Граф коммитов

194 Коммитов

Автор SHA1 Сообщение Дата
Greg Thelen ef510194ce memcg: remove pcp_counter_lock
Commit 733a572e66 ("memcg: make mem_cgroup_read_{stat|event}() iterate
possible cpus instead of online") removed the last use of the per memcg
pcp_counter_lock but forgot to remove the variable.

Kill the vestigial variable.

Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-01 21:42:35 -04:00
Vladimir Davydov e993d905c8 memcg: zap try_get_mem_cgroup_from_page
It is only used in mem_cgroup_try_charge, so fold it in and zap it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Vladimir Davydov 2fc0452470 memcg: add page_cgroup_ino helper
This patchset introduces a new user API for tracking user memory pages
that have not been used for a given period of time.  The purpose of this
is to provide the userspace with the means of tracking a workload's
working set, i.e.  the set of pages that are actively used by the
workload.  Knowing the working set size can be useful for partitioning the
system more efficiently, e.g.  by tuning memory cgroup limits
appropriately, or for job placement within a compute cluster.

==== USE CASES ====

The unified cgroup hierarchy has memory.low and memory.high knobs, which
are defined as the low and high boundaries for the workload working set
size.  However, the working set size of a workload may be unknown or
change in time.  With this patch set, one can periodically estimate the
amount of memory unused by each cgroup and tune their memory.low and
memory.high parameters accordingly, therefore optimizing the overall
memory utilization.

Another use case is balancing workloads within a compute cluster.  Knowing
how much memory is not really used by a workload unit may help take a more
optimal decision when considering migrating the unit to another node
within the cluster.

Also, as noted by Minchan, this would be useful for per-process reclaim
(https://lwn.net/Articles/545668/). With idle tracking, we could reclaim idle
pages only by smart user memory manager.

==== USER API ====

The user API consists of two new files:

 * /sys/kernel/mm/page_idle/bitmap.  This file implements a bitmap where each
   bit corresponds to a page, indexed by PFN. When the bit is set, the
   corresponding page is idle. A page is considered idle if it has not been
   accessed since it was marked idle. To mark a page idle one should set the
   bit corresponding to the page by writing to the file. A value written to the
   file is OR-ed with the current bitmap value. Only user memory pages can be
   marked idle, for other page types input is silently ignored. Writing to this
   file beyond max PFN results in the ENXIO error. Only available when
   CONFIG_IDLE_PAGE_TRACKING is set.

   This file can be used to estimate the amount of pages that are not
   used by a particular workload as follows:

   1. mark all pages of interest idle by setting corresponding bits in the
      /sys/kernel/mm/page_idle/bitmap
   2. wait until the workload accesses its working set
   3. read /sys/kernel/mm/page_idle/bitmap and count the number of bits set

 * /proc/kpagecgroup.  This file contains a 64-bit inode number of the
   memory cgroup each page is charged to, indexed by PFN. Only available when
   CONFIG_MEMCG is set.

   This file can be used to find all pages (including unmapped file pages)
   accounted to a particular cgroup. Using /sys/kernel/mm/page_idle/bitmap, one
   can then estimate the cgroup working set size.

For an example of using these files for estimating the amount of unused
memory pages per each memory cgroup, please see the script attached
below.

==== REASONING ====

The reason to introduce the new user API instead of using
/proc/PID/{clear_refs,smaps} is that the latter has two serious
drawbacks:

 - it does not count unmapped file pages
 - it affects the reclaimer logic

The new API attempts to overcome them both. For more details on how it
is achieved, please see the comment to patch 6.

==== PATCHSET STRUCTURE ====

The patch set is organized as follows:

 - patch 1 adds page_cgroup_ino() helper for the sake of
   /proc/kpagecgroup and patches 2-3 do related cleanup
 - patch 4 adds /proc/kpagecgroup, which reports cgroup ino each page is
   charged to
 - patch 5 introduces a new mmu notifier callback, clear_young, which is
   a lightweight version of clear_flush_young; it is used in patch 6
 - patch 6 implements the idle page tracking feature, including the
   userspace API, /sys/kernel/mm/page_idle/bitmap
 - patch 7 exports idle flag via /proc/kpageflags

==== SIMILAR WORKS ====

Originally, the patch for tracking idle memory was proposed back in 2011
by Michel Lespinasse (see http://lwn.net/Articles/459269/).  The main
difference between Michel's patch and this one is that Michel implemented
a kernel space daemon for estimating idle memory size per cgroup while
this patch only provides the userspace with the minimal API for doing the
job, leaving the rest up to the userspace.  However, they both share the
same idea of Idle/Young page flags to avoid affecting the reclaimer logic.

==== PERFORMANCE EVALUATION ====

SPECjvm2008 (https://www.spec.org/jvm2008/) was used to evaluate the
performance impact introduced by this patch set.  Three runs were carried
out:

 - base: kernel without the patch
 - patched: patched kernel, the feature is not used
 - patched-active: patched kernel, 1 minute-period daemon is used for
   tracking idle memory

For tracking idle memory, idlememstat utility was used:
https://github.com/locker/idlememstat

testcase            base            patched        patched-active

compiler       537.40 ( 0.00)%   532.26 (-0.96)%   538.31 ( 0.17)%
compress       305.47 ( 0.00)%   301.08 (-1.44)%   300.71 (-1.56)%
crypto         284.32 ( 0.00)%   282.21 (-0.74)%   284.87 ( 0.19)%
derby          411.05 ( 0.00)%   413.44 ( 0.58)%   412.07 ( 0.25)%
mpegaudio      189.96 ( 0.00)%   190.87 ( 0.48)%   189.42 (-0.28)%
scimark.large   46.85 ( 0.00)%    46.41 (-0.94)%    47.83 ( 2.09)%
scimark.small  412.91 ( 0.00)%   415.41 ( 0.61)%   421.17 ( 2.00)%
serial         204.23 ( 0.00)%   213.46 ( 4.52)%   203.17 (-0.52)%
startup         36.76 ( 0.00)%    35.49 (-3.45)%    35.64 (-3.05)%
sunflow        115.34 ( 0.00)%   115.08 (-0.23)%   117.37 ( 1.76)%
xml            620.55 ( 0.00)%   619.95 (-0.10)%   620.39 (-0.03)%

composite      211.50 ( 0.00)%   211.15 (-0.17)%   211.67 ( 0.08)%

time idlememstat:

17.20user 65.16system 2:15:23elapsed 1%CPU (0avgtext+0avgdata 8476maxresident)k
448inputs+40outputs (1major+36052minor)pagefaults 0swaps

==== SCRIPT FOR COUNTING IDLE PAGES PER CGROUP ====
#! /usr/bin/python
#

import os
import stat
import errno
import struct

CGROUP_MOUNT = "/sys/fs/cgroup/memory"
BUFSIZE = 8 * 1024  # must be multiple of 8

def get_hugepage_size():
    with open("/proc/meminfo", "r") as f:
        for s in f:
            k, v = s.split(":")
            if k == "Hugepagesize":
                return int(v.split()[0]) * 1024

PAGE_SIZE = os.sysconf("SC_PAGE_SIZE")
HUGEPAGE_SIZE = get_hugepage_size()

def set_idle():
    f = open("/sys/kernel/mm/page_idle/bitmap", "wb", BUFSIZE)
    while True:
        try:
            f.write(struct.pack("Q", pow(2, 64) - 1))
        except IOError as err:
            if err.errno == errno.ENXIO:
                break
            raise
    f.close()

def count_idle():
    f_flags = open("/proc/kpageflags", "rb", BUFSIZE)
    f_cgroup = open("/proc/kpagecgroup", "rb", BUFSIZE)

    with open("/sys/kernel/mm/page_idle/bitmap", "rb", BUFSIZE) as f:
        while f.read(BUFSIZE): pass  # update idle flag

    idlememsz = {}
    while True:
        s1, s2 = f_flags.read(8), f_cgroup.read(8)
        if not s1 or not s2:
            break

        flags, = struct.unpack('Q', s1)
        cgino, = struct.unpack('Q', s2)

        unevictable = (flags >> 18) & 1
        huge = (flags >> 22) & 1
        idle = (flags >> 25) & 1

        if idle and not unevictable:
            idlememsz[cgino] = idlememsz.get(cgino, 0) + \
                (HUGEPAGE_SIZE if huge else PAGE_SIZE)

    f_flags.close()
    f_cgroup.close()
    return idlememsz

if __name__ == "__main__":
    print "Setting the idle flag for each page..."
    set_idle()

    raw_input("Wait until the workload accesses its working set, "
              "then press Enter")

    print "Counting idle pages..."
    idlememsz = count_idle()

    for dir, subdirs, files in os.walk(CGROUP_MOUNT):
        ino = os.stat(dir)[stat.ST_INO]
        print dir + ": " + str(idlememsz.get(ino, 0) / 1024) + " kB"
==== END SCRIPT ====

This patch (of 8):

Add page_cgroup_ino() helper to memcg.

This function returns the inode number of the closest online ancestor of
the memory cgroup a page is charged to.  It is required for exporting
information about which page is charged to which cgroup to userspace,
which will be introduced by a following patch.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Michal Hocko 6421999489 memcg: get rid of extern for functions in memcontrol.h
Most of the exported functions in this header are not marked extern so
change the rest to follow the same style.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Michal Hocko fabc3fdde0 memcg: get rid of mem_cgroup_root_css for !CONFIG_MEMCG
The only user is cgwb_bdi_init and that one depends on
CONFIG_CGROUP_WRITEBACK which in turn depends on CONFIG_MEMCG so it
doesn't make much sense to definte an empty stub for !CONFIG_MEMCG.
Moreover ERR_PTR(-EINVAL) is ugly and would lead to runtime crashes if
used in unguarded code paths.  Better fail during compilation.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Michal Hocko 33398cf2f3 memcg: export struct mem_cgroup
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.

This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines.  This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)

  text		data    bss     dec     	 hex 	filename
  12355346        1823792 1089536 15268674         e8fb42 vmlinux.before
  12354970        1823792 1089536 15268298         e8f9ca vmlinux.after

This is not much (370B) but better than nothing.

We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.

The patch doesn't introduce any functional changes.

[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Linus Torvalds e4bc13adfd Merge branch 'for-4.2/writeback' of git://git.kernel.dk/linux-block
Pull cgroup writeback support from Jens Axboe:
 "This is the big pull request for adding cgroup writeback support.

  This code has been in development for a long time, and it has been
  simmering in for-next for a good chunk of this cycle too.  This is one
  of those problems that has been talked about for at least half a
  decade, finally there's a solution and code to go with it.

  Also see last weeks writeup on LWN:

        http://lwn.net/Articles/648292/"

* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
  writeback, blkio: add documentation for cgroup writeback support
  vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
  writeback: do foreign inode detection iff cgroup writeback is enabled
  v9fs: fix error handling in v9fs_session_init()
  bdi: fix wrong error return value in cgwb_create()
  buffer: remove unusued 'ret' variable
  writeback: disassociate inodes from dying bdi_writebacks
  writeback: implement foreign cgroup inode bdi_writeback switching
  writeback: add lockdep annotation to inode_to_wb()
  writeback: use unlocked_inode_to_wb transaction in inode_congested()
  writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
  writeback: implement [locked_]inode_to_wb_and_lock_list()
  writeback: implement foreign cgroup inode detection
  writeback: make writeback_control track the inode being written back
  writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
  mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
  writeback: implement memcg writeback domain based throttling
  writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
  writeback: implement memcg wb_domain
  writeback: update wb_over_bg_thresh() to use wb_domain aware operations
  ...
2015-06-25 16:00:17 -07:00
Tejun Heo c2aa723a60 writeback: implement memcg writeback domain based throttling
While cgroup writeback support now connects memcg and blkcg so that
writeback IOs are properly attributed and controlled, the IO back
pressure propagation mechanism implemented in balance_dirty_pages()
and its subroutines wasn't aware of cgroup writeback.

Processes belonging to a memcg may have access to only subset of total
memory available in the system and not factoring this into dirty
throttling rendered it completely ineffective for processes under
memcg limits and memcg ended up building a separate ad-hoc degenerate
mechanism directly into vmscan code to limit page dirtying.

The previous patches updated balance_dirty_pages() and its subroutines
so that they can deal with multiple wb_domain's (writeback domains)
and defined per-memcg wb_domain.  Processes belonging to a non-root
memcg are bound to two wb_domains, global wb_domain and memcg
wb_domain, and should be throttled according to IO pressures from both
domains.  This patch updates dirty throttling code so that it repeats
similar calculations for the two domains - the differences between the
two are few and minor - and applies the lower of the two sets of
resulting constraints.

wb_over_bg_thresh(), which controls when background writeback
terminates, is also updated to consider both global and memcg
wb_domains.  It returns true if dirty is over bg_thresh for either
domain.

This makes the dirty throttling mechanism operational for memcg
domains including writeback-bandwidth-proportional dirty page
distribution inside them but the ad-hoc memcg throttling mechanism in
vmscan is still in place.  The next patch will rip it out.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo 841710aa6e writeback: implement memcg wb_domain
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.

For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg.  IOW, a wb will belong to two writeback domains - the global
and memcg domains.

The previous patches laid the groundwork to support the two wb_domains
and this patch implements memcg wb_domain.  memcg->cgwb_domain is
initialized on css online and destroyed on css release,
wb->memcg_completions is added, and __wb_writeout_inc() is updated to
increment completions against both global and memcg wb_domains.

The following patches will update balance_dirty_pages() and its
subroutines to actually consider memcg wb_domain for throttling.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo 52ebea749a writeback: make backing_dev_info host cgroup-specific bdi_writebacks
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback).  This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).

On the default hierarchy, blkcg implicitly enables memcg.  This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg.  This means that there may be multiple
wb's of a bdi mapped to the same blkcg.  As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state.  This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.

bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task.  Each cgwb is indexed on bdi->cgwb_tree
by its memcg id.  Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().

Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.

v3: inode_attach_wb() in account_page_dirtied() moved inside
    mapping_cap_account_dirty() block where it's known to be !NULL.
    Also, an unnecessary NULL check before kfree() removed.  Both
    detected by the kbuild bot.

v2: Updated so that wb association is per inode and wb is per memcg
    rather than blkcg.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:35 -06:00
Tejun Heo ad7fa852d3 memcg: implement mem_cgroup_css_from_page()
Implement mem_cgroup_css_from_page() which returns the
cgroup_subsys_state of the memcg associated with a given page on the
default hierarchy.  This will be used by cgroup writeback support.

This function assumes that page->mem_cgroup association doesn't change
until the page is released, which is true on the default hierarchy as
long as replace_page_cache_page() is not used.  As the only user of
replace_page_cache_page() is FUSE which won't support cgroup writeback
for the time being, this works for now, and replace_page_cache_page()
will soon be updated so that the invariant actually holds.

Note that the RCU protected page->mem_cgroup access is consistent with
other usages across memcg but ultimately incorrect.  These unlocked
accesses are missing required barriers.  page->mem_cgroup should be
made an RCU pointer and updated and accessed using RCU operations.

v4: Instead of triggering WARN, return the root css on the traditional
    hierarchies.  This makes the function a lot easier to deal with
    especially as there's no light way to synchronize against
    hierarchy rebinding.

v3: s/mem_cgroup_migrate()/mem_cgroup_css_from_page()/

v2: Trigger WARN if the function is used on the traditional
    hierarchies and add comment about the assumed invariant.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:34 -06:00
Tejun Heo 56161634e4 memcg: add mem_cgroup_root_css
Add global mem_cgroup_root_css which points to the root memcg css.
This will be used by cgroup writeback support.  If memcg is disabled,
it's defined as ERR_PTR(-EINVAL).

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
aCc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:33 -06:00
Greg Thelen c4843a7593 memcg: add per cgroup dirty page accounting
When modifying PG_Dirty on cached file pages, update the new
MEM_CGROUP_STAT_DIRTY counter.  This is done in the same places where
global NR_FILE_DIRTY is managed.  The new memcg stat is visible in the
per memcg memory.stat cgroupfs file.  The most recent past attempt at
this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632

The new accounting supports future efforts to add per cgroup dirty
page throttling and writeback.  It also helps an administrator break
down a container's memory usage and provides evidence to understand
memcg oom kills (the new dirty count is included in memcg oom kill
messages).

The ability to move page accounting between memcg
(memory.move_charge_at_immigrate) makes this accounting more
complicated than the global counter.  The existing
mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
accounting with stat updates.
Typical update operation:
	memcg = mem_cgroup_begin_page_stat(page)
	if (TestSetPageDirty()) {
		[...]
		mem_cgroup_update_page_stat(memcg)
	}
	mem_cgroup_end_page_stat(memcg)

Summary of mem_cgroup_end_page_stat() overhead:
- Without CONFIG_MEMCG it's a no-op
- With CONFIG_MEMCG and no inter memcg task movement, it's just
  rcu_read_lock()
- With CONFIG_MEMCG and inter memcg  task movement, it's
  rcu_read_lock() + spin_lock_irqsave()

A memcg parameter is added to several routines because their callers
now grab mem_cgroup_begin_page_stat() which returns the memcg later
needed by for mem_cgroup_update_page_stat().

Because mem_cgroup_begin_page_stat() may disable interrupts, some
adjustments are needed:
- move __mark_inode_dirty() from __set_page_dirty() to its caller.
  __mark_inode_dirty() locking does not want interrupts disabled.
- use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
  __delete_from_page_cache(), replace_page_cache_page(),
  invalidate_complete_page2(), and __remove_mapping().

   text    data     bss      dec    hex filename
8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
                            +192 text bytes
8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
                            +773 text bytes

Performance tests run on v4.0-rc1-36-g4f671fe2f952.  Lower is better for
all metrics, they're all wall clock or cycle counts.  The read and write
fault benchmarks just measure fault time, they do not include I/O time.

* CONFIG_MEMCG not set:
                            baseline                              patched
  kbuild                 1m25.030000(+-0.088% 3 samples)       1m25.426667(+-0.120% 3 samples)
  dd write 100 MiB          0.859211561 +-15.10%                  0.874162885 +-15.03%
  dd write 200 MiB          1.670653105 +-17.87%                  1.669384764 +-11.99%
  dd write 1000 MiB         8.434691190 +-14.15%                  8.474733215 +-14.77%
  read fault cycles       254.0(+-0.000% 10 samples)            253.0(+-0.000% 10 samples)
  write fault cycles     2021.2(+-3.070% 10 samples)           1984.5(+-1.036% 10 samples)

* CONFIG_MEMCG=y root_memcg:
                            baseline                              patched
  kbuild                 1m25.716667(+-0.105% 3 samples)       1m25.686667(+-0.153% 3 samples)
  dd write 100 MiB          0.855650830 +-14.90%                  0.887557919 +-14.90%
  dd write 200 MiB          1.688322953 +-12.72%                  1.667682724 +-13.33%
  dd write 1000 MiB         8.418601605 +-14.30%                  8.673532299 +-15.00%
  read fault cycles       266.0(+-0.000% 10 samples)            266.0(+-0.000% 10 samples)
  write fault cycles     2051.7(+-1.349% 10 samples)           2049.6(+-1.686% 10 samples)

* CONFIG_MEMCG=y non-root_memcg:
                            baseline                              patched
  kbuild                 1m26.120000(+-0.273% 3 samples)       1m25.763333(+-0.127% 3 samples)
  dd write 100 MiB          0.861723964 +-15.25%                  0.818129350 +-14.82%
  dd write 200 MiB          1.669887569 +-13.30%                  1.698645885 +-13.27%
  dd write 1000 MiB         8.383191730 +-14.65%                  8.351742280 +-14.52%
  read fault cycles       265.7(+-0.172% 10 samples)            267.0(+-0.000% 10 samples)
  write fault cycles     2070.6(+-1.512% 10 samples)           2084.4(+-2.148% 10 samples)

As expected anon page faults are not affected by this patch.

tj: Updated to apply on top of the recent cancel_dirty_page() changes.

Signed-off-by: Sha Zhengju <handai.szj@gmail.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:33 -06:00
Vladimir Davydov 8f4fc071b1 gfp: add __GFP_NOACCOUNT
Not all kmem allocations should be accounted to memcg.  The following
patch gives an example when accounting of a certain type of allocations to
memcg can effectively result in a memory leak.  This patch adds the
__GFP_NOACCOUNT flag which if passed to kmalloc and friends will force the
allocation to go through the root cgroup.  It will be used by the next
patch.

Note, since in case of kmemleak enabled each kmalloc implies yet another
allocation from the kmemleak_object cache, we add __GFP_NOACCOUNT to
gfp_kmemleak_mask.

Alternatively, we could introduce a per kmem cache flag disabling
accounting for all allocations of a particular kind, but (a) we would not
be able to bypass accounting for kmalloc then and (b) a kmem cache with
this flag set could not be merged with a kmem cache without this flag,
which would increase the number of global caches and therefore
fragmentation even if the memory cgroup controller is not used.

Despite its generic name, currently __GFP_NOACCOUNT disables accounting
only for kmem allocations while user page allocations are always charged.
To catch abusing of this flag, a warning is issued on an attempt of
passing it to mem_cgroup_try_charge.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>	[4.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-05-14 17:55:51 -07:00
Vladimir Davydov 60d3fd32a7 list_lru: introduce per-memcg lists
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure.  Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.

This patch does the trick.  It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to.  So now
the list_lru structure is not just per node, but per node and per memcg.

Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware.  Otherwise (i.e.  if initialized with old list_lru_init), the
list_lru won't have per memcg lists.

Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased.  So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.

The locking is implemented in a manner similar to lruvecs, i.e.  we have
one lock per node that protects all lists (both global and per cgroup) on
the node.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov 05257a1a3d memcg: add rwsem to synchronize against memcg_caches arrays relocation
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks.  As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size).  This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.

To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem.  The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates.  Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.

Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex.  However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov dbcf73e26c memcg: rename some cache id related variables
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome.  Also it doesn't point anyhow that
it's related to kmem/caches stuff.  So let's rename it to
memcg_nr_cache_ids.  It's concise and points us directly to
memcg_cache_id.

Also, rename kmem_limited_groups to memcg_cache_ida.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov cb731d6c62 vmscan: per memory cgroup slab shrinkers
This patch adds SHRINKER_MEMCG_AWARE flag.  If a shrinker has this flag
set, it will be called per memory cgroup.  The memory cgroup to scan
objects from is passed in shrink_control->memcg.  If the memory cgroup
is NULL, a memcg aware shrinker is supposed to scan objects from the
global list.  Unaware shrinkers are only called on global pressure with
memcg=NULL.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Johannes Weiner 241994ed86 mm: memcontrol: default hierarchy interface for memory
Introduce the basic control files to account, partition, and limit
memory using cgroups in default hierarchy mode.

This interface versioning allows us to address fundamental design
issues in the existing memory cgroup interface, further explained
below.  The old interface will be maintained indefinitely, but a
clearer model and improved workload performance should encourage
existing users to switch over to the new one eventually.

The control files are thus:

  - memory.current shows the current consumption of the cgroup and its
    descendants, in bytes.

  - memory.low configures the lower end of the cgroup's expected
    memory consumption range.  The kernel considers memory below that
    boundary to be a reserve - the minimum that the workload needs in
    order to make forward progress - and generally avoids reclaiming
    it, unless there is an imminent risk of entering an OOM situation.

  - memory.high configures the upper end of the cgroup's expected
    memory consumption range.  A cgroup whose consumption grows beyond
    this threshold is forced into direct reclaim, to work off the
    excess and to throttle new allocations heavily, but is generally
    allowed to continue and the OOM killer is not invoked.

  - memory.max configures the hard maximum amount of memory that the
    cgroup is allowed to consume before the OOM killer is invoked.

  - memory.events shows event counters that indicate how often the
    cgroup was reclaimed while below memory.low, how often it was
    forced to reclaim excess beyond memory.high, how often it hit
    memory.max, and how often it entered OOM due to memory.max.  This
    allows users to identify configuration problems when observing a
    degradation in workload performance.  An overcommitted system will
    have an increased rate of low boundary breaches, whereas increased
    rates of high limit breaches, maximum hits, or even OOM situations
    will indicate internally overcommitted cgroups.

For existing users of memory cgroups, the following deviations from
the current interface are worth pointing out and explaining:

  - The original lower boundary, the soft limit, is defined as a limit
    that is per default unset.  As a result, the set of cgroups that
    global reclaim prefers is opt-in, rather than opt-out.  The costs
    for optimizing these mostly negative lookups are so high that the
    implementation, despite its enormous size, does not even provide
    the basic desirable behavior.  First off, the soft limit has no
    hierarchical meaning.  All configured groups are organized in a
    global rbtree and treated like equal peers, regardless where they
    are located in the hierarchy.  This makes subtree delegation
    impossible.  Second, the soft limit reclaim pass is so aggressive
    that it not just introduces high allocation latencies into the
    system, but also impacts system performance due to overreclaim, to
    the point where the feature becomes self-defeating.

    The memory.low boundary on the other hand is a top-down allocated
    reserve.  A cgroup enjoys reclaim protection when it and all its
    ancestors are below their low boundaries, which makes delegation
    of subtrees possible.  Secondly, new cgroups have no reserve per
    default and in the common case most cgroups are eligible for the
    preferred reclaim pass.  This allows the new low boundary to be
    efficiently implemented with just a minor addition to the generic
    reclaim code, without the need for out-of-band data structures and
    reclaim passes.  Because the generic reclaim code considers all
    cgroups except for the ones running low in the preferred first
    reclaim pass, overreclaim of individual groups is eliminated as
    well, resulting in much better overall workload performance.

  - The original high boundary, the hard limit, is defined as a strict
    limit that can not budge, even if the OOM killer has to be called.
    But this generally goes against the goal of making the most out of
    the available memory.  The memory consumption of workloads varies
    during runtime, and that requires users to overcommit.  But doing
    that with a strict upper limit requires either a fairly accurate
    prediction of the working set size or adding slack to the limit.
    Since working set size estimation is hard and error prone, and
    getting it wrong results in OOM kills, most users tend to err on
    the side of a looser limit and end up wasting precious resources.

    The memory.high boundary on the other hand can be set much more
    conservatively.  When hit, it throttles allocations by forcing
    them into direct reclaim to work off the excess, but it never
    invokes the OOM killer.  As a result, a high boundary that is
    chosen too aggressively will not terminate the processes, but
    instead it will lead to gradual performance degradation.  The user
    can monitor this and make corrections until the minimal memory
    footprint that still gives acceptable performance is found.

    In extreme cases, with many concurrent allocations and a complete
    breakdown of reclaim progress within the group, the high boundary
    can be exceeded.  But even then it's mostly better to satisfy the
    allocation from the slack available in other groups or the rest of
    the system than killing the group.  Otherwise, memory.max is there
    to limit this type of spillover and ultimately contain buggy or
    even malicious applications.

  - The original control file names are unwieldy and inconsistent in
    many different ways.  For example, the upper boundary hit count is
    exported in the memory.failcnt file, but an OOM event count has to
    be manually counted by listening to memory.oom_control events, and
    lower boundary / soft limit events have to be counted by first
    setting a threshold for that value and then counting those events.
    Also, usage and limit files encode their units in the filename.
    That makes the filenames very long, even though this is not
    information that a user needs to be reminded of every time they
    type out those names.

    To address these naming issues, as well as to signal clearly that
    the new interface carries a new configuration model, the naming
    conventions in it necessarily differ from the old interface.

  - The original limit files indicate the state of an unset limit with
    a very high number, and a configured limit can be unset by echoing
    -1 into those files.  But that very high number is implementation
    and architecture dependent and not very descriptive.  And while -1
    can be understood as an underflow into the highest possible value,
    -2 or -10M etc. do not work, so it's not inconsistent.

    memory.low, memory.high, and memory.max will use the string
    "infinity" to indicate and set the highest possible value.

[akpm@linux-foundation.org: use seq_puts() for basic strings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Vladimir Davydov 90cbc25088 vmscan: force scan offline memory cgroups
Since commit b2052564e6 ("mm: memcontrol: continue cache reclaim from
offlined groups") pages charged to a memory cgroup are not reparented when
the cgroup is removed.  Instead, they are supposed to be reclaimed in a
regular way, along with pages accounted to online memory cgroups.

However, an lruvec of an offline memory cgroup will sooner or later get so
small that it will be scanned only at low scan priorities (see
get_scan_count()).  Therefore, if there are enough reclaimable pages in
big lruvecs, pages accounted to offline memory cgroups will never be
scanned at all, wasting memory.

Fix this by unconditionally forcing scanning dead lruvecs from kswapd.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner 6de226191d mm: memcontrol: track move_lock state internally
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags.  Simplify the API by tracking it in the memcg.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:00 -08:00
Vladimir Davydov d5b3cf7139 memcg: zap memcg_slab_caches and memcg_slab_mutex
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup.  Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed.  The
list is protected by memcg_slab_mutex.  The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.

However, we can perfectly get on without these two.  To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex.  This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.

Apart from this nice cleanup, it also:

 - assures that rcu_barrier() is called once at max when a root cache is
   destroyed or a memory cgroup is freed, no matter how many caches have
   SLAB_DESTROY_BY_RCU flag set;

 - fixes the race between kmem_cache_destroy and kmem_cache_create that
   exists, because memcg_cleanup_cache_params, which is called from
   kmem_cache_destroy after checking that kmem_cache->refcount=0,
   releases the slab_mutex, which gives kmem_cache_create a chance to
   make an alias to a cache doomed to be destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov dbf22eb6d8 memcg: zap __memcg_{charge,uncharge}_slab
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov 8135be5a80 memcg: fix possible use-after-free in memcg_kmem_get_cache()
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c.  The copy of @c corresponding to
@memcg, @mc, is empty.  Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:

CPU0				CPU1
----				----
[ current=@t
  @mc->memcg_params->nr_pages=0 ]

kmem_cache_alloc(@c):
  call memcg_kmem_get_cache(@c);
  proceed to allocation from @mc:
    alloc a page for @mc:
      ...

				move @t from @memcg
				destroy @memcg:
				  mem_cgroup_css_offline(@memcg):
				    memcg_unregister_all_caches(@memcg):
				      kmem_cache_destroy(@mc)

    add page to @mc

We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.

Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free.  As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed.  This doesn't sound as a high price for code readability though.

Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache.  Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled.  I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Zhang Zhen 056b7ccef4 mm/memcontrol.c: remove the unused arg in __memcg_kmem_get_cache()
The gfp was passed in but never used in this function.

Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Johannes Weiner 9edad6ea0f mm: move page->mem_cgroup bad page handling into generic code
Now that the external page_cgroup data structure and its lookup is
gone, let the generic bad_page() check for page->mem_cgroup sanity.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner 1306a85aed mm: embed the memcg pointer directly into struct page
Memory cgroups used to have 5 per-page pointers.  To allow users to
disable that amount of overhead during runtime, those pointers were
allocated in a separate array, with a translation layer between them and
struct page.

There is now only one page pointer remaining: the memcg pointer, that
indicates which cgroup the page is associated with when charged.  The
complexity of runtime allocation and the runtime translation overhead is
no longer justified to save that *potential* 0.19% of memory.  With
CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding
after the page->private member and doesn't even increase struct page,
and then this patch actually saves space.  Remaining users that care can
still compile their kernels without CONFIG_MEMCG.

     text    data     bss     dec     hex     filename
  8828345 1725264  983040 11536649 b00909  vmlinux.old
  8827425 1725264  966656 11519345 afc571  vmlinux.new

[mhocko@suse.cz: update Documentation/cgroups/memory.txt]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Michal Hocko e4bd6a0248 mm, memcg: fix potential undefined behaviour in page stat accounting
Since commit d7365e783e ("mm: memcontrol: fix missed end-writeback
page accounting") mem_cgroup_end_page_stat consumes locked and flags
variables directly rather than via pointers which might trigger C
undefined behavior as those variables are initialized only in the slow
path of mem_cgroup_begin_page_stat.

Although mem_cgroup_end_page_stat handles parameters correctly and
touches them only when they hold a sensible value it is caller which
loads a potentially uninitialized value which then might allow compiler
to do crazy things.

I haven't seen any warning from gcc and it seems that the current
version (4.9) doesn't exploit this type undefined behavior but Sasha has
reported the following:

  UBSan: Undefined behaviour in mm/rmap.c:1084:2
  load of value 255 is not a valid value for type '_Bool'
  CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427
  Call Trace:
    dump_stack (lib/dump_stack.c:52)
    ubsan_epilogue (lib/ubsan.c:159)
    __ubsan_handle_load_invalid_value (lib/ubsan.c:482)
    page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096)
    unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303)
    unmap_single_vma (mm/memory.c:1348)
    unmap_vmas (mm/memory.c:1377 (discriminator 3))
    exit_mmap (mm/mmap.c:2837)
    mmput (kernel/fork.c:659)
    do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747)
    do_group_exit (include/linux/sched.h:775 kernel/exit.c:873)
    SyS_exit_group (kernel/exit.c:901)
    tracesys_phase2 (arch/x86/kernel/entry_64.S:529)

Fix this by using pointer parameters for both locked and flags and be
more robust for future compiler changes even though the current code is
implemented correctly.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner 2314b42db6 mm: memcontrol: drop bogus RCU locking from mem_cgroup_same_or_subtree()
None of the mem_cgroup_same_or_subtree() callers actually require it to
take the RCU lock, either because they hold it themselves or they have css
references.  Remove it.

To make the API change clear, rename the leftover helper to
mem_cgroup_is_descendant() to match cgroup_is_descendant().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner 413918bb61 mm: memcontrol: pull the NULL check from __mem_cgroup_same_or_subtree()
The NULL in mm_match_cgroup() comes from a possibly exiting mm->owner.  It
makes a lot more sense to check where it's looked up, rather than check
for it in __mem_cgroup_same_or_subtree() where it's unexpected.

No other callsite passes NULL to __mem_cgroup_same_or_subtree().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner 3e32cb2e0a mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page.  The
counter interface is also convoluted and does too many things.

Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it.  The translation from and to bytes then only
happens when interfacing with userspace.

The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:

vanilla:

   18631648.500498      task-clock (msec)         #  140.643 CPUs utilized            ( +-  0.33% )
         1,380,638      context-switches          #    0.074 K/sec                    ( +-  0.75% )
            24,390      cpu-migrations            #    0.001 K/sec                    ( +-  8.44% )
     1,843,305,768      page-faults               #    0.099 M/sec                    ( +-  0.00% )
50,134,994,088,218      cycles                    #    2.691 GHz                      ( +-  0.33% )
   <not supported>      stalled-cycles-frontend
   <not supported>      stalled-cycles-backend
 8,049,712,224,651      instructions              #    0.16  insns per cycle          ( +-  0.04% )
 1,586,970,584,979      branches                  #   85.176 M/sec                    ( +-  0.05% )
     1,724,989,949      branch-misses             #    0.11% of all branches          ( +-  0.48% )

     132.474343877 seconds time elapsed                                          ( +-  0.21% )

lockless:

   12195979.037525      task-clock (msec)         #  133.480 CPUs utilized            ( +-  0.18% )
           832,850      context-switches          #    0.068 K/sec                    ( +-  0.54% )
            15,624      cpu-migrations            #    0.001 K/sec                    ( +- 10.17% )
     1,843,304,774      page-faults               #    0.151 M/sec                    ( +-  0.00% )
32,811,216,801,141      cycles                    #    2.690 GHz                      ( +-  0.18% )
   <not supported>      stalled-cycles-frontend
   <not supported>      stalled-cycles-backend
 9,999,265,091,727      instructions              #    0.30  insns per cycle          ( +-  0.10% )
 2,076,759,325,203      branches                  #  170.282 M/sec                    ( +-  0.12% )
     1,656,917,214      branch-misses             #    0.08% of all branches          ( +-  0.55% )

      91.369330729 seconds time elapsed                                          ( +-  0.45% )

On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.

Notable differences between the old and new API:

- res_counter_charge() and res_counter_charge_nofail() become
  page_counter_try_charge() and page_counter_charge() resp. to match
  the more common kernel naming scheme of try_do()/do()

- res_counter_uncharge_until() is only ever used to cancel a local
  counter and never to uncharge bigger segments of a hierarchy, so
  it's replaced by the simpler page_counter_cancel()

- res_counter_set_limit() is replaced by page_counter_limit(), which
  expects its callers to serialize against themselves

- res_counter_memparse_write_strategy() is replaced by
  page_counter_limit(), which rounds down to the nearest page size -
  rather than up.  This is more reasonable for explicitely requested
  hard upper limits.

- to keep charging light-weight, page_counter_try_charge() charges
  speculatively, only to roll back if the result exceeds the limit.
  Because of this, a failing bigger charge can temporarily lock out
  smaller charges that would otherwise succeed.  The error is bounded
  to the difference between the smallest and the biggest possible
  charge size, so for memcg, this means that a failing THP charge can
  send base page charges into reclaim upto 2MB (4MB) before the limit
  would have been reached.  This should be acceptable.

[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:04 -08:00
Johannes Weiner d7365e783e mm: memcontrol: fix missed end-writeback page accounting
Commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") changed
page migration to uncharge the old page right away.  The page is locked,
unmapped, truncated, and off the LRU, but it could race with writeback
ending, which then doesn't unaccount the page properly:

test_clear_page_writeback()              migration
                                           wait_on_page_writeback()
  TestClearPageWriteback()
                                           mem_cgroup_migrate()
                                             clear PCG_USED
  mem_cgroup_update_page_stat()
    if (PageCgroupUsed(pc))
      decrease memcg pages under writeback

  release pc->mem_cgroup->move_lock

The per-page statistics interface is heavily optimized to avoid a
function call and a lookup_page_cgroup() in the file unmap fast path,
which means it doesn't verify whether a page is still charged before
clearing PageWriteback() and it has to do it in the stat update later.

Rework it so that it looks up the page's memcg once at the beginning of
the transaction and then uses it throughout.  The charge will be
verified before clearing PageWriteback() and migration can't uncharge
the page as long as that is still set.  The RCU lock will protect the
memcg past uncharge.

As far as losing the optimization goes, the following test results are
from a microbenchmark that maps, faults, and unmaps a 4GB sparse file
three times in a nested fashion, so that there are two negative passes
that don't account but still go through the new transaction overhead.
There is no actual difference:

 old:     33.195102545 seconds time elapsed       ( +-  0.01% )
 new:     33.199231369 seconds time elapsed       ( +-  0.03% )

The time spent in page_remove_rmap()'s callees still adds up to the
same, but the time spent in the function itself seems reduced:

     # Children      Self  Command        Shared Object       Symbol
 old:     0.12%     0.11%  filemapstress  [kernel.kallsyms]   [k] page_remove_rmap
 new:     0.12%     0.08%  filemapstress  [kernel.kallsyms]   [k] page_remove_rmap

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org>	[3.17.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:15 -07:00
Vladimir Davydov 6f817f4cda memcg: move memcg_update_cache_size() to slab_common.c
`While growing per memcg caches arrays, we jump between memcontrol.c and
slab_common.c in a weird way:

  memcg_alloc_cache_id - memcontrol.c
    memcg_update_all_caches - slab_common.c
      memcg_update_cache_size - memcontrol.c

There's absolutely no reason why memcg_update_cache_size can't live on the
slab's side though.  So let's move it there and settle it comfortably amid
per-memcg cache allocation functions.

Besides, this patch cleans this function up a bit, removing all the
useless comments from it, and renames it to memcg_update_cache_params to
conform to memcg_alloc/free_cache_params, which we already have in
slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Vladimir Davydov 33a690c45b memcg: move memcg_{alloc,free}_cache_params to slab_common.c
The only reason why they live in memcontrol.c is that we get/put css
reference to the owner memory cgroup in them.  However, we can do that in
memcg_{un,}register_cache.  OTOH, there are several reasons to move them
to slab_common.c.

First, I think that the less public interface functions we have in
memcontrol.h the better.  Since the functions I move don't depend on
memcontrol, I think it's worth making them private to slab, especially
taking into account that the arrays are defined on the slab's side too.

Second, the way how per-memcg arrays are updated looks rather awkward: it
proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c
(memcg_update_all_caches) and back to memcontrol.c again
(memcg_update_array_size).  In the following patches I move the function
relocating the arrays (memcg_update_array_size) to slab_common.c and
therefore get rid this circular call path.  I think we should have the
cache allocation stuff in the same place where we have relocation, because
it's easier to follow the code then.  So I move arrays alloc/free
functions to slab_common.c too.

The third point isn't obvious.  I'm going to make the list_lru structure
per-memcg to allow targeted kmem reclaim.  That means we will have
per-memcg arrays in list_lrus too.  It turns out that it's much easier to
update these arrays in list_lru.c rather than in memcontrol.c, because all
the stuff we need is defined there.  This patch makes memcg caches arrays
allocation path conform that of the upcoming list_lru.

So let's move these functions to slab_common.c and make them static.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Johannes Weiner 747db954ca mm: memcontrol: use page lists for uncharge batching
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages.  Directly use those lists, and
get rid of the per-task batching state.

This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:18 -07:00
Johannes Weiner 0a31bc97c8 mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Johannes Weiner 00501b531c mm: memcontrol: rewrite charge API
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages.  This drastically simplifies the code and
reduces charging and uncharging overhead.  The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.

Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
 executing in the root memcg).  Before:

    15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.31%              cat  [kernel.kallsyms]   [k] memset
    11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
     4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.38%              cat  [kernel.kallsyms]   [k] put_page
     2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
     2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
     1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn

After:

    15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.48%           cat  [kernel.kallsyms]   [k] memset
    11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
     3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.46%           cat  [kernel.kallsyms]   [k] put_page
     2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
     1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
     1.30%           cat  [kernel.kallsyms]   [k] kfree

As you can see, the memcg footprint has shrunk quite a bit.

   text    data     bss     dec     hex filename
  37970    9892     400   48262    bc86 mm/memcontrol.o.old
  35239    9892     400   45531    b1db mm/memcontrol.o

This patch (of 4):

The memcg charge API charges pages before they are rmapped - i.e.  have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on.  Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.

Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:

  mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
  pages from the memcg if necessary.

  mem_cgroup_commit_charge() commits the page to the charge once it
  has a valid page->mapping and PageAnon() reliably tells the type.

  mem_cgroup_cancel_charge() aborts the transaction.

This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.

As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again.  Revive lru_cache_add_active_or_unevictable().

[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Vladimir Davydov 776ed0f037 memcg: cleanup kmem cache creation/destruction functions naming
Current names are rather inconsistent. Let's try to improve them.

Brief change log:

** old name **                          ** new name **

kmem_cache_create_memcg                 memcg_create_kmem_cache
memcg_kmem_create_cache                 memcg_regsiter_cache
memcg_kmem_destroy_cache                memcg_unregister_cache

kmem_cache_destroy_memcg_children       memcg_cleanup_cache_params
mem_cgroup_destroy_all_caches           memcg_unregister_all_caches

create_work                             memcg_register_cache_work
memcg_create_cache_work_func            memcg_register_cache_func
memcg_create_cache_enqueue              memcg_schedule_register_cache

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:08 -07:00
Vladimir Davydov 073ee1c6cd memcg: get rid of memcg_create_cache_name
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in
order to just create the name of a per memcg cache, let's allocate it in
place.  We only need to pass the memcg name to kmem_cache_create_memcg for
that - everything else can be done in slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Vladimir Davydov bd67314586 memcg, slab: simplify synchronization scheme
At present, we have the following mutexes protecting data related to per
memcg kmem caches:

 - slab_mutex.  This one is held during the whole kmem cache creation
   and destruction paths.  We also take it when updating per root cache
   memcg_caches arrays (see memcg_update_all_caches).  As a result, taking
   it guarantees there will be no changes to any kmem cache (including per
   memcg).  Why do we need something else then?  The point is it is
   private to slab implementation and has some internal dependencies with
   other mutexes (get_online_cpus).  So we just don't want to rely upon it
   and prefer to introduce additional mutexes instead.

 - activate_kmem_mutex.  Initially it was added to synchronize
   initializing kmem limit (memcg_activate_kmem).  However, since we can
   grow per root cache memcg_caches arrays only on kmem limit
   initialization (see memcg_update_all_caches), we also employ it to
   protect against memcg_caches arrays relocation (e.g.  see
   __kmem_cache_destroy_memcg_children).

 - We have a convention not to take slab_mutex in memcontrol.c, but we
   want to walk over per memcg memcg_slab_caches lists there (e.g.  for
   destroying all memcg caches on offline).  So we have per memcg
   slab_caches_mutex's protecting those lists.

The mutexes are taken in the following order:

   activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex

Such a syncrhonization scheme has a number of flaws, for instance:

 - We can't call kmem_cache_{destroy,shrink} while walking over a
   memcg::memcg_slab_caches list due to locking order.  As a result, in
   mem_cgroup_destroy_all_caches we schedule the
   memcg_cache_params::destroy work shrinking and destroying the cache.

 - We don't have a mutex to synchronize per memcg caches destruction
   between memcg offline (mem_cgroup_destroy_all_caches) and root cache
   destruction (__kmem_cache_destroy_memcg_children).  Currently we just
   don't bother about it.

This patch simplifies it by substituting per memcg slab_caches_mutex's
with the global memcg_slab_mutex.  It will be held whenever a new per
memcg cache is created or destroyed, so it protects per root cache
memcg_caches arrays and per memcg memcg_slab_caches lists.  The locking
order is following:

   activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex

This allows us to call kmem_cache_{create,shrink,destroy} under the
memcg_slab_mutex.  As a result, we don't need memcg_cache_params::destroy
work any more - we can simply destroy caches while iterating over a per
memcg slab caches list.

Also using the global mutex simplifies synchronization between concurrent
per memcg caches creation/destruction, e.g.  mem_cgroup_destroy_all_caches
vs __kmem_cache_destroy_memcg_children.

The downside of this is that we substitute per-memcg slab_caches_mutex's
with a hummer-like global mutex, but since we already take either the
slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it
shouldn't hurt concurrency a lot.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov c67a8a685a memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slab
Currently we have two pairs of kmemcg-related functions that are called on
slab alloc/free.  The first is memcg_{bind,release}_pages that count the
total number of pages allocated on a kmem cache.  The second is
memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
counter.  Let's just merge them to keep the code clean.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov 1e32e77f95 memcg, slab: do not schedule cache destruction when last page goes away
This patchset is a part of preparations for kmemcg re-parenting.  It
targets at simplifying kmemcg work-flows and synchronization.

First, it removes async per memcg cache destruction (see patches 1, 2).
Now caches are only destroyed on memcg offline.  That means the caches
that are not empty on memcg offline will be leaked.  However, they are
already leaked, because memcg_cache_params::nr_pages normally never drops
to 0 so the destruction work is never scheduled except kmem_cache_shrink
is called explicitly.  In the future I'm planning reaping such dead caches
on vmpressure or periodically.

Second, it substitutes per memcg slab_caches_mutex's with the global
memcg_slab_mutex, which should be taken during the whole per memcg cache
creation/destruction path before the slab_mutex (see patch 3).  This
greatly simplifies synchronization among various per memcg cache
creation/destruction paths.

I'm still not quite sure about the end picture, in particular I don't know
whether we should reap dead memcgs' kmem caches periodically or try to
merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for
more details), but whichever way we choose, this set looks like a
reasonable change to me, because it greatly simplifies kmemcg work-flows
and eases further development.

This patch (of 3):

After a memcg is offlined, we mark its kmem caches that cannot be deleted
right now due to pending objects as dead by setting the
memcg_cache_params::dead flag, so that memcg_release_pages will schedule
cache destruction (memcg_cache_params::destroy) as soon as the last slab
of the cache is freed (memcg_cache_params::nr_pages drops to zero).

I guess the idea was to destroy the caches as soon as possible, i.e.
immediately after freeing the last object.  However, it just doesn't work
that way, because kmem caches always preserve some pages for the sake of
performance, so that nr_pages never gets to zero unless the cache is
shrunk explicitly using kmem_cache_shrink.  Of course, we could account
the total number of objects on the cache or check if all the slabs
allocated for the cache are empty on kmem_cache_free and schedule
destruction if so, but that would be too costly.

Thus we have a piece of code that works only when we explicitly call
kmem_cache_shrink, but complicates the whole picture a lot.  Moreover,
it's racy in fact.  For instance, kmem_cache_shrink may free the last slab
and thus schedule cache destruction before it finishes checking that the
cache is empty, which can lead to use-after-free.

So I propose to remove this async cache destruction from
memcg_release_pages, and check if the cache is empty explicitly after
calling kmem_cache_shrink instead.  This will simplify things a lot w/o
introducing any functional changes.

And regarding dead memcg caches (i.e.  those that are left hanging around
after memcg offline for they have objects), I suppose we should reap them
either periodically or on vmpressure as Glauber suggested initially.  I'm
going to implement this later.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov 52383431b3 mm: get rid of __GFP_KMEMCG
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator.  The page
allocated is then to be freed by free_memcg_kmem_pages.  Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path.  So let's introduce separate functions that will
alloc/free pages charged to kmemcg.

The new functions are called alloc_kmem_pages and free_kmem_pages.  They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.

[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov 5dfb417509 sl[au]b: charge slabs to kmemcg explicitly
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there.  All kmem
charges will be easier to follow that way.

This is a step towards removing __GFP_KMEMCG.  It removes __GFP_KMEMCG
from memcg caches' allocflags.  Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.

This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to.  That's why this
patch removes the big comment to memcg_kmem_get_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov b8529907ba memcg, slab: do not destroy children caches if parent has aliases
Currently we destroy children caches at the very beginning of
kmem_cache_destroy().  This is wrong, because the root cache will not
necessarily be destroyed in the end - if it has aliases (refcount > 0),
kmem_cache_destroy() will simply decrement its refcount and return.  In
this case, at best we will get a bunch of warnings in dmesg, like this
one:

  kmem_cache_destroy kmalloc-32:0: Slab cache still has objects
  CPU: 1 PID: 7139 Comm: modprobe Tainted: G    B   W    3.13.0+ #117
  Call Trace:
    dump_stack+0x49/0x5b
    kmem_cache_destroy+0xdf/0xf0
    kmem_cache_destroy_memcg_children+0x97/0xc0
    kmem_cache_destroy+0xf/0xf0
    xfs_mru_cache_uninit+0x21/0x30 [xfs]
    exit_xfs_fs+0x2e/0xc44 [xfs]
    SyS_delete_module+0x198/0x1f0
    system_call_fastpath+0x16/0x1b

At worst - if kmem_cache_destroy() will race with an allocation from a
memcg cache - the kernel will panic.

This patch fixes this by moving children caches destruction after the
check if the cache has aliases.  Plus, it forbids destroying a root
cache if it still has children caches, because each children cache keeps
a reference to its parent.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:13 -07:00
Vladimir Davydov 794b1248be memcg, slab: separate memcg vs root cache creation paths
Memcg-awareness turned kmem_cache_create() into a dirty interweaving of
memcg-only and except-for-memcg calls.  To clean this up, let's move the
code responsible for memcg cache creation to a separate function.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Vladimir Davydov 5722d094ad memcg, slab: cleanup memcg cache creation
This patch cleans up the memcg cache creation path as follows:

- Move memcg cache name creation to a separate function to be called
  from kmem_cache_create_memcg().  This allows us to get rid of the mutex
  protecting the temporary buffer used for the name formatting, because
  the whole cache creation path is protected by the slab_mutex.

- Get rid of memcg_create_kmem_cache().  This function serves as a proxy
  to kmem_cache_create_memcg().  After separating the cache name creation
  path, it would be reduced to a function call, so let's inline it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Michal Hocko d715ae08f2 memcg: rename high level charging functions
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.

mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Johannes Weiner df38197546 memcg: get_mem_cgroup_from_mm()
Instead of returning NULL from try_get_mem_cgroup_from_mm() when the mm
owner is exiting, just return root_mem_cgroup.  This makes sense for all
callsites and gets rid of some of them having to fallback manually.

[fengguang.wu@intel.com: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Tejun Heo 073219e995 cgroup: clean up cgroup_subsys names and initialization
cgroup_subsys is a bit messier than it needs to be.

* The name of a subsys can be different from its internal identifier
  defined in cgroup_subsys.h.  Most subsystems use the matching name
  but three - cpu, memory and perf_event - use different ones.

* cgroup_subsys_id enums are postfixed with _subsys_id and each
  cgroup_subsys is postfixed with _subsys.  cgroup.h is widely
  included throughout various subsystems, it doesn't and shouldn't
  have claim on such generic names which don't have any qualifier
  indicating that they belong to cgroup.

* cgroup_subsys->subsys_id should always equal the matching
  cgroup_subsys_id enum; however, we require each controller to
  initialize it and then BUG if they don't match, which is a bit
  silly.

This patch cleans up cgroup_subsys names and initialization by doing
the followings.

* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
  cgroup_subsys with _cgrp_subsys.

* With the above, renaming subsys identifiers to match the userland
  visible names doesn't cause any naming conflicts.  All non-matching
  identifiers are renamed to match the official names.

  cpu_cgroup -> cpu
  mem_cgroup -> memory
  perf -> perf_event

* controllers no longer need to initialize ->subsys_id and ->name.
  They're generated in cgroup core and set automatically during boot.

* Redundant cgroup_subsys declarations removed.

* While updating BUG_ON()s in cgroup_init_early(), convert them to
  WARN()s.  BUGging that early during boot is stupid - the kernel
  can't print anything, even through serial console and the trap
  handler doesn't even link stack frame properly for back-tracing.

This patch doesn't introduce any behavior changes.

v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
    classid handling into core").

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
2014-02-08 10:36:58 -05:00