
really really need to not allow ourselves to accidently read in stale data over
new data. So make sure we check if the extent buffer is not under io before
clearing uptodate, this will kick back EIO to the caller instead of reading in
stale data and keep us from corrupting the fs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
We didn't have a lock to protect the access to the delalloc inodes list, that is
we might access a empty delalloc inodes list if someone start flushing delalloc
inodes because the delalloc inodes were moved into a other list temporarily.
Fix it by wrapping the access with a lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we create a snapshot, we just need wait the ordered extents in
the source fs/file root, but because we use the global mutex to protect
this ordered extents list of the source fs/file root to avoid accessing
a empty list, if someone got the mutex to access the ordered extents list
of the other fs/file root, we had to wait.
This patch splits the above global mutex, now every fs/file root has
its own mutex to protect its own list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since all the btrfs_worker is replaced with the newly created
btrfs_workqueue, the old codes can be easily remove.
Signed-off-by: Quwenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->qgroup_rescan_worker with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->delayed_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->fixup_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->readahead_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->cache_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->rmw_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->endio_* workqueues with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->submit_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->submit_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->delalloc_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use the newly created btrfs_workqueue_struct to replace the original
fs_info->workers
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We might commit the log sub-transaction which didn't contain the metadata we
logged. It was because we didn't record the log transid and just select
the current log sub-transaction to commit, but the right one might be
committed by the other task already. Actually, we needn't do anything
and it is safe that we go back directly in this case.
This patch improves the log sync by the above idea. We record the transid
of the log sub-transaction in which we log the metadata, and the transid
of the log sub-transaction we have committed. If the committed transid
is >= the transid we record when logging the metadata, we just go back.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
I got an error on v3.13:
BTRFS error (device sdf1) in write_all_supers:3378: errno=-5 IO failure (errors while submitting device barriers.)
how to reproduce:
> mkfs.btrfs -f -d raid1 /dev/sdf1 /dev/sdf2
> wipefs -a /dev/sdf2
> mount -o degraded /dev/sdf1 /mnt
> btrfs balance start -f -sconvert=single -mconvert=single -dconvert=single /mnt
The reason of the error is that barrier_all_devices() failed to submit
barrier to the missing device. However it is clear that we cannot do
anything on missing device, and also it is not necessary to care chunks
on the missing device.
This patch stops sending/waiting barrier if device is missing.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
During device replace test, we hit a null pointer deference (It was very easy
to reproduce it by running xfstests' btrfs/011 on the devices with the virtio
scsi driver). There were two bugs that caused this problem:
- We might allocate new chunks on the replaced device after we updated
the mapping tree. And we forgot to replace the source device in those
mapping of the new chunks.
- We might get the mapping information which including the source device
before the mapping information update. And then submit the bio which was
based on that mapping information after we freed the source device.
For the first bug, we can fix it by doing mapping tree update and source
device remove in the same context of the chunk mutex. The chunk mutex is
used to protect the allocable device list, the above method can avoid
the new chunk allocation, and after we remove the source device, all
the new chunks will be allocated on the new device. So it can fix
the first bug.
For the second bug, we need make sure all flighting bios are finished and
no new bios are produced during we are removing the source device. To fix
this problem, we introduced a global @bio_counter, we not only inc/dec
@bio_counter outsize of map_blocks, but also inc it before submitting bio
and dec @bio_counter when ending bios.
Since Raid56 is a little different and device replace dosen't support raid56
yet, it is not addressed in the patch and I add comments to make sure we will
fix it in the future.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Pull btrfs fixes from Chris Mason:
"We have a small collection of fixes in my for-linus branch.
The big thing that stands out is a revert of a new ioctl. Users
haven't shipped yet in btrfs-progs, and Dave Sterba found a better way
to export the information"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use right clone root offset for compressed extents
btrfs: fix null pointer deference at btrfs_sysfs_add_one+0x105
Btrfs: unset DCACHE_DISCONNECTED when mounting default subvol
Btrfs: fix max_inline mount option
Btrfs: fix a lockdep warning when cleaning up aborted transaction
Revert "btrfs: add ioctl to export size of global metadata reservation"
Given now we have 2 spinlock for management of delayed refs,
CONFIG_DEBUG_SPINLOCK=y helped me find this,
[ 4723.413809] BUG: spinlock wrong CPU on CPU#1, btrfs-transacti/2258
[ 4723.414882] lock: 0xffff880048377670, .magic: dead4ead, .owner: btrfs-transacti/2258, .owner_cpu: 2
[ 4723.417146] CPU: 1 PID: 2258 Comm: btrfs-transacti Tainted: G W O 3.12.0+ #4
[ 4723.421321] Call Trace:
[ 4723.421872] [<ffffffff81680fe7>] dump_stack+0x54/0x74
[ 4723.422753] [<ffffffff81681093>] spin_dump+0x8c/0x91
[ 4723.424979] [<ffffffff816810b9>] spin_bug+0x21/0x26
[ 4723.425846] [<ffffffff81323956>] do_raw_spin_unlock+0x66/0x90
[ 4723.434424] [<ffffffff81689bf7>] _raw_spin_unlock+0x27/0x40
[ 4723.438747] [<ffffffffa015da9e>] btrfs_cleanup_one_transaction+0x35e/0x710 [btrfs]
[ 4723.443321] [<ffffffffa015df54>] btrfs_cleanup_transaction+0x104/0x570 [btrfs]
[ 4723.444692] [<ffffffff810c1b5d>] ? trace_hardirqs_on_caller+0xfd/0x1c0
[ 4723.450336] [<ffffffff810c1c2d>] ? trace_hardirqs_on+0xd/0x10
[ 4723.451332] [<ffffffffa015e5ee>] transaction_kthread+0x22e/0x270 [btrfs]
[ 4723.452543] [<ffffffffa015e3c0>] ? btrfs_cleanup_transaction+0x570/0x570 [btrfs]
[ 4723.457833] [<ffffffff81079efa>] kthread+0xea/0xf0
[ 4723.458990] [<ffffffff81079e10>] ? kthread_create_on_node+0x140/0x140
[ 4723.460133] [<ffffffff81692aac>] ret_from_fork+0x7c/0xb0
[ 4723.460865] [<ffffffff81079e10>] ? kthread_create_on_node+0x140/0x140
[ 4723.496521] ------------[ cut here ]------------
----------------------------------------------------------------------
The reason is that we get to call cond_resched_lock(&head_ref->lock) while
still holding @delayed_refs->lock.
So it's different with __btrfs_run_delayed_refs(), where we do drop-acquire
dance before and after actually processing delayed refs.
Here we don't drop the lock, others are not able to add new delayed refs to
head_ref, so cond_resched_lock(&head_ref->lock) is not necessary here.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Filipe is fixing compile and boot problems with our crc32c rework, and
Josef has disabled snapshot aware defrag for now.
As the number of snapshots increases, we're hitting OOM. For the
short term we're disabling things until a bigger fix is ready"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use late_initcall instead of module_init
Btrfs: use btrfs_crc32c everywhere instead of libcrc32c
Btrfs: disable snapshot aware defrag for now
After the commit titled "Btrfs: fix btrfs boot when compiled as built-in",
LIBCRC32C requirement was removed from btrfs' Kconfig. This made it not
possible to build a kernel with btrfs enabled (either as module or built-in)
if libcrc32c is not enabled as well. So just replace all uses of libcrc32c
with the equivalent function in btrfs hash.h - btrfs_crc32c.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This is a pretty big pull, and most of these changes have been
floating in btrfs-next for a long time. Filipe's properties work is a
cool building block for inheriting attributes like compression down on
a per inode basis.
Jeff Mahoney kicked in code to export filesystem info into sysfs.
Otherwise, lots of performance improvements, cleanups and bug fixes.
Looks like there are still a few other small pending incrementals, but
I wanted to get the bulk of this in first"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (149 commits)
Btrfs: fix spin_unlock in check_ref_cleanup
Btrfs: setup inode location during btrfs_init_inode_locked
Btrfs: don't use ram_bytes for uncompressed inline items
Btrfs: fix btrfs_search_slot_for_read backwards iteration
Btrfs: do not export ulist functions
Btrfs: rework ulist with list+rb_tree
Btrfs: fix memory leaks on walking backrefs failure
Btrfs: fix send file hole detection leading to data corruption
Btrfs: add a reschedule point in btrfs_find_all_roots()
Btrfs: make send's file extent item search more efficient
Btrfs: fix to catch all errors when resolving indirect ref
Btrfs: fix protection between walking backrefs and root deletion
btrfs: fix warning while merging two adjacent extents
Btrfs: fix infinite path build loops in incremental send
btrfs: undo sysfs when open_ctree() fails
Btrfs: fix snprintf usage by send's gen_unique_name
btrfs: fix defrag 32-bit integer overflow
btrfs: sysfs: list the NO_HOLES feature
btrfs: sysfs: don't show reserved incompat feature
btrfs: call permission checks earlier in ioctls and return EPERM
...
When transaction is aborted, we fail to commit transaction, instead we do
cleanup work. After that when we umount btrfs, we get to free fs roots' log
trees respectively, but that happens after we unpin extents, so those extents
pinned by freeing log trees will remain in memory and lead to the leak.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noinode_cache mount option for btrfs.
Since inode map cache involves all the btrfs_find_free_ino/return_ino
things and if just trigger the mount_opt,
an inode number get from inode map cache will not returned to inode map
cache.
To keep the find and return inode both in the same behavior,
a new bit in mount_opt, CHANGE_INODE_CACHE, is introduced for this idea.
CHANGE_INODE_CACHE is set/cleared in remounting, and the original
INODE_MAP_CACHE is set/cleared according to CHANGE_INODE_CACHE after a
success transaction.
Since find/return inode is all done between btrfs_start_transaction and
btrfs_commit_transaction, this will keep consistent behavior.
Also noinode_cache mount option will not stop the caching_kthread.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On one of our gluster clusters we noticed some pretty big lag spikes. This
turned out to be because our transaction commit was taking like 3 minutes to
complete. This is because we have like 30 gigs of metadata, so our global
reserve would end up being the max which is like 512 mb. So our throttling code
would allow a ridiculous amount of delayed refs to build up and then they'd all
get run at transaction commit time, and for a cold mounted file system that
could take up to 3 minutes to run. So fix the throttling to be based on both
the size of the global reserve and how long it takes us to run delayed refs.
This patch tracks the time it takes to run delayed refs and then only allows 1
seconds worth of outstanding delayed refs at a time. This way it will auto-tune
itself from cold cache up to when everything is in memory and it no longer has
to go to disk. This makes our transaction commits take much less time to run.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we have two rb-trees, one for delayed ref heads and one for all of the
delayed refs, including the delayed ref heads. When we process the delayed refs
we have to hold onto the delayed ref lock for all of the selecting and merging
and such, which results in quite a bit of lock contention. This was solved by
having a waitqueue and only one flusher at a time, however this hurts if we get
a lot of delayed refs queued up.
So instead just have an rb tree for the delayed ref heads, and then attach the
delayed ref updates to an rb tree that is per delayed ref head. Then we only
need to take the delayed ref lock when adding new delayed refs and when
selecting a delayed ref head to process, all the rest of the time we deal with a
per delayed ref head lock which will be much less contentious.
The locking rules for this get a little more complicated since we have to lock
up to 3 things to properly process delayed refs, but I will address that problem
later. For now this passes all of xfstests and my overnight stress tests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We only intent to fua the first superblock in every device from
comments, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I need to create a fake tree to test qgroups and I don't want to have to setup a
fake btree_inode. The fact is we only use the radix tree for the fs_info, so
everybody else who allocates an extent_io_tree is just wasting the space anyway.
This patch moves the radix tree and its lock into btrfs_fs_info so there is less
stuff I have to fake to do qgroup sanity tests. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is the third step in bootstrapping the btrfs_find_item interface.
The function find_orphan_item(), in orphan.c, is similar to the two
functions already replaced by the new interface. It uses two parameters,
which are already present in the interface, and is nearly identical to
the function brought in in the previous patch.
Replace the two calls to find_orphan_item() with calls to
btrfs_find_item(), with the defined objectid and type that was used
internally by find_orphan_item(), a null path, and a null key. Add a
test for a null path to btrfs_find_item, and if it passes, allocate and
free the path. Finally, remove find_orphan_item().
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Remove unused variables:
* tree from csum_dirty_buffer,
* tree from btree_readpage_end_io_hook,
* tree from btree_writepages,
* bytenr from btrfs_create_tree,
* fs_info from end_workqueue_fn.
Signed-off-by: Valentina Giusti <valentina.giusti@microon.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch adds per-super attributes to sysfs.
It doesn't publish any attributes yet, but does the proper lifetime
handling as well as the basic infrastructure to add new attributes.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
The way how we process delayed refs is
1) get a bunch of head refs,
2) pick up one head ref,
3) go one node back for any delayed ref updates.
The head ref is also linked in the same rbtree as the delayed ref is,
so in 1) stage, we have to walk one by one including not only head refs, but
delayed refs.
When we have a great number of delayed refs pending to process,
this'll cost time a lot.
Here we introduce a head ref specific rbtree, it only has head refs, so troubles
go away.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs bits got lost in the rebase
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
With immutable biovecs we don't want code accessing bi_io_vec directly -
the uses this patch changes weren't incorrect since they all own the
bio, but it makes the code harder to audit for no good reason - also,
this will help with multipage bvecs later.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
The 'git blame' history shows that, the old transaction commit code has to do
twice to ensure roots are updated and we have to flush metadata and super block
manually, however, right now all of these can be handled well inside
the transaction commit code without extra efforts.
And the error handling part remains same with the current code, -- 'return to
caller once we get error'.
This saves us a transaction commit and a flush of super block, which are both
heavy operations according to ftrace output analysis.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The function write_ctree_super() in disk-io.c uses variable ret to return
the result of function write_all_supers(). Since, this variable serves
no purpose, hence the patch removes it and returns the call of the
called function.
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Use WARN_ON()'s return value in place of WARN_ON(1) for cleaner source
code that outputs a more descriptive warnings. Also fix the styling
warning of redundant braces that came up as a result of this fix.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The function free_root_pointers() in disk-io.h contains redundant code.
Therefore, this patch adds a helper function free_root_extent_buffers()
to free_root_pointers() to eliminate redundancy.
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Originally, we introduced scrub_super_lock to synchronize
tree log code with scrubbing super.
However we can replace scrub_super_lock with device_list_mutex,
because writing super will hold this mutex, this will reduce an extra
lock holding when writing supers in sync log code.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
fs/btrfs/compat.h only contained trivial macro wrappers of drop_nlink()
and inc_nlink(). This doesn't belong in mainline.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
alloc_extent_buffer() uses radix_tree_lookup() when radix_tree_insert()
fails with EEXIST. That part of the code is very similar to the code in
find_extent_buffer(). This patch replaces radix_tree_lookup() and
surrounding code in alloc_extent_buffer() with find_extent_buffer().
Note that radix_tree_lookup() does not need to be protected by
tree->buffer_lock. It is protected by eb->refs.
While at it, this patch
- changes the other usage of radix_tree_lookup() in alloc_extent_buffer()
with find_extent_buffer() to reduce redundancy.
- removes the unused argument 'len' to find_extent_buffer().
Signed-Off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Stefan was hitting a panic in the async worker stuff because we had outstanding
read bios while we were stopping the worker threads. You could reproduce this
easily if you mount -o nospace_cache and ran generic/273. This is because the
caching thread stuff is still going and we were stopping all the worker threads.
We need to stop the workers after this work is done, and the free block groups
code will wait for all the caching threads to stop first so we don't run into
this problem. With this patch we no longer panic. Thanks,
Cc: stable@vger.kernel.org
Reported-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we abort a transaction we will do the tree log cleanup at unmount, but this
happens after we free up the block groups. This makes all the leak detection
warnings go off because we think we've leaked space but in reality we just
haven't cleaned it up yet. So instead do the block group cleanup stuff after
free'ing the fs roots so we don't get these warnings. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The transactions should be cleaning up their reservations on failure, this just
causes us to have warnings on unmount because we go negative by free'ing
reservations that have already been free'ed. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently the hash value used for adding an inode to the VFS's inode
hash table consists of the plain inode number, which is a 64 bits
integer. This results in hash table buckets (hlist_head lists) with
too many elements for at least 2 important scenarios:
1) When we have many subvolumes. Each subvolume has its own btree
where its files and directories are added to, and each has its
own objectid (inode number) namespace. This means that if we have
N subvolumes, and all have inode number X associated to a file or
directory, the corresponding inodes all map to the same hash table
entry, resulting in a bucket (hlist_head list) with N elements;
2) On 32 bits machines. Th VFS hash values are unsigned longs, which
are 32 bits wide on 32 bits machines, and the inode (objectid)
numbers are 64 bits unsigned integers. We simply cast the inode
numbers to hash values, which means that for all inodes with the
same 32 bits lower half, the same hash bucket is used for all of
them. For example, all inodes with a number (objectid) between
0x0000_0000_ffff_ffff and 0xffff_ffff_ffff_ffff will end up in
the same hash table bucket.
This change ensures the inode's hash value depends both on the
objectid (inode number) and its subvolume's (btree root) objectid.
For 32 bits machines, this change gives better entropy by making
the hash value depend on both the upper and lower 32 bits of the
64 bits hash previously computed.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused parameter, 'eb'. Unused since introduction in
5f39d397df
Updated to be rebased against current upstream and correct diff supplied this time!
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I was noticing the slab redzone stuff going off every once and a while during
transaction aborts. This was caused by two things
1) We would walk the pending snapshots and set their error to -ECANCELED. We
don't need to do this, the snapshot stuff waits for a transaction commit and if
there is a problem we just free our pending snapshot object and exit. Doing
this was causing us to touch the pending snapshot object after the thing had
already been freed.
2) We were freeing the transaction manually with wanton disregard for it's
use_count reference counter. To fix this I cleaned up the transaction freeing
loop to either wait for the transaction commit to finish if it was in the middle
of that (since it will be cleaned and freed up there) or to do the cleanup
oursevles.
I also moved the global "kill all things dirty everywhere" stuff outside of the
transaction cleanup loop since that only needs to be done once. With this patch
I'm no longer seeing slab corruption because of use after frees. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
During transaction cleanup after an abort we are just removing roots from the
ordered roots list which is incorrect. We have a BUG_ON() to make sure that the
root is still part of the ordered roots list when we put our ordered extent
which we were tripping in this case. So do like we do everywhere else and just
move it to the tail of the ordered roots list and allow the normal cleanup to
take care of stuff. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we abort not during a transaction commit we won't clean up anything until we
unmount. Unfortunately if we abort in the middle of writing out an ordered
extent we won't clean it up and if somebody is waiting on that ordered extent
they will wait forever. To fix this just make the transaction kthread call the
cleanup transaction stuff if it notices theres an error, and make
btrfs_end_transaction wake up the transaction kthread if there is an error.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While looking at somebodys corruption I became completely convinced that
btrfs_split_item was broken, so I wrote this test to verify that it was working
as it was supposed to. Thankfully it appears to be working as intended, so just
add this test to make sure nobody breaks it in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The fact that btrfs_root_refs() returned 0 for the tree_root caused
bugs in the past, therefore it is set to 1 with this patch and
(hopefully) all affected code is adapted to this change.
I verified this change by temporarily adding WARN_ON() checks
everywhere where btrfs_root_refs() is used, checking whether the
logic of the code is changed by btrfs_root_refs() returning 1
instead of 0 for root->root_key.objectid == BTRFS_ROOT_TREE_OBJECTID.
With these added checks, I ran the xfstests './check -g auto'.
The two roots chunk_root and log_root_tree that are only referenced
by the superblock and the log_roots below the log_root_tree still
have btrfs_root_refs() == 0, only the tree_root is changed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When doing space balance and subvolume destroy at the same time, we met
the following oops:
kernel BUG at fs/btrfs/relocation.c:2247!
RIP: 0010: [<ffffffffa04cec16>] prepare_to_merge+0x154/0x1f0 [btrfs]
Call Trace:
[<ffffffffa04b5ab7>] relocate_block_group+0x466/0x4e6 [btrfs]
[<ffffffffa04b5c7a>] btrfs_relocate_block_group+0x143/0x275 [btrfs]
[<ffffffffa0495c56>] btrfs_relocate_chunk.isra.27+0x5c/0x5a2 [btrfs]
[<ffffffffa0459871>] ? btrfs_item_key_to_cpu+0x15/0x31 [btrfs]
[<ffffffffa048b46a>] ? btrfs_get_token_64+0x7e/0xcd [btrfs]
[<ffffffffa04a3467>] ? btrfs_tree_read_unlock_blocking+0xb2/0xb7 [btrfs]
[<ffffffffa049907d>] btrfs_balance+0x9c7/0xb6f [btrfs]
[<ffffffffa049ef84>] btrfs_ioctl_balance+0x234/0x2ac [btrfs]
[<ffffffffa04a1e8e>] btrfs_ioctl+0xd87/0x1ef9 [btrfs]
[<ffffffff81122f53>] ? path_openat+0x234/0x4db
[<ffffffff813c3b78>] ? __do_page_fault+0x31d/0x391
[<ffffffff810f8ab6>] ? vma_link+0x74/0x94
[<ffffffff811250f5>] vfs_ioctl+0x1d/0x39
[<ffffffff811258c8>] do_vfs_ioctl+0x32d/0x3e2
[<ffffffff811259d4>] SyS_ioctl+0x57/0x83
[<ffffffff813c3bfa>] ? do_page_fault+0xe/0x10
[<ffffffff813c73c2>] system_call_fastpath+0x16/0x1b
It is because we returned the error number if the reference of the root was 0
when doing space relocation. It was not right here, because though the root
was dead(refs == 0), but the space it held still need be relocated, or we
could not remove the block group. So in this case, we should return the root
no matter it is dead or not.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The BUG() was replaced by btrfs_error() and return -EIO with the
patch "get rid of one BUG() in write_all_supers()", but the missing
mutex_unlock() was overlooked.
The 0-DAY kernel build service from Intel reported the missing
unlock which was found by the coccinelle tool:
fs/btrfs/disk-io.c:3422:2-8: preceding lock on line 3374
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We only need an async starter if we can't make a GFP_NOFS allocation in our
current path. This is the case for the endio stuff since it happens in IRQ
context, but things like the caching thread workers and the delalloc flushers we
can easily make this allocation and start threads right away. Also change the
worker count for the caching thread pool. Traditionally we limited this to 2
since we took read locks while caching, but nowadays we do this lockless so
there's no reason to limit the number of caching threads. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Mitch Harder noticed that the patch 3c64a1a mentioned in the subject
line was causing a kernel BUG() on snapshot deletion.
The patch was wrong. It did not handle cached roots correctly. The
check for root_refs == 0 was removed everywhere where
btrfs_read_fs_root_no_name() had been used to retrieve the root,
because this check was already dealt with in
btrfs_read_fs_root_no_name(). But in the case when the root was
found in the cache, there was no such check.
This patch adds the missing check in the case where the root is
found in the cache.
Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The second round uses btrfs_error() and return -EIO, the first round
can handle write errors the same way.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This change fixes an issue when removing a device and writing
all super blocks run simultaneously. Here's the steps necessary
for the issue to happen:
1) disk-io.c:write_all_supers() gets a number of N devices from the
super_copy, so it will not panic if it fails to write super blocks
for N - 1 devices;
2) Then it tries to acquire the device_list_mutex, but blocks because
volumes.c:btrfs_rm_device() got it first;
3) btrfs_rm_device() removes the device from the list, then unlocks the
mutex and after the unlock it updates the number of devices in
super_copy to N - 1.
4) write_all_supers() finally acquires the mutex, iterates over all the
devices in the list and gets N - 1 errors, that is, it failed to write
super blocks to all the devices;
5) Because write_all_supers() thinks there are a total of N devices, it
considers N - 1 errors to be ok, and therefore won't panic.
So this change just makes sure that write_all_supers() reads the number
of devices from super_copy after it acquires the device_list_mutex.
Conversely, it changes btrfs_rm_device() to update the number of devices
in super_copy before it releases the device list mutex.
The code path to add a new device (volumes.c:btrfs_init_new_device),
already has the right behaviour: it updates the number of devices in
super_copy while holding the device_list_mutex.
The only code path that doesn't lock the device list mutex
before updating the number of devices in the super copy is
disk-io.c:next_root_backup(), called by open_ctree() during
mount time where concurrency issues can't happen.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Internally, btrfs_header_chunk_tree_uuid() calculates an unsigned long, but
casts it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Internally, btrfs_header_fsid() calculates an unsigned long, but casts
it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
u64 is "unsigned long long" on all architectures now, so there's no need to
cast it when formatting it using the "ll" length modifier.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This should never be needed, but since all functions are there
to check and rebuild the UUID tree, a mount option is added that
allows to force this check and rebuild procedure.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If the filesystem was mounted with an old kernel that was not
aware of the UUID tree, this is detected by looking at the
uuid_tree_generation field of the superblock (similar to how
the free space cache is doing it). If a mismatch is detected
at mount time, a thread is started that does two things:
1. Iterate through the UUID tree, check each entry, delete those
entries that are not valid anymore (i.e., the subvol does not
exist anymore or the value changed).
2. Iterate through the root tree, for each found subvolume, add
the UUID tree entries for the subvolume (if they are not
already there).
This mechanism is also used to handle and repair errors that
happened during the initial creation and filling of the tree.
The update of the uuid_tree_generation field (which indicates
that the state of the UUID tree is up to date) is blocked until
all create and repair operations are successfully completed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When the UUID tree is initially created, a task is spawned that
walks through the root tree. For each found subvolume root_item,
the uuid and received_uuid entries in the UUID tree are added.
This is such a quick operation so that in case somebody wants
to unmount the filesystem while the task is still running, the
unmount is delayed until the UUID tree building task is finished.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This tree is not created by mkfs.btrfs. Therefore when a filesystem
is mounted writable and the UUID tree does not exist, this tree is
created if required. The tree is also added to the fs_info structure
and initialized, but this commit does not yet read or write UUID tree
elements.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Chris Mason <chris.mason@fusionio.com>
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
make C=2 fs/btrfs/ CF=-D__CHECK_ENDIAN__
I tried to filter out the warnings for which patches have already
been sent to the mailing list, pending for inclusion in btrfs-next.
All these changes should be obviously safe.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I added a patch where we started taking the ordered operations mutex when we
waited on ordered extents. We need this because we splice the list and process
it, so if a flusher came in during this scenario it would think the list was
empty and we'd usually get an early ENOSPC. The problem with this is that this
lock is used in transaction committing. So we end up with something like this
Transaction commit
-> wait on writers
Delalloc flusher
-> run_ordered_operations (holds mutex)
->wait for filemap-flush to do its thing
flush task
-> cow_file_range
->wait on btrfs_join_transaction because we're commiting
some other task
-> commit_transaction because we notice trans->transaction->flush is set
-> run_ordered_operations (hang on mutex)
We need to disentangle the ordered operations flushing from the delalloc
flushing, since they are separate things. This solves the deadlock issue I was
seeing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I'ts hardcoded to 30 seconds which is fine for most users. Higher values
defer data being synced to permanent storage with obvious consequences
when the system crashes. The upper bound is not forced, but a warning is
printed if it's more than 300 seconds (5 minutes).
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Before applying this patch, we cached the csum value into the extent state
tree when reading some data from the disk, this operation increased the lock
contention of the state tree.
Now, we just store the csum value into the bio structure or other unshared
structure, so we can reduce the lock contention.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Some codes still use the cpu_to_lexx instead of the
BTRFS_SETGET_STACK_FUNCS declared in ctree.h.
Also added some BTRFS_SETGET_STACK_FUNCS for btrfs_header btrfs_timespec
and other structures.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"These are the usual mixture of bugs, cleanups and performance fixes.
Miao has some really nice tuning of our crc code as well as our
transaction commits.
Josef is peeling off more and more problems related to early enospc,
and has a number of important bug fixes in here too"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (81 commits)
Btrfs: wait ordered range before doing direct io
Btrfs: only do the tree_mod_log_free_eb if this is our last ref
Btrfs: hold the tree mod lock in __tree_mod_log_rewind
Btrfs: make backref walking code handle skinny metadata
Btrfs: fix crash regarding to ulist_add_merge
Btrfs: fix several potential problems in copy_nocow_pages_for_inode
Btrfs: cleanup the code of copy_nocow_pages_for_inode()
Btrfs: fix oops when recovering the file data by scrub function
Btrfs: make the chunk allocator completely tree lockless
Btrfs: cleanup orphaned root orphan item
Btrfs: fix wrong mirror number tuning
Btrfs: cleanup redundant code in btrfs_submit_direct()
Btrfs: remove btrfs_sector_sum structure
Btrfs: check if we can nocow if we don't have data space
Btrfs: stop using try_to_writeback_inodes_sb_nr to flush delalloc
Btrfs: use a percpu to keep track of possibly pinned bytes
Btrfs: check for actual acls rather than just xattrs when caching no acl
Btrfs: move btrfs_truncate_page to btrfs_cont_expand instead of btrfs_truncate
Btrfs: optimize reada_for_balance
Btrfs: optimize read_block_for_search
...
category, of note is a fix for on-line resizing file systems where the
block size is smaller than the page size (i.e., file systems 1k blocks
on x86, or more interestingly file systems with 4k blocks on Power or
ia64 systems.)
In the cleanup category, the ext4's punch hole implementation was
significantly improved by Lukas Czerner, and now supports bigalloc
file systems. In addition, Jan Kara significantly cleaned up the
write submission code path. We also improved error checking and added
a few sanity checks.
In the optimizations category, two major optimizations deserve
mention. The first is that ext4_writepages() is now used for
nodelalloc and ext3 compatibility mode. This allows writes to be
submitted much more efficiently as a single bio request, instead of
being sent as individual 4k writes into the block layer (which then
relied on the elevator code to coalesce the requests in the block
queue). Secondly, the extent cache shrink mechanism, which was
introduce in 3.9, no longer has a scalability bottleneck caused by the
i_es_lru spinlock. Other optimizations include some changes to reduce
CPU usage and to avoid issuing empty commits unnecessarily.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABCAAGBQJR0XhgAAoJENNvdpvBGATwMXkQAJwTPk5XYLqtAwLziFLvM6wG
0tWa1QAzTNo80tLyM9iGqI6x74X5nddLw5NMICUmPooOa9agMuA4tlYVSss5jWzV
yyB7vLzsc/2eZJusuVqfTKrdGybE+M766OI6VO9WodOoIF1l51JXKjktKeaWegfv
NkcLKlakD4V+ZASEDB/cOcR/lTwAs9dQ89AZzgPiW+G8Do922QbqkENJB8mhalbg
rFGX+lu9W0f3fqdmT3Xi8KGn3EglETdVd6jU7kOZN4vb5LcF5BKHQnnUmMlpeWMT
ksOVasb3RZgcsyf5ZOV5feXV601EsNtPBrHAmH22pWQy3rdTIvMv/il63XlVUXZ2
AXT3cHEvNQP0/yVaOTCZ9xQVxT8sL4mI6kENP9PtNuntx7E90JBshiP5m24kzTZ/
zkIeDa+FPhsDx1D5EKErinFLqPV8cPWONbIt/qAgo6663zeeIyMVhzxO4resTS9k
U2QEztQH+hDDbjgABtz9M/GjSrohkTYNSkKXzhTjqr/m5huBrVMngjy/F4/7G7RD
vSEx5aXqyagnrUcjsupx+biJ1QvbvZWOVxAE/6hNQNRGDt9gQtHAmKw1eG2mugHX
+TFDxodNE4iWEURenkUxXW3mDx7hFbGZR0poHG3M/LVhKMAAAw0zoKrrUG5c70G7
XrddRLGlk4Hf+2o7/D7B
=SwaI
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 update from Ted Ts'o:
"Lots of bug fixes, cleanups and optimizations. In the bug fixes
category, of note is a fix for on-line resizing file systems where the
block size is smaller than the page size (i.e., file systems 1k blocks
on x86, or more interestingly file systems with 4k blocks on Power or
ia64 systems.)
In the cleanup category, the ext4's punch hole implementation was
significantly improved by Lukas Czerner, and now supports bigalloc
file systems. In addition, Jan Kara significantly cleaned up the
write submission code path. We also improved error checking and added
a few sanity checks.
In the optimizations category, two major optimizations deserve
mention. The first is that ext4_writepages() is now used for
nodelalloc and ext3 compatibility mode. This allows writes to be
submitted much more efficiently as a single bio request, instead of
being sent as individual 4k writes into the block layer (which then
relied on the elevator code to coalesce the requests in the block
queue). Secondly, the extent cache shrink mechanism, which was
introduce in 3.9, no longer has a scalability bottleneck caused by the
i_es_lru spinlock. Other optimizations include some changes to reduce
CPU usage and to avoid issuing empty commits unnecessarily."
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (86 commits)
ext4: optimize starting extent in ext4_ext_rm_leaf()
jbd2: invalidate handle if jbd2_journal_restart() fails
ext4: translate flag bits to strings in tracepoints
ext4: fix up error handling for mpage_map_and_submit_extent()
jbd2: fix theoretical race in jbd2__journal_restart
ext4: only zero partial blocks in ext4_zero_partial_blocks()
ext4: check error return from ext4_write_inline_data_end()
ext4: delete unnecessary C statements
ext3,ext4: don't mess with dir_file->f_pos in htree_dirblock_to_tree()
jbd2: move superblock checksum calculation to jbd2_write_superblock()
ext4: pass inode pointer instead of file pointer to punch hole
ext4: improve free space calculation for inline_data
ext4: reduce object size when !CONFIG_PRINTK
ext4: improve extent cache shrink mechanism to avoid to burn CPU time
ext4: implement error handling of ext4_mb_new_preallocation()
ext4: fix corruption when online resizing a fs with 1K block size
ext4: delete unused variables
ext4: return FIEMAP_EXTENT_UNKNOWN for delalloc extents
jbd2: remove debug dependency on debug_fs and update Kconfig help text
jbd2: use a single printk for jbd_debug()
...
When testing a corrupted fs I noticed I was getting sleep while atomic errors
when the transaction aborted. This is because btrfs_pin_extent may need to
allocate memory and we are calling this under the spin lock. Fix this by moving
it out and doing the pin after dropping the spin lock but before dropping the
mutex, the same way it works when delayed refs run normally. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When called during mount, we cannot start the rescan worker thread until
open_ctree is done. This commit restuctures the qgroup rescan internals to
enable a clean deferral of the rescan resume operation.
First of all, the struct qgroup_rescan is removed, saving us a malloc and
some initialization synchronizations problems. Its only element (the worker
struct) now lives within fs_info just as the rest of the rescan code.
Then setting up a rescan worker is split into several reusable stages.
Currently we have three different rescan startup scenarios:
(A) rescan ioctl
(B) rescan resume by mount
(C) rescan by quota enable
Each case needs its own combination of the four following steps:
(1) set the progress [A, C: zero; B: state of umount]
(2) commit the transaction [A]
(3) set the counters [A, C: zero; B: state of umount]
(4) start worker [A, B, C]
qgroup_rescan_init does step (1). There's no extra function added to commit
a transaction, we've got that already. qgroup_rescan_zero_tracking does
step (3). Step (4) is nothing more than a call to the generic
btrfs_queue_worker.
We also get rid of a double check for the rescan progress during
btrfs_qgroup_account_ref, which is no longer required due to having step 2
from the list above.
As a side effect, this commit prepares to move the rescan start code from
btrfs_run_qgroups (which is run during commit) to a less time critical
section.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We used 3 variants to track the state of the transaction, it was complex
and wasted the memory space. Besides that, it was hard to understand that
which types of the transaction handles should be blocked in each transaction
state, so the developers often made mistakes.
This patch improved the above problem. In this patch, we define 6 states
for the transaction,
enum btrfs_trans_state {
TRANS_STATE_RUNNING = 0,
TRANS_STATE_BLOCKED = 1,
TRANS_STATE_COMMIT_START = 2,
TRANS_STATE_COMMIT_DOING = 3,
TRANS_STATE_UNBLOCKED = 4,
TRANS_STATE_COMPLETED = 5,
TRANS_STATE_MAX = 6,
}
and just use 1 variant to track those state.
In order to make the blocked handle types for each state more clear,
we introduce a array:
unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
__TRANS_START),
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
}
it is very intuitionistic.
Besides that, because we remove ->in_commit in transaction structure, so
the lock ->commit_lock which was used to protect it is unnecessary, remove
->commit_lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we umount a fs with serious errors, we will invoke btrfs_cleanup_transactions()
to clean up the residual transaction. At this time, It is impossible to start a new
transaction, so we needn't assign trans_no_join to 1, and also needn't clear running
transaction every time we destroy a residual transaction.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The reason we introduce per-subvolume ordered extent list is the same
as the per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we create a snapshot, we need flush all delalloc inodes in the
fs, just flushing the inodes in the source tree is OK. So we introduce
per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The grab/put funtions will be used in the next patch, which need grab
the root object and ensure it is not freed. We use reference counter
instead of the srcu lock is to aovid blocking the memory reclaim task,
which invokes synchronize_srcu().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There are several functions whose code is similar, such as
btrfs_find_last_root()
btrfs_read_fs_root_no_radix()
Besides that, some functions are invoked twice, it is unnecessary,
for example, we are sure that all roots which is found in
btrfs_find_orphan_roots()
have their orphan items, so it is unnecessary to check the orphan
item again.
So cleanup it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The snapshot/subvolume deletion might spend lots of time, it would make
the remount task wait for a long time. This patch improve this problem,
we will break the deletion if the fs is remounted to be R/O. It will make
the users happy.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If the fs is remounted to be R/O, it is unnecessary to call
btrfs_clean_one_deleted_snapshot(), so move the R/O check out of
this function. And besides that, it can make the check logic in the
caller more clear.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
In order to avoid the R/O remount, we acquired ->s_umount lock during
we deleted the dead snapshots and subvolumes. But it is unnecessary,
because we have cleaner_mutex.
We use cleaner_mutex to protect the process of the dead snapshots/subvolumes
deletion. And when we remount the fs to be R/O, we also acquire this mutex to
do cleanup after we change the status of the fs. That is this lock can serialize
the above operations, the cleaner can be aware of the status of the fs, and if
the cleaner is deleting the dead snapshots/subvolumes, the remount task will
wait for it. So it is safe to remove ->s_umount in cleaner_kthread().
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
No need to check for NULL in send.c and disk-io.c.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When doing qgroup accounting, we call ulist_alloc()/ulist_free() every time
when we want to walk qgroup tree.
By introducing 'qgroup_ulist', we only need to call ulist_alloc()/ulist_free()
once. This reduce some sys time to allocate memory, see the measurements below
fsstress -p 4 -n 10000 -d $dir
With this patch:
real 0m50.153s
user 0m0.081s
sys 0m6.294s
real 0m51.113s
user 0m0.092s
sys 0m6.220s
real 0m52.610s
user 0m0.096s
sys 0m6.125s avg 6.213
-----------------------------------------------------
Without the patch:
real 0m54.825s
user 0m0.061s
sys 0m10.665s
real 1m6.401s
user 0m0.089s
sys 0m11.218s
real 1m13.768s
user 0m0.087s
sys 0m10.665s avg 10.849
we can see the sys time reduce ~43%.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Code checked for raid 5 flag in two else-if branches, so code would never be reached. Probably a copy-paste bug.
Signed-off-by: Henrik Nordvik <henrikno@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Dave reported a panic because the extent_root->commit_root was NULL in the
caching kthread. That is because we just unset it in free_root_pointers, which
is not the correct thing to do, we have to either wait for the caching kthread
to complete or hold the extent_commit_sem lock so we know the thread has exited.
This patch makes the kthreads all stop first and then we do our cleanup. This
should fix the race. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We get a use after free if we had a transaction to cleanup since there could be
delayed inodes which refer to their respective fs_root. Thanks
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently there is no way to truncate partial page where the end
truncate point is not at the end of the page. This is because it was not
needed and the functionality was enough for file system truncate
operation to work properly. However more file systems now support punch
hole feature and it can benefit from mm supporting truncating page just
up to the certain point.
Specifically, with this functionality truncate_inode_pages_range() can
be changed so it supports truncating partial page at the end of the
range (currently it will BUG_ON() if 'end' is not at the end of the
page).
This commit changes the invalidatepage() address space operation
prototype to accept range to be invalidated and update all the instances
for it.
We also change the block_invalidatepage() in the same way and actually
make a use of the new length argument implementing range invalidation.
Actual file system implementations will follow except the file systems
where the changes are really simple and should not change the behaviour
in any way .Implementation for truncate_page_range() which will be able
to accept page unaligned ranges will follow as well.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Btrfs has been pointer tagging bi_private and using bi_bdev
to store the stripe index and mirror number of failed IOs.
As bios bubble back up through the call chain, we use these
to decide if and how to retry our IOs. They are also used
to count IO failures on a per device basis.
Recently a bio tracepoint was added lead to crashes because
we were abusing bi_bdev.
This commit adds a btrfs bioset, and creates explicit fields
for the mirror number and stripe index. The plan is to
extend this structure for all of the fields currently in
struct btrfs_bio, which will mean one less kmalloc in
our IO path.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Tejun Heo <tj@kernel.org>
If we fail to load the chunk tree we'll call free_root_pointers, except we may
not have assigned the roots for the dev_root/extent_root/csum_root yet, so we
could NULL pointer deref at this point. Just add checks to make sure these
roots are set to keep us from panicing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_invalidate_inodes() may sleep, so we should not invoke it in the
spin lock context. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We have checked if ->node is NULL or not, so it is unnecessary to
use BUG_ON() to check again. Remove it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I'm sorry, theres no excuse for this sort of work. We need to use
root->leafsize since eb may be NULL. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Quota tree has been missing from lockdep annotations, though no warning
has been seen in the wild.
There's currently one entry that does not belong there,
BTRFS_ORPHAN_OBJECTID. No such tree exists, it's probably a copy &
paste mistake, the id is defined among tree ids.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We've added new checks to make sure the super block crc is correct
during mount. A fresh filesystem from an older mkfs won't have the
crc set. This adds a warning when it finds a newly created filesystem
but doesn't fail the mount.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The superblock checksum is not verified upon mount. <awkward silence>
Add that check and also reorder existing checks to a more logical
order.
Current mkfs.btrfs does not calculate the correct checksum of
super_block and thus a freshly created filesytem will fail to mount when
this patch is applied.
First transaction commit calculates correct superblock checksum and
saves it to disk.
Reproducer:
$ mfks.btrfs /dev/sda
$ mount /dev/sda /mnt
$ btrfs scrub start /mnt
$ sleep 5
$ btrfs scrub status /mnt
... super:2 ...
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If you try to mount -o loop a restored file system it will panic if the file
ends up being smaller than the original disk. This is because we go to try and
get a block for a super that may be past the EOF which makes __getblk return
NULL for a buffer head when we aren't expecting it to. Fix this by dealing with
this case and just jacking up the errors count. With this patch we no longer
panic when mounting a restored file system loopback. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If qgroup tracking is out of sync, a rescan operation can be started. It
iterates the complete extent tree and recalculates all qgroup tracking data.
This is an expensive operation and should not be used unless required.
A filesystem under rescan can still be umounted. The rescan continues on the
next mount. Status information is provided with a separate ioctl while a
rescan operation is in progress.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Sequence numbers for delayed refs have been introduced in the first version
of the qgroup patch set. To solve the problem of find_all_roots on a busy
file system, the tree mod log was introduced. The sequence numbers for that
were simply shared between those two users.
However, at one point in qgroup's quota accounting, there's a statement
accessing the previous sequence number, that's still just doing (seq - 1)
just as it would have to in the very first version.
To satisfy that requirement, this patch makes the sequence number counter 64
bit and splits it into a major part (used for qgroup sequence number
counting) and a minor part (incremented for each tree modification in the
log). This enables us to go exactly one major step backwards, as required
for qgroups, while still incrementing the sequence counter for tree mod log
insertions to keep track of their order. Keeping them in a single variable
means there's no need to change all the code dealing with comparisons of two
sequence numbers.
The sequence number is reset to 0 on commit (not new in this patch), which
ensures we won't overflow the two 32 bit counters.
Without this fix, the qgroup tracking can occasionally go wrong and WARN_ONs
from the tree mod log code may happen.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
It is a rare exception that a new tree is created, like the qgroups
tree. So far these new trees have an all-zero UUID in their root
items. All trees that mkfs.btrfs has created get an UUID during the
first mount when btrfs_read_root_item() rewrites the root_item to
the v2 structure style. These UUID are never used so far, but
anyway, since it is better to have it uniform for all trees, this
commit adds some lines that generate and write an UUID for newly
created trees.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I have a broken file system that when it aborts leaves all sorts of accounting
things wrong and gives you lots of WARN_ON()'s other than the abort. This is
because we're not cleaning up various parts of the file system when we abort.
The first chunks are specific to mount failures, we weren't cleaning up the
block group cached inodes and we weren't cleaning up any transactions that had
been aborted, which leaves a bunch of things laying around.
The second half of this are related to the cleanup parts. First we don't need
to release space for the dirty pages from the trans_block_rsv, that's all
handled by the trans handles so this is just plain wrong. The other thing is we
need to pin down extents that were set ->must_insert_reserved for delayed refs.
This isn't so much for the pinning but more for the cleaning up the
cache->reserved counter since we are no longer going to use those reserved
bytes. With this patch I no longer see a bunch of WARN_ON()'s when I try to
mount this broken file system, just the initial one from the abort. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We can just look up the extent_buffers for the range and free stuff that way.
This makes the cleanup a bit cleaner and we can make sure to evict the
extent_buffers pretty quickly by marking them as stale. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We can run the tree logging recovery or the orphan cleanup on mount, so we'll
end up looking up a random fs tree in the meantime. So we need to clean this up
so we don't leave extent buffers hanging around on the cache. With this patch
we no longer leak extent buffers on failure to mount. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We kept leaking extent buffers when mounting a broken file system and it turns
out it's because not everybody uses read_tree_block properly. You need to check
and make sure the extent_buffer is uptodate before you use it. This patch fixes
everybody who calls read_tree_block directly to make sure they check that it is
uptodate and free it and return an error if it is not. With this we no longer
leak EB's when things go horribly wrong. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
With a users corrupted fs I was getting weird behavior and panics and it turns
out it was because one of his tree blocks had a bogus header level. So add this
to the sanity checks in the endio handler for tree blocks. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Martin Steigerwald reported a BUG_ON() where we were given a bogus bytenr to
map. Turns out he is using > PAGESIZE leafsizes. The readahead stuff is called
every time we do a completion, but we may not have finished reading in all the
pages, so the bytenr we read off the node could be completely bogus. Fix this
by only calling the readahead hook once all pages have been read in. Thanks,
Reported-by: Martin Steigerwald <Martin@lichtvoll.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Dave reported a BUG_ON() that happened in end_page_writeback() after an abort.
This happened because we unconditionally call end_page_writeback() in the endio
case, which is right. However when we abort the transaction we will call
end_page_writeback() on any writeback pages we find, which is wrong. We need to
lock the page and wait on page writeback to complete if it is. There is nothing
unsafe about this since we are discarding the transaction anyway. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The following case will make the incompat/compat flag of the super block
be recovered.
Task1 |Task2
flags = btrfs_super_incompat_flags(); |
|flags = btrfs_super_incompat_flags();
flags |= new_flag1; |
|flags |= new_flag2;
btrfs_set_super_incompat_flags(flags); |
|btrfs_set_super_incompat_flags(flags);
the new_flag1 is recovered.
In order to avoid this problem, we introduce a lock named super_lock into
the btrfs_fs_info structure. If we want to update incompat/compat flags
of the super block, we must hold it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The original code has one spin_lock 'qgroup_lock' to protect quota
configurations in memory. If we want to add a BTRFS_QGROUP_INFO_KEY,
it will be added to Btree firstly, and then update configurations in
memory,however, a race condition may happen between these operations.
For example:
->add_qgroup_info_item()
->add_qgroup_rb()
For the above case, del_qgroup_info_item() may happen just before
add_qgroup_rb().
What's worse, when we want to add a qgroup relation:
->add_qgroup_relation_item()
->add_qgroup_relations()
We don't have any checks whether 'src' and 'dst' exist before
add_qgroup_relation_item(), a race condition can also happen for
the above case.
To avoid race condition and have all the necessary checks, we introduce
a mutex lock 'qgroup_ioctl_lock', and we make all the user change operations
protected by the mutex lock.
Signed-off-by: Wang Shilong <wangsl-fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user sent me a btrfs-image of a file system that was panicing on mount during
the log recovery. I had originally thought these problems were from a bug in
the free space cache code, but that was just a symptom of the problem. The
problem is if your application does something like this
[prealloc][prealloc][prealloc]
the internal extent maps will merge those all together into one extent map, even
though on disk they are 3 separate extents. So if you go to write into one of
these ranges the extent map will be right since we use the physical extent when
doing the write, but when we log the extents they will use the wrong sizes for
the remainder prealloc space. If this doesn't happen to trip up the free space
cache (which it won't in a lot of cases) then you will get bogus entries in your
extent tree which will screw stuff up later. The data and such will still work,
but everything else is broken. This patch fixes this by not allowing extents
that are on the modified list to be merged. This has the side effect that we
are no longer adding everything to the modified list all the time, which means
we now have to call btrfs_drop_extents every time we log an extent into the
tree. So this allows me to drop all this speciality code I was using to get
around calling btrfs_drop_extents. With this patch the testcase I've created no
longer creates a bogus file system after replaying the log. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Each time pick one dead root from the list and let the caller know if
it's needed to continue. This should improve responsiveness during
umount and balance which at some point waits for cleaning all currently
queued dead roots.
A new dead root is added to the end of the list, so the snapshots
disappear in the order of deletion.
The snapshot cleaning work is now done only from the cleaner thread and the
others wake it if needed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We currently store the first key of the tree block inside the reference for the
tree block in the extent tree. This takes up quite a bit of space. Make a new
key type for metadata which holds the level as the offset and completely removes
storing the btrfs_tree_block_info inside the extent ref. This reduces the size
from 51 bytes to 33 bytes per extent reference for each tree block. In practice
this results in a 30-35% decrease in the size of our extent tree, which means we
COW less and can keep more of the extent tree in memory which makes our heavy
metadata operations go much faster. This is not an automatic format change, you
must enable it at mkfs time or with btrfstune. This patch deals with having
metadata stored as either the old format or the new format so it is easy to
convert. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
free_root_pointers() has been introduced to cleanup all of tree roots,
so just use it instead.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We should free leaf and root before returning from the error
handling code.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Now that we use bit operation to check fs_state, update
btrfs_free_fs_root()'s checker, otherwise we get back to
memory leak case.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
There are several bugs at error path of create_snapshot() when the
transaction commitment failed.
- access the freed transaction handler. At the end of the
transaction commitment, the transaction handler was freed, so we
should not access it after the transaction commitment.
- we were not aware of the error which happened during the snapshot
creation if we submitted a async transaction commitment.
- pending snapshot access vs pending snapshot free. when something
wrong happened after we submitted a async transaction commitment,
the transaction committer would cleanup the pending snapshots and
free them. But the snapshot creators were not aware of it, they
would access the freed pending snapshots.
This patch fixes the above problems by:
- remove the dangerous code that accessed the freed handler
- assign ->error if the error happens during the snapshot creation
- the transaction committer doesn't free the pending snapshots,
just assigns the error number and evicts them before we unblock
the transaction.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The stripe hash table is large, starting with allocation order 4 and can go as
high as order 7 in case lock debugging is turned on and structure padding
happens.
Observed mount failure:
mount: page allocation failure: order:7, mode:0x200050
Pid: 8234, comm: mount Tainted: G W 3.8.0-default+ #267
Call Trace:
[<ffffffff81114353>] warn_alloc_failed+0xf3/0x140
[<ffffffff811171d2>] ? __alloc_pages_direct_compact+0x92/0x250
[<ffffffff81117ac3>] __alloc_pages_nodemask+0x733/0x9d0
[<ffffffff81152878>] ? cache_alloc_refill+0x3f8/0x840
[<ffffffff811528bc>] cache_alloc_refill+0x43c/0x840
[<ffffffff811302eb>] ? is_kernel_percpu_address+0x4b/0x90
[<ffffffffa00a00ac>] ? btrfs_alloc_stripe_hash_table+0x5c/0x130 [btrfs]
[<ffffffff811531d7>] kmem_cache_alloc_trace+0x247/0x270
[<ffffffffa00a00ac>] btrfs_alloc_stripe_hash_table+0x5c/0x130 [btrfs]
[<ffffffffa003133f>] open_ctree+0xb2f/0x1f90 [btrfs]
[<ffffffff81397289>] ? string+0x49/0xe0
[<ffffffff813987b3>] ? vsnprintf+0x443/0x5d0
[<ffffffffa0007cb6>] btrfs_mount+0x526/0x600 [btrfs]
[<ffffffff8115127c>] ? cache_alloc_debugcheck_after+0x4c/0x200
[<ffffffff81162b90>] mount_fs+0x20/0xe0
[<ffffffff8117db26>] vfs_kern_mount+0x76/0x120
[<ffffffff811801b6>] do_mount+0x386/0x980
[<ffffffff8112a5cb>] ? strndup_user+0x5b/0x80
[<ffffffff81180840>] sys_mount+0x90/0xe0
[<ffffffff81962e99>] system_call_fastpath+0x16/0x1b
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we abort a transaction while fsyncing, we'll skip freeing log roots
part of committing a transaction, which leads to memory leak.
This adds a 'free log roots' in putting super when no more users hold
references on log roots, so it's safe and clean.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
super.magic is an le64 but it's treated as an unterminated string when
compared against BTRFS_MAGIC which is defined as a string. Instead
define BTRFS_MAGIC as a normal hex value and use endian helpers to
compare it to the super's magic.
I tested this by mounting an fs made before the change and made sure
that it didn't introduce sparse errors. This matches a similar cleanup
that is pending in btrfs-progs. David Sterba pointed out that we should
fix the kernel side as well :).
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Miao made the ordered operations stuff run async, which introduced a
deadlock where we could get somebody (sync) racing in and committing the
transaction while a commit was already happening. The new committer would
try and flush ordered operations which would hang waiting for the commit to
finish because it is done asynchronously and no longer inherits the callers
trans handle. To fix this we need to make the ordered operations list a per
transaction list. We can get new inodes added to the ordered operation list
by truncating them and then having another process writing to them, so this
makes it so that anybody trying to add an ordered operation _must_ start a
transaction in order to add itself to the list, which will keep new inodes
from getting added to the ordered operations list after we start committing.
This should fix the deadlock and also keeps us from doing a lot more work
than we need to during commit. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
open_ctree() need read the metadata to initialize the global information
of btrfs. But it may fail after it submit some bio, and then it will jump
to the error path. Unfortunately, it doesn't check if there are some bios
in flight, and just stop all the worker threads. As a result, when the
submitted bios end, they can not find any worker thread which can deal with
subsequent work, then oops happen.
kernel BUG at fs/btrfs/async-thread.c:605!
Fix this problem by invoking invalidate_inode_pages2() before we stop the
worker threads. This function will wait until the bio end because it need
lock the pages which are going to be invalidated, and if a page is under
disk read IO, it must be locked. invalidate_inode_pages2() need wait until
end bio handler to unlocked it.
Reported-and-Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we abort we've been just free'ing up all the ordered extents and
hoping for the best. This results in lots of warnings from various places,
warnings from btrfs_destroy_inode() because it's ENOSPC accounting isn't
fixed. It will also screw up lots of pages who have been set private but
never get cleared because the ordered extents are never allowed to be
submitted. This patch fixes those warnings. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I hit this error when reproducing a bug that would end in a transaction
abort. We take the delayed ref head's mutex to keep anybody from processing
it while we're destroying it, but we fail to drop the mutex before we carry
on and free the damned thing. Fix this by doing the remove logic for the
head ourselves and unlock the mutex, that way we can avoid use after free's
or hung tasks waiting on that mutex to come back so they know the delayed
ref completed. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
No need to test the result, we can't get a
null pointer from list_entry()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is no lock to protect fs_info->fs_state, it will introduce
some problems, such as the value may be covered by the other task
when several tasks modify it. For example:
Task0 - CPU0 Task1 - CPU1
mov %fs_state rax
or $0x1 rax
mov %fs_state rax
or $0x2 rax
mov rax %fs_state
mov rax %fs_state
The expected value is 3, but in fact, it is 2.
Though this problem doesn't happen now (because there is only one
flag currently), the code is error prone, if we add other flags,
the above problem will happen to a certainty.
Now we use bit operation for it to fix the above problem.
In this way, we can make the code more robust and be easy to
add new flags.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There is no lock to protect
fs_info->avail_{data, metadata, system}_alloc_bits,
it may introduce some problem, such as the wrong profile
information, so we add a seqlock to protect them.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>