To check whether all pages and shadow entries in swap cache has been
removed before swap cache is freed.
Link: https://lkml.kernel.org/r/20210608005121.511140-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit 09854ba94c ("mm: do_wp_page() simplification"), after COW,
the idle swap cache page (neither the page nor the corresponding swap
entry is mapped by any process) will be left in the LRU list, even if it's
in the active list or the head of the inactive list. So, the page
reclaimer may take quite some overhead to reclaim these actually unused
pages.
To help the page reclaiming, in this patch, after COW, the idle swap cache
page will be tried to be freed. To avoid to introduce much overhead to
the hot COW code path,
a) there's almost zero overhead for non-swap case via checking
PageSwapCache() firstly.
b) the page lock is acquired via trylock only.
To test the patch, we used pmbench memory accessing benchmark with
working-set larger than available memory on a 2-socket Intel server with a
NVMe SSD as swap device. Test results shows that the pmbench score
increases up to 23.8% with the decreased size of swap cache and swapin
throughput.
Link: https://lkml.kernel.org/r/20210601053143.1380078-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org> [use free_swap_cache()]
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The non_swap_entry() was used for working with VMA based swap readahead
via commit ec560175c0 ("mm, swap: VMA based swap readahead"). At that
time, the non_swap_entry() checking is necessary because the function is
called before checking that in do_swap_page(). Then it's moved to
swap_ra_info() since commit eaf649ebc3 ("mm: swap: clean up swap
readahead"). After that, the non_swap_entry() checking is unnecessary,
because swap_ra_info() is called after non_swap_entry() has been checked
already. The resulting code is confusing as the non_swap_entry() check
looks racy now because while we released the pte lock, somebody else might
have faulted in this pte. So we should check whether it's swap pte first
to guard against such race or swap_type will be unexpected. But the race
isn't important because it will not cause problem. We would have enough
checking when we really operate the PTE entries later. So we remove the
non_swap_entry() check here to avoid confusion.
Link: https://lkml.kernel.org/r/20210426123316.806267-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We no longer need to keep track of how many shadow entries are present in
a mapping. This saves a few writes to the inode and memory barriers.
Link: https://lkml.kernel.org/r/20201026151849.24232-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel adds the page, allocated for swapin, to the
swapcache before charging the page. This is fine but now we want a
per-memcg swapcache stat which is essential for folks who wants to
transparently migrate from cgroup v1's memsw to cgroup v2's memory and
swap counters. In addition charging a page before exposing it to other
parts of the kernel is a step in the right direction.
To correctly maintain the per-memcg swapcache stat, this patch has
adopted to charge the page before adding it to swapcache. One challenge
in this option is the failure case of add_to_swap_cache() on which we
need to undo the mem_cgroup_charge(). Specifically undoing
mem_cgroup_uncharge_swap() is not simple.
To resolve the issue, this patch decouples the charging for swapin pages
from mem_cgroup_charge(). Two new functions are introduced,
mem_cgroup_swapin_charge_page() for just charging the swapin page and
mem_cgroup_swapin_uncharge_swap() for uncharging the swap slot once the
page has been successfully added to the swapcache.
[shakeelb@google.com: set page->private before calling swap_readpage]
Link: https://lkml.kernel.org/r/20210318015959.2986837-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210305212639.775498-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Tested-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functionality of find_lock_entry() and find_get_entry() can be
provided by pagecache_get_page(), which lets us delete find_lock_entry()
and make find_get_entry() static.
Link: https://lkml.kernel.org/r/20201112212641.27837-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no need to get a reference to the page, just load the entry and
see if it's a shadow entry.
Link: https://lkml.kernel.org/r/20201112212641.27837-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds swapcache stat for the cgroup v2. The swapcache
represents the memory that is accounted against both the memory and the
swap limit of the cgroup. The main motivation behind exposing the
swapcache stat is for enabling users to gracefully migrate from cgroup
v1's memsw counter to cgroup v2's memory and swap counters.
Cgroup v1's memsw limit allows users to limit the memory+swap usage of a
workload but without control on the exact proportion of memory and swap.
Cgroup v2 provides separate limits for memory and swap which enables more
control on the exact usage of memory and swap individually for the
workload.
With some little subtleties, the v1's memsw limit can be switched with the
sum of the v2's memory and swap limits. However the alternative for memsw
usage is not yet available in cgroup v2. Exposing per-cgroup swapcache
stat enables that alternative. Adding the memory usage and swap usage and
subtracting the swapcache will approximate the memsw usage. This will
help in the transparent migration of the workloads depending on memsw
usage and limit to v2' memory and swap counters.
The reasons these applications are still interested in this approximate
memsw usage are: (1) these applications are not really interested in two
separate memory and swap usage metrics. A single usage metric is more
simple to use and reason about for them.
(2) The memsw usage metric hides the underlying system's swap setup from
the applications. Applications with multiple instances running in a
datacenter with heterogeneous systems (some have swap and some don't) will
keep seeing a consistent view of their usage.
[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are capable of SetPageWorkingset based on refault distances after
commit aae466b005 ("mm/swap: implement workingset detection for
anonymous LRU"). This is done by workingset_refault(), which is right
above the unconditional SetPageWorkingset deleted by this patch.
The unconditional SetPageWorkingset miscategorizes pages that are read
ahead or never belonged to the working set (e.g., tmpfs pages accessed
only once by fd). When those pages are swapped in (after they were
swapped out) for the first time, they skew PSI (when using async swap).
When this happens again, depending on their refault distances, they might
skew workingset_restore_anon counter in addition to PSI because their
shadows indicate they were part of the working set.
Historically, SetPageWorkingset was added as part of the PSI series, and
Johannes said:
"It was meant to mark incoming pages under IO with SetPageWorkingset
when waiting for them constituted a memory stall.
On the page cache side, because we HAVE workingset detection, this was
specific to recently evicted pages that had been active in their
previous life. On the anon side, the aging algorithm had no
distinction between workingset and sporadically used pages. Given the
choice between a) no swapin stalls are pressure and b) all swapin
stalls are pressure, I went with the latter in order to detect swap
storms. The false positive case - high rate of swapin without severe
memory pressure - was relatively unlikely, because we tried to avoid
swapping until everything was completely on fire in the first place."
Link: https://lkml.kernel.org/r/20201209012400.1771150-1-yuzhao@google.com
Link: https://lkml.kernel.org/r/20201214231253.62313-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only usage of swap_attr_group is to pass its address to
sysfs_create_group() which takes a pointer to const attribute_group. Make
it const to allow the compiler to put it in read-only memory.
Link: https://lkml.kernel.org/r/20210201233254.91809-1-rikard.falkeborn@gmail.com
Signed-off-by: Rikard Falkeborn <rikard.falkeborn@gmail.com>
Reviewed-by: Amy Parker <enbyamy@gmail.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Convert sysfs sprintf family to sysfs_emit", v2.
Use the new sysfs_emit family and not the sprintf family.
This patch (of 5):
Use the sysfs_emit function instead of the sprintf family.
Done with cocci script as in commit 3c6bff3cf9 ("RDMA: Convert sysfs
kobject * show functions to use sysfs_emit()")
Link: https://lkml.kernel.org/r/cover.1605376435.git.joe@perches.com
Link: https://lkml.kernel.org/r/9c249215bad6df616ba0410ad980042694970c1b.1605376435.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_ra_info() may leave ra_info untouched in non_swap_entry() case as
page table lock is not held. In this case, we have ra_info.nr_pte == 0
and it is meaningless to continue with swap cache readahead. Skip such
ops by init ra_info.win = 1.
[akpm@linux-foundation.org: clean up struct init]
Link: https://lkml.kernel.org/r/20201009133059.58407-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix some broken comments including typo, grammar error and wrong function
name.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200913095456.54873-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SWP_FS is used to make swap_{read,write}page() go through the filesystem,
and it's only used for swap files over NFS for now. Otherwise it will
directly submit IO to blockdev according to swapfile extents reported by
filesystems in advance.
As Matthew pointed out [1], SWP_FS naming is somewhat confusing, so let's
rename to SWP_FS_OPS.
[1] https://lore.kernel.org/r/20200820113448.GM17456@casper.infradead.org
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200822113019.11319-1-hsiangkao@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are only four callers remaining of find_get_entry().
get_shadow_from_swap_cache() only wants to see shadow entries and doesn't
care about which page is returned. Push the find_subpage() call into
find_lock_entry(), find_get_incore_page() and pagecache_get_page().
[willy@infradead.org: fix oops]
Link: https://lkml.kernel.org/r/20200914112738.GM6583@casper.infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-7-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Return head pages from find_*_entry", v2.
This patch series started out as part of the THP patch set, but it has
some nice effects along the way and it seems worth splitting it out and
submitting separately.
Currently find_get_entry() and find_lock_entry() return the page
corresponding to the requested index, but the first thing most callers do
is find the head page, which we just threw away. As part of auditing all
the callers, I found some misuses of the APIs and some plain
inefficiencies that I've fixed.
The diffstat is unflattering, but I added more kernel-doc and a new wrapper.
This patch (of 8);
Provide this functionality from the swap cache. It's useful for
more than just mincore().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20200910183318.20139-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_cache_info.* could be accessed concurrently as noticed by
KCSAN,
BUG: KCSAN: data-race in lookup_swap_cache / lookup_swap_cache
write to 0xffffffff85517318 of 8 bytes by task 94138 on cpu 101:
lookup_swap_cache+0x12e/0x460
lookup_swap_cache at mm/swap_state.c:322
do_swap_page+0x112/0xeb0
__handle_mm_fault+0xc7a/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
read to 0xffffffff85517318 of 8 bytes by task 91655 on cpu 100:
lookup_swap_cache+0x117/0x460
lookup_swap_cache at mm/swap_state.c:322
shmem_swapin_page+0xc7/0x9e0
shmem_getpage_gfp+0x2ca/0x16c0
shmem_fault+0xef/0x3c0
__do_fault+0x9e/0x220
do_fault+0x4a0/0x920
__handle_mm_fault+0xc69/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
Reported by Kernel Concurrency Sanitizer on:
CPU: 100 PID: 91655 Comm: systemd-journal Tainted: G W O L 5.5.0-next-20200204+ #6
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019
write to 0xffffffff8d717308 of 8 bytes by task 11365 on cpu 87:
__delete_from_swap_cache+0x681/0x8b0
__delete_from_swap_cache at mm/swap_state.c:178
read to 0xffffffff8d717308 of 8 bytes by task 11275 on cpu 53:
__delete_from_swap_cache+0x66e/0x8b0
__delete_from_swap_cache at mm/swap_state.c:178
Both the read and write are done as lockless. Since swap_cache_info.*
are only used to print out counter information, even if any of them
missed a few incremental due to data races, it will be harmless, so just
mark it as an intentional data race using the data_race() macro.
While at it, fix a checkpatch.pl warning,
WARNING: Single statement macros should not use a do {} while (0) loop
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Link: http://lkml.kernel.org/r/20200207003715.1578-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements workingset detection for anonymous LRU. All the
infrastructure is implemented by the previous patches so this patch just
activates the workingset detection by installing/retrieving the shadow
entry and adding refault calculation.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workingset detection for anonymous page will be implemented in the
following patch and it requires to store the shadow entries into the
swapcache. This patch implements an infrastructure to store the shadow
entry in the swapcache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/1595490560-15117-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix W=1 compile warnings (invalid kerneldoc):
mm/swap_state.c:742: warning: Function parameter or member 'fentry' not described in 'swap_vma_readahead'
mm/swap_state.c:742: warning: Excess function parameter 'entry' description in 'swap_vma_readahead'
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200728171109.28687-2-krzk@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chris Murphy reports that a slightly overcommitted load, testing swap
and zram along with i915, splats and keeps on splatting, when it had
better fail less noisily:
gnome-shell: page allocation failure: order:0,
mode:0x400d0(__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_RECLAIMABLE),
nodemask=(null),cpuset=/,mems_allowed=0
CPU: 2 PID: 1155 Comm: gnome-shell Not tainted 5.7.0-1.fc33.x86_64 #1
Call Trace:
dump_stack+0x64/0x88
warn_alloc.cold+0x75/0xd9
__alloc_pages_slowpath.constprop.0+0xcfa/0xd30
__alloc_pages_nodemask+0x2df/0x320
alloc_slab_page+0x195/0x310
allocate_slab+0x3c5/0x440
___slab_alloc+0x40c/0x5f0
__slab_alloc+0x1c/0x30
kmem_cache_alloc+0x20e/0x220
xas_nomem+0x28/0x70
add_to_swap_cache+0x321/0x400
__read_swap_cache_async+0x105/0x240
swap_cluster_readahead+0x22c/0x2e0
shmem_swapin+0x8e/0xc0
shmem_swapin_page+0x196/0x740
shmem_getpage_gfp+0x3a2/0xa60
shmem_read_mapping_page_gfp+0x32/0x60
shmem_get_pages+0x155/0x5e0 [i915]
__i915_gem_object_get_pages+0x68/0xa0 [i915]
i915_vma_pin+0x3fe/0x6c0 [i915]
eb_add_vma+0x10b/0x2c0 [i915]
i915_gem_do_execbuffer+0x704/0x3430 [i915]
i915_gem_execbuffer2_ioctl+0x1ea/0x3e0 [i915]
drm_ioctl_kernel+0x86/0xd0 [drm]
drm_ioctl+0x206/0x390 [drm]
ksys_ioctl+0x82/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x5b/0xf0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported on 5.7, but it goes back really to 3.1: when
shmem_read_mapping_page_gfp() was implemented for use by i915, and
allowed for __GFP_NORETRY and __GFP_NOWARN flags in most places, but
missed swapin's "& GFP_KERNEL" mask for page tree node allocation in
__read_swap_cache_async() - that was to mask off HIGHUSER_MOVABLE bits
from what page cache uses, but GFP_RECLAIM_MASK is now what's needed.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=208085
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2006151330070.11064@eggly.anvils
Fixes: 68da9f0557 ("tmpfs: pass gfp to shmem_getpage_gfp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Chris Murphy <lists@colorremedies.com>
Analyzed-by: Vlastimil Babka <vbabka@suse.cz>
Analyzed-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org> [3.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM tries to balance reclaim pressure between anon and file so as to
reduce the amount of IO incurred due to the memory shortage. It already
counts refaults and swapins, but in addition it should also count
writepage calls during reclaim.
For swap, this is obvious: it's IO that wouldn't have occurred if the
anonymous memory hadn't been under memory pressure. From a relative
balancing point of view this makes sense as well: even if anon is cold and
reclaimable, a cache that isn't thrashing may have equally cold pages that
don't require IO to reclaim.
For file writeback, it's trickier: some of the reclaim writepage IO would
have likely occurred anyway due to dirty expiration. But not all of it -
premature writeback reduces batching and generates additional writes.
Since the flushers are already woken up by the time the VM starts writing
cache pages one by one, let's assume that we'e likely causing writes that
wouldn't have happened without memory pressure. In addition, the per-page
cost of IO would have probably been much cheaper if written in larger
batches from the flusher thread rather than the single-page-writes from
kswapd.
For our purposes - getting the trend right to accelerate convergence on a
stable state that doesn't require paging at all - this is sufficiently
accurate. If we later wanted to optimize for sustained thrashing, we can
still refine the measurements.
Count all writepage calls from kswapd as IO cost toward the LRU that the
page belongs to.
Why do this dynamically? Don't we know in advance that anon pages require
IO to reclaim, and so could build in a static bias?
First, scanning is not the same as reclaiming. If all the anon pages are
referenced, we may not swap for a while just because we're scanning the
anon list. During this time, however, it's important that we age
anonymous memory and the page cache at the same rate so that their
hot-cold gradients are comparable. Everything else being equal, we still
want to reclaim the coldest memory overall.
Second, we keep copies in swap unless the page changes. If there is
swap-backed data that's mostly read (tmpfs file) and has been swapped out
before, we can reclaim it without incurring additional IO.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the LRUs were split into anon and file lists, the VM has been
balancing between page cache and anonymous pages based on per-list ratios
of scanned vs. rotated pages. In most cases that tips page reclaim
towards the list that is easier to reclaim and has the fewest actively
used pages, but there are a few problems with it:
1. Refaults and LRU rotations are weighted the same way, even though
one costs IO and the other costs a bit of CPU.
2. The less we scan an LRU list based on already observed rotations,
the more we increase the sampling interval for new references, and
rotations become even more likely on that list. This can enter a
death spiral in which we stop looking at one list completely until
the other one is all but annihilated by page reclaim.
Since commit a528910e12 ("mm: thrash detection-based file cache sizing")
we have refault detection for the page cache. Along with swapin events,
they are good indicators of when the file or anon list, respectively, is
too small for its workingset and needs to grow.
For example, if the page cache is thrashing, the cache pages need more
time in memory, while there may be colder pages on the anonymous list.
Likewise, if swapped pages are faulting back in, it indicates that we
reclaim anonymous pages too aggressively and should back off.
Replace LRU rotations with refaults and swapins as the basis for relative
reclaim cost of the two LRUs. This will have the VM target list balances
that incur the least amount of IO on aggregate.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They're the same function, and for the purpose of all callers they are
equivalent to lru_cache_add().
[akpm@linux-foundation.org: fix it for local_lock changes]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapin faults were the last event to charge pages after they had already
been put on the LRU list. Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, users that are otherwise memory controlled can easily escape
their containment and allocate significant amounts of memory that they're
not being charged for. That's because swap readahead pages are not being
charged until somebody actually faults them into their page table. This
can be exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.
There are additional problems with the delayed charging of swap pages:
1. To implement refault/workingset detection for anonymous pages, we
need to have a target LRU available at swapin time, but the LRU is not
determinable until the page has been charged.
2. To implement per-cgroup LRU locking, we need page->mem_cgroup to be
stable when the page is isolated from the LRU; otherwise, the locks
change under us. But swapcache gets charged after it's already on the
LRU, and even if we cannot isolate it ourselves (since charging is not
exactly optional).
The previous patch ensured we always maintain cgroup ownership records for
swap pages. This patch moves the swapcache charging point from the fault
handler to swapin time to fix all of the above problems.
v2: simplify swapin error checking (Joonsoo)
[hughd@google.com: fix livelock in __read_swap_cache_async()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005212246080.8458@eggly.anvils
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-17-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,
BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead
write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
swap_cluster_readahead+0x2a6/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by (dnf)/14795:
#0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1535
irq event stamp: 83493
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
swap_cluster_readahead+0xfd/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by systemd/1:
#0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
irq event stamp: 43530289
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
add_to_swap_cache() and delete_from_swap_cache() are counterparts, while
currently they use different ways to count pages.
It doesn't break anything because we only have two sizes for PageAnon, but
this is confusing and not good practice.
This patch corrects it by making both functions use hpage_nr_pages().
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200315012920.2687-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
Kirill and Huang Ying contributed several fixes.
[willy@infradead.org: use compound_nr, squish uninit-var warning]
Link: http://lkml.kernel.org/r/20190731210400.7419-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-by: Song Liu <songliubraving@fb.com>
Tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
total_swapcache_pages() may race with swapper_spaces[] allocation and
freeing. Previously, this is protected with a swapper_spaces[] specific
RCU mechanism. To simplify the logic/code complexity, it is replaced with
get/put_swap_device(). The code line number is reduced too. Although not
so important, the swapoff() performance improves too because one
synchronize_rcu() call during swapoff() is deleted.
[ying.huang@intel.com: fix bad swap file entry warning]
Link: http://lkml.kernel.org/r/20190531024102.21723-1-ying.huang@intel.com
Link: http://lkml.kernel.org/r/20190527082714.12151-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When swapin is performed, after getting the swap entry information from
the page table, system will swap in the swap entry, without any lock held
to prevent the swap device from being swapoff. This may cause the race
like below,
CPU 1 CPU 2
----- -----
do_swap_page
swapin_readahead
__read_swap_cache_async
swapoff swapcache_prepare
p->swap_map = NULL __swap_duplicate
p->swap_map[?] /* !!! NULL pointer access */
Because swapoff is usually done when system shutdown only, the race may
not hit many people in practice. But it is still a race need to be fixed.
To fix the race, get_swap_device() is added to check whether the specified
swap entry is valid in its swap device. If so, it will keep the swap
entry valid via preventing the swap device from being swapoff, until
put_swap_device() is called.
Because swapoff() is very rare code path, to make the normal path runs as
fast as possible, rcu_read_lock/unlock() and synchronize_rcu() instead of
reference count is used to implement get/put_swap_device(). >From
get_swap_device() to put_swap_device(), RCU reader side is locked, so
synchronize_rcu() in swapoff() will wait until put_swap_device() is
called.
In addition to swap_map, cluster_info, etc. data structure in the struct
swap_info_struct, the swap cache radix tree will be freed after swapoff,
so this patch fixes the race between swap cache looking up and swapoff
too.
Races between some other swap cache usages and swapoff are fixed too via
calling synchronize_rcu() between clearing PageSwapCache() and freeing
swap cache data structure.
Another possible method to fix this is to use preempt_off() +
stop_machine() to prevent the swap device from being swapoff when its data
structure is being accessed. The overhead in hot-path of both methods is
similar. The advantages of RCU based method are,
1. stop_machine() may disturb the normal execution code path on other
CPUs.
2. File cache uses RCU to protect its radix tree. If the similar
mechanism is used for swap cache too, it is easier to share code
between them.
3. RCU is used to protect swap cache in total_swapcache_pages() and
exit_swap_address_space() already. The two mechanisms can be
merged to simplify the logic.
Link: http://lkml.kernel.org/r/20190522015423.14418-1-ying.huang@intel.com
Fixes: 235b621767 ("mm/swap: add cluster lock")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Not-nacked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
[willy@infradead.org: fix swapcache pages]
Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org
[kirill@shutemov.name: hugetlb stores pages in page cache differently]
Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1
Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-and-tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Hugh Dickins <hughd@google.com>
Cc: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_vma_readahead()'s comment is missing, just add it.
Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead would read in a few pages regardless if the underlying
device is busy or not. It may incur long waiting time if the device is
congested, and it may also exacerbate the congestion.
Use inode_read_congested() to check if the underlying device is busy or
not like what file page readahead does. Get inode from
swap_info_struct.
Although we can add inode information in swap_address_space
(address_space->host), it may lead some unexpected side effect, i.e. it
may break mapping_cap_account_dirty(). Using inode from
swap_info_struct seems simple and good enough.
Just does the check in vma_cluster_readahead() since
swap_vma_readahead() is just used for non-rotational device which much
less likely has congestion than traditional HDD.
Although swap slots may be consecutive on swap partition, it still may
be fragmented on swap file. This check would help to reduce excessive
stall for such case.
The test with page_fault1 of will-it-scale (sometimes tracing may just
show runtest.py that is the wrapper script of page_fault1), which
basically launches NR_CPU threads to generate 128MB anonymous pages for
each thread, on my virtual machine with congested HDD shows long tail
latency is reduced significantly.
Without the patch
page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page();
page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page();
page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page();
page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page();
page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page();
page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page();
page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page();
page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page();
With the patch
runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page();
runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page();
runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page();
runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page();
runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page();
runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page();
runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page();
runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page();
[akpm@linux-foundation.org: code cleanup]
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com
Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
Refaults happen during transitions between workingsets as well as in-place
thrashing. Knowing the difference between the two has a range of
applications, including measuring the impact of memory shortage on the
system performance, as well as the ability to smarter balance pressure
between the filesystem cache and the swap-backed workingset.
During workingset transitions, inactive cache refaults and pushes out
established active cache. When that active cache isn't stale, however,
and also ends up refaulting, that's bonafide thrashing.
Introduce a new page flag that tells on eviction whether the page has been
active or not in its lifetime. This bit is then stored in the shadow
entry, to classify refaults as transitioning or thrashing.
How many page->flags does this leave us with on 32-bit?
20 bits are always page flags
21 if you have an MMU
23 with the zone bits for DMA, Normal, HighMem, Movable
29 with the sparsemem section bits
30 if PAE is enabled
31 with this patch.
So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If
that's not enough, the system can switch to discontigmem and re-gain the 6
or 7 sparsemem section bits.
Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With no more radix tree API users left, we can drop the GFP flags
and use xa_init() instead of INIT_RADIX_TREE().
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Both callers of __delete_from_swap_cache have the swp_entry_t already,
so pass that in to make constructing the XA_STATE easier.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Combine __add_to_swap_cache and add_to_swap_cache into one function
since there is no more need to preload.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Patch series "mm, memcontrol: Implement memory.swap.events", v2.
This patchset implements memory.swap.events which contains max and fail
events so that userland can monitor and respond to swap running out.
This patch (of 2):
get_swap_page() is always followed by mem_cgroup_try_charge_swap().
This patch moves mem_cgroup_try_charge_swap() into get_swap_page() and
makes get_swap_page() call the function even after swap allocation
failure.
This simplifies the callers and consolidates memcg related logic and
will ease adding swap related memcg events.
Link: http://lkml.kernel.org/r/20180416230934.GH1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bool enable_vma_readahead and swap_vma_readahead() are local to the
source and do not need to be in global scope, so make them static.
Cleans up sparse warnings:
mm/swap_state.c:41:6: warning: symbol 'enable_vma_readahead' was not declared. Should it be static?
mm/swap_state.c:742:13: warning: symbol 'swap_vma_readahead' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180223164852.5159-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>