Граф коммитов

15 Коммитов

Автор SHA1 Сообщение Дата
Kefeng Wang 02e34fff19 mm: damon: use HPAGE_PMD_SIZE
Use HPAGE_PMD_SIZE instead of open coding.

Link: https://lkml.kernel.org/r/20220517145120.118523-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-19 14:08:55 -07:00
Linus Torvalds 9030fb0bb9 Folio changes for 5.18
- Rewrite how munlock works to massively reduce the contention
    on i_mmap_rwsem (Hugh Dickins):
    https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
  - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig):
    https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
  - Convert GUP to use folios and make pincount available for order-1
    pages. (Matthew Wilcox)
  - Convert a few more truncation functions to use folios (Matthew Wilcox)
  - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox)
  - Convert rmap_walk to use folios (Matthew Wilcox)
  - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
  - Add support for creating large folios in readahead (Matthew Wilcox)
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4ucgACgkQDpNsjXcp
 gj69Wgf6AwqwmO5Tmy+fLScDPqWxmXJofbocae1kyoGHf7Ui91OK4U2j6IpvAr+g
 P/vLIK+JAAcTQcrSCjymuEkf4HkGZOR03QQn7maPIEe4eLrZRQDEsmHC1L9gpeJp
 s/GMvDWiGE0Tnxu0EOzfVi/yT+qjIl/S8VvqtCoJv1HdzxitZ7+1RDuqImaMC5MM
 Qi3uHag78vLmCltLXpIOdpgZhdZexCdL2Y/1npf+b6FVkAJRRNUnA0gRbS7YpoVp
 CbxEJcmAl9cpJLuj5i5kIfS9trr+/QcvbUlzRxh4ggC58iqnmF2V09l2MJ7YU3XL
 v1O/Elq4lRhXninZFQEm9zjrri7LDQ==
 =n9Ad
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache

Pull folio updates from Matthew Wilcox:

 - Rewrite how munlock works to massively reduce the contention on
   i_mmap_rwsem (Hugh Dickins):

     https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/

 - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
   Hellwig):

     https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/

 - Convert GUP to use folios and make pincount available for order-1
   pages. (Matthew Wilcox)

 - Convert a few more truncation functions to use folios (Matthew
   Wilcox)

 - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
   Wilcox)

 - Convert rmap_walk to use folios (Matthew Wilcox)

 - Convert most of shrink_page_list() to use a folio (Matthew Wilcox)

 - Add support for creating large folios in readahead (Matthew Wilcox)

* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
  mm/damon: minor cleanup for damon_pa_young
  selftests/vm/transhuge-stress: Support file-backed PMD folios
  mm/filemap: Support VM_HUGEPAGE for file mappings
  mm/readahead: Switch to page_cache_ra_order
  mm/readahead: Align file mappings for non-DAX
  mm/readahead: Add large folio readahead
  mm: Support arbitrary THP sizes
  mm: Make large folios depend on THP
  mm: Fix READ_ONLY_THP warning
  mm/filemap: Allow large folios to be added to the page cache
  mm: Turn can_split_huge_page() into can_split_folio()
  mm/vmscan: Convert pageout() to take a folio
  mm/vmscan: Turn page_check_references() into folio_check_references()
  mm/vmscan: Account large folios correctly
  mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
  mm/vmscan: Free non-shmem folios without splitting them
  mm/rmap: Constify the rmap_walk_control argument
  mm/rmap: Convert rmap_walk() to take a folio
  mm: Turn page_anon_vma() into folio_anon_vma()
  mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
  ...
2022-03-22 17:03:12 -07:00
SeongJae Park 851040566a mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}()
Because DAMON debugfs interface and DAMON-based proactive reclaim are now
using monitoring operations via registration mechanism,
damon_{p,v}a_{target_valid,set_operations}() functions have no user.  This
commit clean them up.

Link: https://lkml.kernel.org/r/20220215184603.1479-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:12 -07:00
SeongJae Park 7752925fbc mm/damon/paddr,vaddr: register themselves to DAMON in subsys_initcall
This commit makes the monitoring operations for the physical address space
and virtual address spaces register themselves to DAMON in the
subsys_initcall step.  Later, in-kernel DAMON user code can use them via
damon_select_ops() without have to unnecessarily depend on all possible
monitoring operations implementations.

Link: https://lkml.kernel.org/r/20220215184603.1479-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:12 -07:00
SeongJae Park f7d911c39c mm/damon: rename damon_primitives to damon_operations
Patch series "Allow DAMON user code independent of monitoring primitives".

In-kernel DAMON user code is required to configure the monitoring context
(struct damon_ctx) with proper monitoring primitives (struct
damon_primitive).  This makes the user code dependent to all supporting
monitoring primitives.  For example, DAMON debugfs interface depends on
both DAMON_VADDR and DAMON_PADDR, though some users have interest in only
one use case.  As more monitoring primitives are introduced, the problem
will be bigger.

To minimize such unnecessary dependency, this patchset makes monitoring
primitives can be registered by the implemnting code and later dynamically
searched and selected by the user code.

In addition to that, this patchset renames monitoring primitives to
monitoring operations, which is more easy to intuitively understand what
it means and how it would be structed.

This patch (of 8):

DAMON has a set of callback functions called monitoring primitives and let
it can be configured with various implementations for easy extension for
different address spaces and usages.  However, the word 'primitive' is not
so explicit.  Meanwhile, many other structs resembles similar purpose
calls themselves 'operations'.  To make the code easier to be understood,
this commit renames 'damon_primitives' to 'damon_operations' before it is
too late to rename.

Link: https://lkml.kernel.org/r/20220215184603.1479-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220215184603.1479-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:12 -07:00
Miaohe Lin 2a3c4bce3e mm/damon: minor cleanup for damon_pa_young
if need_lock is true but folio_trylock fails, we should return false
instead of NULL to match the return value type exactly. No functional
change intended.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:36 -04:00
Matthew Wilcox (Oracle) 2f031c6f04 mm/rmap: Convert rmap_walk() to take a folio
This ripples all the way through to every calling and called function
from rmap.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle) c842318607 mm/damon: Convert damon_pa_young() to use a folio
Ensure that we're passing the entire folio to rmap_walk().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle) 6d42dba3cc mm/damon: Convert damon_pa_mkold() to use a folio
Ensure that we're passing the entire folio to rmap_walk().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 13:01:35 -04:00
Matthew Wilcox (Oracle) eed05e54d2 mm: Add DEFINE_PAGE_VMA_WALK and DEFINE_FOLIO_VMA_WALK
Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-03-21 12:59:02 -04:00
SeongJae Park 0e92c2ee9f mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".

To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme.  Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier.  However, that also made
understanding of the working schemes a little bit more difficult.

For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas.  So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.

This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).

This patch (of 6):

DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied.  Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning.  To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.

Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:32 +02:00
Xin Hao cdeed009f3 mm/damon: remove some unneeded function definitions in damon.h
In damon.h some func definitions about VA & PA can only be used in its
own file, so there no need to define in the header file, and the header
file will look cleaner.

If other files later need these functions, the prototypes can be added
to damon.h at that time.

[sj@kernel.org: remove unnecessary function prototype position changes]
 Link: https://lkml.kernel.org/r/20211118114827.20052-1-sj@kernel.org

Link: https://lkml.kernel.org/r/45fd5b3ef6cce8e28dbc1c92f9dc845ccfc949d7.1636989871.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:32 +02:00
SeongJae Park 198f0f4c58 mm/damon/vaddr,paddr: support pageout prioritization
This makes the default monitoring primitives for virtual address spaces
and the physical address sapce to support memory regions prioritization
for 'PAGEOUT' DAMOS action.  It calculates hotness of each region as
weighted sum of 'nr_accesses' and 'age' of the region and get the
priority score as reverse of the hotness, so that cold regions can be
paged out first.

Link: https://lkml.kernel.org/r/20211019150731.16699-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park 57223ac295 mm/damon/paddr: support the pageout scheme
Introduction
============

This patchset 1) makes the engine for general data access
pattern-oriented memory management (DAMOS) be more useful for production
environments, and 2) implements a static kernel module for lightweight
proactive reclamation using the engine.

Proactive Reclamation
---------------------

On general memory over-committed systems, proactively reclaiming cold
pages helps saving memory and reducing latency spikes that incurred by
the direct reclaim or the CPU consumption of kswapd, while incurring
only minimal performance degradation[2].

A Free Pages Reporting[8] based memory over-commit virtualization system
would be one more specific use case.  In the system, the guest VMs
reports their free memory to host, and the host reallocates the reported
memory to other guests.  As a result, the system's memory utilization
can be maximized.  However, the guests could be not so memory-frugal,
because some kernel subsystems and user-space applications are designed
to use as much memory as available.  Then, guests would report only
small amount of free memory to host, results in poor memory utilization.
Running the proactive reclamation in such guests could help mitigating
this problem.

Google has also implemented this idea and using it in their data center.
They further proposed upstreaming it in LSFMM'19, and "the general
consensus was that, while this sort of proactive reclaim would be useful
for a number of users, the cost of this particular solution was too high
to consider merging it upstream"[3].  The cost mainly comes from the
coldness tracking.  Roughly speaking, the implementation periodically
scans the 'Accessed' bit of each page.  For the reason, the overhead
linearly increases as the size of the memory and the scanning frequency
grows.  As a result, Google is known to dedicating one CPU for the work.
That's a reasonable option to someone like Google, but it wouldn't be so
to some others.

DAMON and DAMOS: An engine for data access pattern-oriented memory management
-----------------------------------------------------------------------------

DAMON[4] is a framework for general data access monitoring.  Its
adaptive monitoring overhead control feature minimizes its monitoring
overhead.  It also let the upper-bound of the overhead be configurable
by clients, regardless of the size of the monitoring target memory.
While monitoring 70 GiB memory of a production system every 5
milliseconds, it consumes less than 1% single CPU time.  For this, it
could sacrify some of the quality of the monitoring results.
Nevertheless, the lower-bound of the quality is configurable, and it
uses a best-effort algorithm for better quality.  Our test results[5]
show the quality is practical enough.  From the production system
monitoring, we were able to find a 4 KiB region in the 70 GiB memory
that shows highest access frequency.

We normally don't monitor the data access pattern just for fun but to
improve something like memory management.  Proactive reclamation is one
such usage.  For such general cases, DAMON provides a feature called
DAMon-based Operation Schemes (DAMOS)[6].  It makes DAMON an engine for
general data access pattern oriented memory management.  Using this,
clients can ask DAMON to find memory regions of specific data access
pattern and apply some memory management action (e.g., page out, move to
head of the LRU list, use huge page, ...).  We call the request
'scheme'.

Proactive Reclamation on top of DAMON/DAMOS
-------------------------------------------

Therefore, by using DAMON for the cold pages detection, the proactive
reclamation's monitoring overhead issue can be solved.  Actually, we
previously implemented a version of proactive reclamation using DAMOS
and achieved noticeable improvements with our evaluation setup[5].
Nevertheless, it more for a proof-of-concept, rather than production
uses.  It supports only virtual address spaces of processes, and require
additional tuning efforts for given workloads and the hardware.  For the
tuning, we introduced a simple auto-tuning user space tool[8].  Google
is also known to using a ML-based similar approach for their fleets[2].
But, making it just works with intuitive knobs in the kernel would be
helpful for general users.

To this end, this patchset improves DAMOS to be ready for such
production usages, and implements another version of the proactive
reclamation, namely DAMON_RECLAIM, on top of it.

DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks
--------------------------------------------------------------------------

First of all, the current version of DAMOS supports only virtual address
spaces.  This patchset makes it supports the physical address space for
the page out action.

Next major problem of the current version of DAMOS is the lack of the
aggressiveness control, which can results in arbitrary overhead.  For
example, if huge memory regions having the data access pattern of
interest are found, applying the requested action to all of the regions
could incur significant overhead.  It can be controlled by tuning the
target data access pattern with manual or automated approaches[2,7].
But, some people would prefer the kernel to just work with only
intuitive tuning or default values.

For such cases, this patchset implements a safeguard, namely time/size
quota.  Using this, the clients can specify up to how much time can be
used for applying the action, and/or up to how much memory regions the
action can be applied within a user-specified time duration.  A followup
question is, to which memory regions should the action applied within
the limits? We implement a simple regions prioritization mechanism for
each action and make DAMOS to apply the action to high priority regions
first.  It also allows clients tune the prioritization mechanism to use
different weights for size, access frequency, and age of memory regions.
This means we could use not only LRU but also LFU or some fancy
algorithms like CAR[9] with lightweight overhead.

Though DAMON is lightweight, someone would want to remove even the cold
pages monitoring overhead when it is unnecessary.  Currently, it should
manually turned on and off by clients, but some clients would simply
want to turn it on and off based on some metrics like free memory ratio
or memory fragmentation.  For such cases, this patchset implements a
watermarks-based automatic activation feature.  It allows the clients
configure the metric of their interest, and three watermarks of the
metric.  If the metric is higher than the high watermark or lower than
the low watermark, the scheme is deactivated.  If the metric is lower
than the mid watermark but higher than the low watermark, the scheme is
activated.

DAMON-based Reclaim
-------------------

Using the improved version of DAMOS, this patchset implements a static
kernel module called 'damon_reclaim'.  It finds memory regions that
didn't accessed for specific time duration and page out.  Consuming too
much CPU for the paging out operations, or doing pageout too frequently
can be critical for systems configuring their swap devices with
software-defined in-memory block devices like zram/zswap or total number
of writes limited devices like SSDs, respectively.  To avoid the
problems, the time/size quotas can be configured.  Under the quotas, it
pages out memory regions that didn't accessed longer first.  Also, to
remove the monitoring overhead under peaceful situation, and to fall
back to the LRU-list based page granularity reclamation when it doesn't
make progress, the three watermarks based activation mechanism is used,
with the free memory ratio as the watermark metric.

For convenient configurations, it provides several module parameters.
Using these, sysadmins can enable/disable it, and tune its parameters
including the coldness identification time threshold, the time/size
quotas and the three watermarks.

Evaluation
==========

In short, DAMON_RECLAIM with 50ms/s time quota and regions
prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves
38.58% memory saving with only 1.94% runtime overhead.  For this,
DAMON_RECLAIM consumes only 4.97% of single CPU time.

Setup
-----

We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements
make effect.  For this, we measure DAMON_RECLAIM's CPU consumption,
entire system memory footprint, total number of major page faults, and
runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark
suites on my QEMU/KVM based virtual machine.  The virtual machine runs
on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel
built on latest -mm tree[1] plus this patchset.  It also utilizes a 4
GiB ZRAM swap device.  We repeats the measurement 5 times and use
averages.

[1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55

Detailed Results
----------------

The results are summarized in the below table.

With coldness identification threshold of 5 seconds, DAMON_RECLAIM
without the time quota-based speed limit achieves 47.21% memory saving,
but incur 4.59% runtime slowdown to the workloads on average.  For this,
DAMON_RECLAIM consumes about 11.28% single CPU time.

Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions
prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%,
respectively.  Time quota of 200ms/s (20%) makes no real change compared
to the quota unapplied version, because the quota unapplied version
consumes only 11.28% CPU time.  DAMON_RECLAIM's CPU utilization also
similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time.  That
is, the overhead is proportional to the speed limit.  Nevertheless, it
also reduces the memory saving because it becomes less aggressive.  In
detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving,
respectively.

Applying the regions prioritization (page out regions that not accessed
longer first within the time quota) further reduces the performance
degradation.  Runtime slowdowns and total number of major page faults
increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s),
2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% ->
2.08%/8,781.75% (10ms/s).  The runtime under 10ms/s time quota has
increased with prioritization, but apparently that's under the margin of
error.

    time quota   prioritization  memory_saving  cpu_util  slowdown  pgmajfaults overhead
    N            N               47.21%         11.28%    4.59%     194,802%
    200ms/s      N               48.76%         11.24%    4.89%     218,690%
    50ms/s       N               37.83%         5.51%     2.65%     111,886%
    10ms/s       N               7.85%          2.01%     1.5%      34,793.40%
    200ms/s      Y               50.08%         10.38%    4.39%     166,136%
    50ms/s       Y               38.58%         4.97%     1.94%     59,053%
    10ms/s       Y               3.63%          1.73%     2.08%     8,781.75%

Baseline and Complete Git Trees
===============================

The patches are based on the latest -mm tree
(v5.15-rc5-mmots-2021-10-13-19-55).  You can also clone the complete git tree
from:

    $ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1

The web is also available:
https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1

Sequence Of Patches
===================

The first patch makes DAMOS support the physical address space for the
page out action.  Following five patches (patches 2-6) implement the
time/size quotas.  Next four patches (patches 7-10) implement the memory
regions prioritization within the limit.  Then, three following patches
(patches 11-13) implement the watermarks-based schemes activation.

Finally, the last two patches (patches 14-15) implement and document the
DAMON-based reclamation using the advanced DAMOS.

[1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html
[2] https://research.google/pubs/pub48551/
[3] https://lwn.net/Articles/787611/
[4] https://damonitor.github.io
[5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html
[6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/
[7] https://github.com/awslabs/damoos
[8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
[9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement

This patch (of 15):

This makes the DAMON primitives for physical address space support the
pageout action for DAMON-based Operation Schemes.  With this commit,
hence, users can easily implement system-level data access-aware
reclamations using DAMOS.

[sj@kernel.org: fix missing-prototype build warning]
  Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org

Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park a28397beb5 mm/damon: implement primitives for physical address space monitoring
This implements the monitoring primitives for the physical memory
address space.  Internally, it uses the PTE Accessed bit, similar to
that of the virtual address spaces monitoring primitives.  It supports
only user memory pages, as idle pages tracking does.  If the monitoring
target physical memory address range contains non-user memory pages,
access check of the pages will do nothing but simply treat the pages as
not accessed.

Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00