Граф коммитов

96 Коммитов

Автор SHA1 Сообщение Дата
David Howells b0f571ecd7 rxrpc: Fix locking in rxrpc's sendmsg
Fix three bugs in the rxrpc's sendmsg implementation:

 (1) rxrpc_new_client_call() should release the socket lock when returning
     an error from rxrpc_get_call_slot().

 (2) rxrpc_wait_for_tx_window_intr() will return without the call mutex
     held in the event that we're interrupted by a signal whilst waiting
     for tx space on the socket or relocking the call mutex afterwards.

     Fix this by: (a) moving the unlock/lock of the call mutex up to
     rxrpc_send_data() such that the lock is not held around all of
     rxrpc_wait_for_tx_window*() and (b) indicating to higher callers
     whether we're return with the lock dropped.  Note that this means
     recvmsg() will not block on this call whilst we're waiting.

 (3) After dropping and regaining the call mutex, rxrpc_send_data() needs
     to go and recheck the state of the tx_pending buffer and the
     tx_total_len check in case we raced with another sendmsg() on the same
     call.

Thinking on this some more, it might make sense to have different locks for
sendmsg() and recvmsg().  There's probably no need to make recvmsg() wait
for sendmsg().  It does mean that recvmsg() can return MSG_EOR indicating
that a call is dead before a sendmsg() to that call returns - but that can
currently happen anyway.

Without fix (2), something like the following can be induced:

	WARNING: bad unlock balance detected!
	5.16.0-rc6-syzkaller #0 Not tainted
	-------------------------------------
	syz-executor011/3597 is trying to release lock (&call->user_mutex) at:
	[<ffffffff885163a3>] rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748
	but there are no more locks to release!

	other info that might help us debug this:
	no locks held by syz-executor011/3597.
	...
	Call Trace:
	 <TASK>
	 __dump_stack lib/dump_stack.c:88 [inline]
	 dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
	 print_unlock_imbalance_bug include/trace/events/lock.h:58 [inline]
	 __lock_release kernel/locking/lockdep.c:5306 [inline]
	 lock_release.cold+0x49/0x4e kernel/locking/lockdep.c:5657
	 __mutex_unlock_slowpath+0x99/0x5e0 kernel/locking/mutex.c:900
	 rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748
	 rxrpc_sendmsg+0x420/0x630 net/rxrpc/af_rxrpc.c:561
	 sock_sendmsg_nosec net/socket.c:704 [inline]
	 sock_sendmsg+0xcf/0x120 net/socket.c:724
	 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2409
	 ___sys_sendmsg+0xf3/0x170 net/socket.c:2463
	 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2492
	 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
	 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
	 entry_SYSCALL_64_after_hwframe+0x44/0xae

[Thanks to Hawkins Jiawei and Khalid Masum for their attempts to fix this]

Fixes: bc5e3a546d ("rxrpc: Use MSG_WAITALL to tell sendmsg() to temporarily ignore signals")
Reported-by: syzbot+7f0483225d0c94cb3441@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: syzbot+7f0483225d0c94cb3441@syzkaller.appspotmail.com
cc: Hawkins Jiawei <yin31149@gmail.com>
cc: Khalid Masum <khalid.masum.92@gmail.com>
cc: Dan Carpenter <dan.carpenter@oracle.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/166135894583.600315.7170979436768124075.stgit@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-25 12:39:40 -07:00
David Howells ad25f5cb39 rxrpc: Fix locking issue
There's a locking issue with the per-netns list of calls in rxrpc.  The
pieces of code that add and remove a call from the list use write_lock()
and the calls procfile uses read_lock() to access it.  However, the timer
callback function may trigger a removal by trying to queue a call for
processing and finding that it's already queued - at which point it has a
spare refcount that it has to do something with.  Unfortunately, if it puts
the call and this reduces the refcount to 0, the call will be removed from
the list.  Unfortunately, since the _bh variants of the locking functions
aren't used, this can deadlock.

================================
WARNING: inconsistent lock state
5.18.0-rc3-build4+ #10 Not tainted
--------------------------------
inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
ksoftirqd/2/25 [HC0[0]:SC1[1]:HE1:SE0] takes:
ffff888107ac4038 (&rxnet->call_lock){+.?.}-{2:2}, at: rxrpc_put_call+0x103/0x14b
{SOFTIRQ-ON-W} state was registered at:
...
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&rxnet->call_lock);
  <Interrupt>
    lock(&rxnet->call_lock);

 *** DEADLOCK ***

1 lock held by ksoftirqd/2/25:
 #0: ffff8881008ffdb0 ((&call->timer)){+.-.}-{0:0}, at: call_timer_fn+0x5/0x23d

Changes
=======
ver #2)
 - Changed to using list_next_rcu() rather than rcu_dereference() directly.

Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-22 21:03:01 +01:00
David Howells a05754295e rxrpc: Use refcount_t rather than atomic_t
Move to using refcount_t rather than atomic_t for refcounts in rxrpc.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-22 21:03:01 +01:00
David Howells 4a7f62f919 rxrpc: Fix call timer start racing with call destruction
The rxrpc_call struct has a timer used to handle various timed events
relating to a call.  This timer can get started from the packet input
routines that are run in softirq mode with just the RCU read lock held.
Unfortunately, because only the RCU read lock is held - and neither ref or
other lock is taken - the call can start getting destroyed at the same time
a packet comes in addressed to that call.  This causes the timer - which
was already stopped - to get restarted.  Later, the timer dispatch code may
then oops if the timer got deallocated first.

Fix this by trying to take a ref on the rxrpc_call struct and, if
successful, passing that ref along to the timer.  If the timer was already
running, the ref is discarded.

The timer completion routine can then pass the ref along to the call's work
item when it queues it.  If the timer or work item where already
queued/running, the extra ref is discarded.

Fixes: a158bdd324 ("rxrpc: Fix call timeouts")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2022-March/005073.html
Link: https://lore.kernel.org/r/164865115696.2943015.11097991776647323586.stgit@warthog.procyon.org.uk
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-03-31 12:25:25 +02:00
David Howells 7b5eab57ca rxrpc: Fix clearance of Tx/Rx ring when releasing a call
At the end of rxrpc_release_call(), rxrpc_cleanup_ring() is called to clear
the Rx/Tx skbuff ring, but this doesn't lock the ring whilst it's accessing
it.  Unfortunately, rxrpc_resend() might be trying to retransmit a packet
concurrently with this - and whilst it does lock the ring, this isn't
protection against rxrpc_cleanup_call().

Fix this by removing the call to rxrpc_cleanup_ring() from
rxrpc_release_call().  rxrpc_cleanup_ring() will be called again anyway
from rxrpc_cleanup_call().  The earlier call is just an optimisation to
recycle skbuffs more quickly.

Alternative solutions include rxrpc_release_call() could try to cancel the
work item or wait for it to complete or rxrpc_cleanup_ring() could lock
when accessing the ring (which would require a bh lock).

This can produce a report like the following:

  BUG: KASAN: use-after-free in rxrpc_send_data_packet+0x19b4/0x1e70 net/rxrpc/output.c:372
  Read of size 4 at addr ffff888011606e04 by task kworker/0:0/5
  ...
  Workqueue: krxrpcd rxrpc_process_call
  Call Trace:
   ...
   kasan_report.cold+0x79/0xd5 mm/kasan/report.c:413
   rxrpc_send_data_packet+0x19b4/0x1e70 net/rxrpc/output.c:372
   rxrpc_resend net/rxrpc/call_event.c:266 [inline]
   rxrpc_process_call+0x1634/0x1f60 net/rxrpc/call_event.c:412
   process_one_work+0x98d/0x15f0 kernel/workqueue.c:2275
   ...

  Allocated by task 2318:
   ...
   sock_alloc_send_pskb+0x793/0x920 net/core/sock.c:2348
   rxrpc_send_data+0xb51/0x2bf0 net/rxrpc/sendmsg.c:358
   rxrpc_do_sendmsg+0xc03/0x1350 net/rxrpc/sendmsg.c:744
   rxrpc_sendmsg+0x420/0x630 net/rxrpc/af_rxrpc.c:560
   ...

  Freed by task 2318:
   ...
   kfree_skb+0x140/0x3f0 net/core/skbuff.c:704
   rxrpc_free_skb+0x11d/0x150 net/rxrpc/skbuff.c:78
   rxrpc_cleanup_ring net/rxrpc/call_object.c:485 [inline]
   rxrpc_release_call+0x5dd/0x860 net/rxrpc/call_object.c:552
   rxrpc_release_calls_on_socket+0x21c/0x300 net/rxrpc/call_object.c:579
   rxrpc_release_sock net/rxrpc/af_rxrpc.c:885 [inline]
   rxrpc_release+0x263/0x5a0 net/rxrpc/af_rxrpc.c:916
   __sock_release+0xcd/0x280 net/socket.c:597
   ...

  The buggy address belongs to the object at ffff888011606dc0
   which belongs to the cache skbuff_head_cache of size 232

Fixes: 248f219cb8 ("rxrpc: Rewrite the data and ack handling code")
Reported-by: syzbot+174de899852504e4a74a@syzkaller.appspotmail.com
Reported-by: syzbot+3d1c772efafd3c38d007@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/161234207610.653119.5287360098400436976.stgit@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-04 18:11:08 -08:00
Jakub Kicinski 9d49aea13f Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Small conflict around locking in rxrpc_process_event() -
channel_lock moved to bundle in next, while state lock
needs _bh() from net.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-08 15:44:50 -07:00
David Howells 2d914c1bf0 rxrpc: Fix accept on a connection that need securing
When a new incoming call arrives at an userspace rxrpc socket on a new
connection that has a security class set, the code currently pushes it onto
the accept queue to hold a ref on it for the socket.  This doesn't work,
however, as recvmsg() pops it off, notices that it's in the SERVER_SECURING
state and discards the ref.  This means that the call runs out of refs too
early and the kernel oopses.

By contrast, a kernel rxrpc socket manually pre-charges the incoming call
pool with calls that already have user call IDs assigned, so they are ref'd
by the call tree on the socket.

Change the mode of operation for userspace rxrpc server sockets to work
like this too.  Although this is a UAPI change, server sockets aren't
currently functional.

Fixes: 248f219cb8 ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-05 16:35:57 +01:00
David Howells b7a7d67408 rxrpc: Impose a maximum number of client calls
Impose a maximum on the number of client rxrpc calls that are allowed
simultaneously.  This will be in lieu of a maximum number of client
connections as this is easier to administed as, unlike connections, calls
aren't reusable (to be changed in a subsequent patch)..

This doesn't affect the limits on service calls and connections.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-09-08 21:10:45 +01:00
David Howells 4700c4d80b rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.

The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:

 rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
 rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
 rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
 ...

DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx).  The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring.  The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.

This is particularly noticeable on RPC calls used to probe the service
offered by the peer.  A lot of peers end up with an unknown RTT because we
only ever sent a single RPC.  This confuses the server rotation algorithm.

Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.

A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there.  When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.

If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.

ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.

If there's no space in the buffer on ping/data transmission, the sample
base is discarded.

Fixes: 50235c4b5a ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 17:59:27 +01:00
David Howells 65550098c1 rxrpc: Fix race between recvmsg and sendmsg on immediate call failure
There's a race between rxrpc_sendmsg setting up a call, but then failing to
send anything on it due to an error, and recvmsg() seeing the call
completion occur and trying to return the state to the user.

An assertion fails in rxrpc_recvmsg() because the call has already been
released from the socket and is about to be released again as recvmsg deals
with it.  (The recvmsg_q queue on the socket holds a ref, so there's no
problem with use-after-free.)

We also have to be careful not to end up reporting an error twice, in such
a way that both returns indicate to userspace that the user ID supplied
with the call is no longer in use - which could cause the client to
malfunction if it recycles the user ID fast enough.

Fix this by the following means:

 (1) When sendmsg() creates a call after the point that the call has been
     successfully added to the socket, don't return any errors through
     sendmsg(), but rather complete the call and let recvmsg() retrieve
     them.  Make sendmsg() return 0 at this point.  Further calls to
     sendmsg() for that call will fail with ESHUTDOWN.

     Note that at this point, we haven't send any packets yet, so the
     server doesn't yet know about the call.

 (2) If sendmsg() returns an error when it was expected to create a new
     call, it means that the user ID wasn't used.

 (3) Mark the call disconnected before marking it completed to prevent an
     oops in rxrpc_release_call().

 (4) recvmsg() will then retrieve the error and set MSG_EOR to indicate
     that the user ID is no longer known by the kernel.

An oops like the following is produced:

	kernel BUG at net/rxrpc/recvmsg.c:605!
	...
	RIP: 0010:rxrpc_recvmsg+0x256/0x5ae
	...
	Call Trace:
	 ? __init_waitqueue_head+0x2f/0x2f
	 ____sys_recvmsg+0x8a/0x148
	 ? import_iovec+0x69/0x9c
	 ? copy_msghdr_from_user+0x5c/0x86
	 ___sys_recvmsg+0x72/0xaa
	 ? __fget_files+0x22/0x57
	 ? __fget_light+0x46/0x51
	 ? fdget+0x9/0x1b
	 do_recvmmsg+0x15e/0x232
	 ? _raw_spin_unlock+0xa/0xb
	 ? vtime_delta+0xf/0x25
	 __x64_sys_recvmmsg+0x2c/0x2f
	 do_syscall_64+0x4c/0x78
	 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: 357f5ef646 ("rxrpc: Call rxrpc_release_call() on error in rxrpc_new_client_call()")
Reported-by: syzbot+b54969381df354936d96@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-30 16:50:20 -07:00
David Howells e138aa7d32 rxrpc: Fix call interruptibility handling
Fix the interruptibility of kernel-initiated client calls so that they're
either only interruptible when they're waiting for a call slot to come
available or they're not interruptible at all.  Either way, they're not
interruptible during transmission.

This should help prevent StoreData calls from being interrupted when
writeback is in progress.  It doesn't, however, handle interruption during
the receive phase.

Userspace-initiated calls are still interruptable.  After the signal has
been handled, sendmsg() will return the amount of data copied out of the
buffer and userspace can perform another sendmsg() call to continue
transmission.

Fixes: bc5e3a546d ("rxrpc: Use MSG_WAITALL to tell sendmsg() to temporarily ignore signals")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-13 23:04:30 +00:00
David Howells 963485d436 rxrpc: Fix call RCU cleanup using non-bh-safe locks
rxrpc_rcu_destroy_call(), which is called as an RCU callback to clean up a
put call, calls rxrpc_put_connection() which, deep in its bowels, takes a
number of spinlocks in a non-BH-safe way, including rxrpc_conn_id_lock and
local->client_conns_lock.  RCU callbacks, however, are normally called from
softirq context, which can cause lockdep to notice the locking
inconsistency.

To get lockdep to detect this, it's necessary to have the connection
cleaned up on the put at the end of the last of its calls, though normally
the clean up is deferred.  This can be induced, however, by starting a call
on an AF_RXRPC socket and then closing the socket without reading the
reply.

Fix this by having rxrpc_rcu_destroy_call() punt the destruction to a
workqueue if in softirq-mode and defer the destruction to process context.

Note that another way to fix this could be to add a bunch of bh-disable
annotations to the spinlocks concerned - and there might be more than just
those two - but that means spending more time with BHs disabled.

Note also that some of these places were covered by bh-disable spinlocks
belonging to the rxrpc_transport object, but these got removed without the
_bh annotation being retained on the next lock in.

Fixes: 999b69f892 ("rxrpc: Kill the client connection bundle concept")
Reported-by: syzbot+d82f3ac8d87e7ccbb2c9@syzkaller.appspotmail.com
Reported-by: syzbot+3f1fd6b8cbf8702d134e@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-07 11:20:57 +01:00
David Howells 5273a191dc rxrpc: Fix NULL pointer deref due to call->conn being cleared on disconnect
When a call is disconnected, the connection pointer from the call is
cleared to make sure it isn't used again and to prevent further attempted
transmission for the call.  Unfortunately, there might be a daemon trying
to use it at the same time to transmit a packet.

Fix this by keeping call->conn set, but setting a flag on the call to
indicate disconnection instead.

Remove also the bits in the transmission functions where the conn pointer is
checked and a ref taken under spinlock as this is now redundant.

Fixes: 8d94aa381d ("rxrpc: Calls shouldn't hold socket refs")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-02-03 10:25:30 +00:00
David Howells 91fcfbe885 rxrpc: Fix call crypto state cleanup
Fix the cleanup of the crypto state on a call after the call has been
disconnected.  As the call has been disconnected, its connection ref has
been discarded and so we can't go through that to get to the security ops
table.

Fix this by caching the security ops pointer in the rxrpc_call struct and
using that when freeing the call security state.  Also use this in other
places we're dealing with call-specific security.

The symptoms look like:

    BUG: KASAN: use-after-free in rxrpc_release_call+0xb2d/0xb60
    net/rxrpc/call_object.c:481
    Read of size 8 at addr ffff888062ffeb50 by task syz-executor.5/4764

Fixes: 1db88c5343 ("rxrpc: Fix -Wframe-larger-than= warnings from on-stack crypto")
Reported-by: syzbot+eed305768ece6682bb7f@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-07 11:05:05 +01:00
David Howells 48c9e0ec7c rxrpc: Fix trace-after-put looking at the put call record
rxrpc_put_call() calls trace_rxrpc_call() after it has done the decrement
of the refcount - which looks at the debug_id in the call record.  But
unless the refcount was reduced to zero, we no longer have the right to
look in the record and, indeed, it may be deleted by some other thread.

Fix this by getting the debug_id out before decrementing the refcount and
then passing that into the tracepoint.

Fixes: e34d4234b0 ("rxrpc: Trace rxrpc_call usage")
Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-07 11:05:05 +01:00
David S. Miller 765b7590c9 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
r8152 conflicts are the NAPI fixes in 'net' overlapping with
some tasklet stuff in net-next

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-02 11:20:17 -07:00
David Howells 987db9f7cd rxrpc: Use the tx-phase skb flag to simplify tracing
Use the previously-added transmit-phase skbuff private flag to simplify the
socket buffer tracing a bit.  Which phase the skbuff comes from can now be
divined from the skb rather than having to be guessed from the call state.

We can also reduce the number of rxrpc_skb_trace values by eliminating the
difference between Tx and Rx in the symbols.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-08-27 10:04:18 +01:00
David Howells a641fd00d0 rxrpc: Abstract out rxtx ring cleanup
Abstract out rxtx ring cleanup into its own function from its two callers.
This makes it easier to apply the same changes to both.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-08-27 10:03:26 +01:00
David Howells 1db88c5343 rxrpc: Fix -Wframe-larger-than= warnings from on-stack crypto
rxkad sometimes triggers a warning about oversized stack frames when
building with clang for a 32-bit architecture:

net/rxrpc/rxkad.c:243:12: error: stack frame size of 1088 bytes in function 'rxkad_secure_packet' [-Werror,-Wframe-larger-than=]
net/rxrpc/rxkad.c:501:12: error: stack frame size of 1088 bytes in function 'rxkad_verify_packet' [-Werror,-Wframe-larger-than=]

The problem is the combination of SYNC_SKCIPHER_REQUEST_ON_STACK() in
rxkad_verify_packet()/rxkad_secure_packet() with the relatively large
scatterlist in rxkad_verify_packet_1()/rxkad_secure_packet_encrypt().

The warning does not show up when using gcc, which does not inline the
functions as aggressively, but the problem is still the same.

Allocate the cipher buffers from the slab instead, caching the allocated
packet crypto request memory used for DATA packet crypto in the rxrpc_call
struct.

Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-30 10:32:35 -07:00
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
David Howells b960a34b73 rxrpc: Allow the kernel to mark a call as being non-interruptible
Allow kernel services using AF_RXRPC to indicate that a call should be
non-interruptible.  This allows kafs to make things like lock-extension and
writeback data storage calls non-interruptible.

If this is set, signals will be ignored for operations on that call where
possible - such as waiting to get a call channel on an rxrpc connection.

It doesn't prevent UDP sendmsg from being interrupted, but that will be
handled by packet retransmission.

rxrpc_kernel_recv_data() isn't affected by this since that never waits,
preferring instead to return -EAGAIN and leave the waiting to the caller.

Userspace initiated calls can't be set to be uninterruptible at this time.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-16 16:25:20 +01:00
David Howells b13023421b rxrpc: Fix net namespace cleanup
In rxrpc_destroy_all_calls(), there are two phases: (1) make sure the
->calls list is empty, emitting error messages if not, and (2) wait for the
RCU cleanup to happen on outstanding calls (ie. ->nr_calls becomes 0).

To avoid taking the call_lock, the function prechecks ->calls and if empty,
it returns to avoid taking the lock - this is wrong, however: it still
needs to go and do the second phase and wait for ->nr_calls to become 0.

Without this, the rxrpc_net struct may get deallocated before we get to the
RCU cleanup for the last calls.  This can lead to:

  Slab corruption (Not tainted): kmalloc-16k start=ffff88802b178000, len=16384
  050: 6b 6b 6b 6b 6b 6b 6b 6b 61 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkakkkkkkk

Note the "61" at offset 0x58.  This corresponds to the ->nr_calls member of
struct rxrpc_net (which is >9k in size, and thus allocated out of the 16k
slab).

Fix this by flipping the condition on the if-statement, putting the locked
section inside the if-body and dropping the return from there.  The
function will then always go on to wait for the RCU cleanup on outstanding
calls.

Fixes: 2baec2c3f8 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-30 10:50:50 -04:00
David Howells e122d845a0 Revert "rxrpc: Allow failed client calls to be retried"
The changes introduced to allow rxrpc calls to be retried creates an issue
when it comes to refcounting afs_call structs.  The problem is that when
rxrpc_send_data() queues the last packet for an asynchronous call, the
following sequence can occur:

 (1) The notify_end_tx callback is invoked which causes the state in the
     afs_call to be changed from AFS_CALL_CL_REQUESTING or
     AFS_CALL_SV_REPLYING.

 (2) afs_deliver_to_call() can then process event notifications from rxrpc
     on the async_work queue.

 (3) Delivery of events, such as an abort from the server, can cause the
     afs_call state to be changed to AFS_CALL_COMPLETE on async_work.

 (4) For an asynchronous call, afs_process_async_call() notes that the call
     is complete and tried to clean up all the refs on async_work.

 (5) rxrpc_send_data() might return the amount of data transferred
     (success) or an error - which could in turn reflect a local error or a
     received error.

Synchronising the clean up after rxrpc_kernel_send_data() returns an error
with the asynchronous cleanup is then tricky to get right.

Mostly revert commit c038a58ccf.  The two API
functions the original commit added aren't currently used.  This makes
rxrpc_kernel_send_data() always return successfully if it queued the data
it was given.

Note that this doesn't affect synchronous calls since their Rx notification
function merely pokes a wait queue and does not refcounting.  The
asynchronous call notification function *has* to do refcounting and pass a
ref over the work item to avoid the need to sync the workqueue in call
cleanup.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-15 21:33:36 -08:00
David Howells c1e15b4944 rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant.  This means that
certain locking could be dispensed with.

This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously.  Each of those
cpus can be in the rxrpc_input_packet() function at the same time.

Fix by adding or changing some structure members:

 (1) Add peer->rtt_input_lock to serialise access to the RTT buffer.

 (2) Make conn->service_id into a 32-bit variable so that it can be
     cmpxchg'd on all arches.

 (3) Add call->input_lock to serialise access to the Rx/Tx state.  Note
     that although the Rx and Tx states are (almost) entirely separate,
     there's no point completing the separation and having separate locks
     since it's a bi-phasal RPC protocol rather than a bi-direction
     streaming protocol.  Data transmission and data reception do not take
     place simultaneously on any particular call.

and making the following functional changes:

 (1) In rxrpc_input_data(), hold call->input_lock around the core to
     prevent simultaneous producing of packets into the Rx ring and
     updating of tracking state for a particular call.

 (2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
     check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
     The bit test and bit clear can then be combined.  No further locking
     is needed here.

 (3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
     the ACK packet.  The superseded ACK check is then done both before and
     after the lock is taken.

     The handing of ackinfo data is split, parsing before the lock is taken
     and processing with it held.  This is keyed on rxMTU being non-zero.

     Congestion management is also done within the locked section.

 (4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
     rotation.  The ACKALL packet carries no information and is only really
     useful after all packets have been transmitted since it's imprecise.

 (5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
     prevent calls being simultaneously implicitly ended on two cpus and
     also to prevent any races with incoming call setup.

 (6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
     on a connection.  It is only permitted to happen once for a
     connection.

 (7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
     rx->incoming_lock to see if someone else set up the call, connection
     or peer whilst we were getting there.  We can't trust the values from
     the earlier routing check unless we pin refs on them - which we want
     to avoid.

     Further, we need to allow for an incoming call to have its state
     changed on another CPU between us making it live and us adjusting it
     because the conn is now in the RXRPC_CONN_SERVICE state.

 (8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
     to the RTT buffer.  Don't need to lock around setting peer->rtt.

For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:

> rxrpc_input_packet()
  * PACKET CHECKING

  * ROUTING
    > rxrpc_post_packet_to_local()
    > rxrpc_find_connection_rcu() - uses RCU
      > rxrpc_lookup_peer_rcu() - uses RCU
      > rxrpc_find_service_conn_rcu() - uses RCU
      > idr_find() - uses RCU

  * CONNECTION-LEVEL PROCESSING
    - Service upgrade
      - Can only happen once per conn
      ! Changed to use cmpxchg
    > rxrpc_post_packet_to_conn()
    - Setting conn->hi_serial
      - Probably safe not using locks
      - Maybe use cmpxchg

  * CALL-LEVEL PROCESSING
    > Old-call checking
      > rxrpc_input_implicit_end_call()
        > rxrpc_call_completed()
	> rxrpc_queue_call()
	! Need to take rx->incoming_lock
	> __rxrpc_disconnect_call()
	> rxrpc_notify_socket()
    > rxrpc_new_incoming_call()
      - Uses rx->incoming_lock for the entire process
        - Might be able to drop this earlier in favour of the call lock
      > rxrpc_incoming_call()
      	! Conflicts with rxrpc_input_implicit_end_call()
    > rxrpc_send_ping()
      - Don't need locks to check rtt state
      > rxrpc_propose_ACK

  * PACKET DISTRIBUTION
    > rxrpc_input_call_packet()
      > rxrpc_input_data()
	* QUEUE DATA PACKET ON CALL
	> rxrpc_reduce_call_timer()
	  - Uses timer_reduce()
	! Needs call->input_lock()
	> rxrpc_receiving_reply()
	  ! Needs locking around ack state
	  > rxrpc_rotate_tx_window()
	  > rxrpc_end_tx_phase()
	> rxrpc_proto_abort()
	> rxrpc_input_dup_data()
	- Fills the Rx buffer
	- rxrpc_propose_ACK()
	- rxrpc_notify_socket()

      > rxrpc_input_ack()
	* APPLY ACK PACKET TO CALL AND DISCARD PACKET
	> rxrpc_input_ping_response()
	  - Probably doesn't need any extra locking
	  ! Need READ_ONCE() on call->ping_serial
	  > rxrpc_input_check_for_lost_ack()
	    - Takes call->lock to consult Tx buffer
	  > rxrpc_peer_add_rtt()
	    ! Needs to take a lock (peer->rtt_input_lock)
	    ! Could perhaps manage with cmpxchg() and xadd() instead
	> rxrpc_input_requested_ack
	  - Consults Tx buffer
	    ! Probably needs a lock
	  > rxrpc_peer_add_rtt()
	> rxrpc_propose_ack()
	> rxrpc_input_ackinfo()
	  - Changes call->tx_winsize
	    ! Use cmpxchg to handle change
	    ! Should perhaps track serial number
	  - Uses peer->lock to record MTU specification changes
	> rxrpc_proto_abort()
	! Need to take call->input_lock
	> rxrpc_rotate_tx_window()
	> rxrpc_end_tx_phase()
	> rxrpc_input_soft_acks()
	- Consults the Tx buffer
	> rxrpc_congestion_management()
	  - Modifies the Tx annotations
	  ! Needs call->input_lock()
	  > rxrpc_queue_call()

      > rxrpc_input_abort()
	* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
	> rxrpc_set_call_completion()
	> rxrpc_notify_socket()

      > rxrpc_input_ackall()
	* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
	! Need to take call->input_lock
	> rxrpc_rotate_tx_window()
	> rxrpc_end_tx_phase()

    > rxrpc_reject_packet()

There are some functions used by the above that queue the packet, after
which the procedure is terminated:

 - rxrpc_post_packet_to_local()
   - local->event_queue is an sk_buff_head
   - local->processor is a work_struct
 - rxrpc_post_packet_to_conn()
   - conn->rx_queue is an sk_buff_head
   - conn->processor is a work_struct
 - rxrpc_reject_packet()
   - local->reject_queue is an sk_buff_head
   - local->processor is a work_struct

And some that offload processing to process context:

 - rxrpc_notify_socket()
   - Uses RCU lock
   - Uses call->notify_lock to call call->notify_rx
   - Uses call->recvmsg_lock to queue recvmsg side
 - rxrpc_queue_call()
   - call->processor is a work_struct
 - rxrpc_propose_ACK()
   - Uses call->lock to wrap __rxrpc_propose_ACK()

And a bunch that complete a call, all of which use call->state_lock to
protect the call state:

 - rxrpc_call_completed()
 - rxrpc_set_call_completion()
 - rxrpc_abort_call()
 - rxrpc_proto_abort()
   - Also uses rxrpc_queue_call()

Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 22:42:04 +01:00
David Howells 5e33a23ba4 rxrpc: Fix some missed refs to init_net
Fix some refs to init_net that should've been changed to the appropriate
network namespace.

Fixes: 2baec2c3f8 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
2018-10-05 14:21:59 +01:00
David Howells f334430316 rxrpc: Fix error distribution
Fix error distribution by immediately delivering the errors to all the
affected calls rather than deferring them to a worker thread.  The problem
with the latter is that retries and things can happen in the meantime when we
want to stop that sooner.

To this end:

 (1) Stop the error distributor from removing calls from the error_targets
     list so that peer->lock isn't needed to synchronise against other adds
     and removals.

 (2) Require the peer's error_targets list to be accessed with RCU, thereby
     avoiding the need to take peer->lock over distribution.

 (3) Don't attempt to affect a call's state if it is already marked complete.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-09-28 10:33:17 +01:00
Mark Rutland bfc18e389c atomics/treewide: Rename __atomic_add_unless() => atomic_fetch_add_unless()
While __atomic_add_unless() was originally intended as a building-block
for atomic_add_unless(), it's now used in a number of places around the
kernel. It's the only common atomic operation named __atomic*(), rather
than atomic_*(), and for consistency it would be better named
atomic_fetch_add_unless().

This lack of consistency is slightly confusing, and gets in the way of
scripting atomics. Given that, let's clean things up and promote it to
an official part of the atomics API, in the form of
atomic_fetch_add_unless().

This patch converts definitions and invocations over to the new name,
including the instrumented version, using the following script:

  ----
  git grep -w __atomic_add_unless | while read line; do
  sed -i '{s/\<__atomic_add_unless\>/atomic_fetch_add_unless/}' "${line%%:*}";
  done
  git grep -w __arch_atomic_add_unless | while read line; do
  sed -i '{s/\<__arch_atomic_add_unless\>/arch_atomic_fetch_add_unless/}' "${line%%:*}";
  done
  ----

Note that we do not have atomic{64,_long}_fetch_add_unless(), which will
be introduced by later patches.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-2-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 14:22:32 +02:00
Linus Torvalds 5bb053bef8 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) Support offloading wireless authentication to userspace via
    NL80211_CMD_EXTERNAL_AUTH, from Srinivas Dasari.

 2) A lot of work on network namespace setup/teardown from Kirill Tkhai.
    Setup and cleanup of namespaces now all run asynchronously and thus
    performance is significantly increased.

 3) Add rx/tx timestamping support to mv88e6xxx driver, from Brandon
    Streiff.

 4) Support zerocopy on RDS sockets, from Sowmini Varadhan.

 5) Use denser instruction encoding in x86 eBPF JIT, from Daniel
    Borkmann.

 6) Support hw offload of vlan filtering in mvpp2 dreiver, from Maxime
    Chevallier.

 7) Support grafting of child qdiscs in mlxsw driver, from Nogah
    Frankel.

 8) Add packet forwarding tests to selftests, from Ido Schimmel.

 9) Deal with sub-optimal GSO packets better in BBR congestion control,
    from Eric Dumazet.

10) Support 5-tuple hashing in ipv6 multipath routing, from David Ahern.

11) Add path MTU tests to selftests, from Stefano Brivio.

12) Various bits of IPSEC offloading support for mlx5, from Aviad
    Yehezkel, Yossi Kuperman, and Saeed Mahameed.

13) Support RSS spreading on ntuple filters in SFC driver, from Edward
    Cree.

14) Lots of sockmap work from John Fastabend. Applications can use eBPF
    to filter sendmsg and sendpage operations.

15) In-kernel receive TLS support, from Dave Watson.

16) Add XDP support to ixgbevf, this is significant because it should
    allow optimized XDP usage in various cloud environments. From Tony
    Nguyen.

17) Add new Intel E800 series "ice" ethernet driver, from Anirudh
    Venkataramanan et al.

18) IP fragmentation match offload support in nfp driver, from Pieter
    Jansen van Vuuren.

19) Support XDP redirect in i40e driver, from Björn Töpel.

20) Add BPF_RAW_TRACEPOINT program type for accessing the arguments of
    tracepoints in their raw form, from Alexei Starovoitov.

21) Lots of striding RQ improvements to mlx5 driver with many
    performance improvements, from Tariq Toukan.

22) Use rhashtable for inet frag reassembly, from Eric Dumazet.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1678 commits)
  net: mvneta: improve suspend/resume
  net: mvneta: split rxq/txq init and txq deinit into SW and HW parts
  ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh
  net: bgmac: Fix endian access in bgmac_dma_tx_ring_free()
  net: bgmac: Correctly annotate register space
  route: check sysctl_fib_multipath_use_neigh earlier than hash
  fix typo in command value in drivers/net/phy/mdio-bitbang.
  sky2: Increase D3 delay to sky2 stops working after suspend
  net/mlx5e: Set EQE based as default TX interrupt moderation mode
  ibmvnic: Disable irqs before exiting reset from closed state
  net: sched: do not emit messages while holding spinlock
  vlan: also check phy_driver ts_info for vlan's real device
  Bluetooth: Mark expected switch fall-throughs
  Bluetooth: Set HCI_QUIRK_SIMULTANEOUS_DISCOVERY for BTUSB_QCA_ROME
  Bluetooth: btrsi: remove unused including <linux/version.h>
  Bluetooth: hci_bcm: Remove DMI quirk for the MINIX Z83-4
  sh_eth: kill useless check in __sh_eth_get_regs()
  sh_eth: add sh_eth_cpu_data::no_xdfar flag
  ipv6: factorize sk_wmem_alloc updates done by __ip6_append_data()
  ipv4: factorize sk_wmem_alloc updates done by __ip_append_data()
  ...
2018-04-03 14:04:18 -07:00
David Howells d3be4d2443 rxrpc: Fix potential call vs socket/net destruction race
rxrpc_call structs don't pin sockets or network namespaces, but may attempt
to access both after their refcount reaches 0 so that they can detach
themselves from the network namespace.  However, there's no guarantee that
the socket still exists at this point (so sock_net(&call->socket->sk) may
be invalid) and the namespace may have gone away if the call isn't pinning
a peer.

Fix this by (a) carrying a net pointer in the rxrpc_call struct and (b)
waiting for all calls to be destroyed when the network namespace goes away.

This was detected by checker:

net/rxrpc/call_object.c:634:57: warning: incorrect type in argument 1 (different address spaces)
net/rxrpc/call_object.c:634:57:    expected struct sock const *sk
net/rxrpc/call_object.c:634:57:    got struct sock [noderef] <asn:4>*<noident>

Fixes: 2baec2c3f8 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-03-30 21:05:23 +01:00
David Howells 88f2a8257c rxrpc: Fix checker warnings and errors
Fix various issues detected by checker.

Errors:

 (*) rxrpc_discard_prealloc() should be using rcu_assign_pointer to set
     call->socket.

Warnings:

 (*) rxrpc_service_connection_reaper() should be passing NULL rather than 0 to
     trace_rxrpc_conn() as the where argument.

 (*) rxrpc_disconnect_client_call() should get its net pointer via the
     call->conn rather than call->sock to avoid a warning about accessing
     an RCU pointer without protection.

 (*) Proc seq start/stop functions need annotation as they pass locks
     between the functions.

False positives:

 (*) Checker doesn't correctly handle of seq-retry lock context balance in
     rxrpc_find_service_conn_rcu().

 (*) Checker thinks execution may proceed past the BUG() in
     rxrpc_publish_service_conn().

 (*) Variable length array warnings from SKCIPHER_REQUEST_ON_STACK() in
     rxkad.c.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-03-30 21:05:17 +01:00
David Howells a25e21f0bc rxrpc, afs: Use debug_ids rather than pointers in traces
In rxrpc and afs, use the debug_ids that are monotonically allocated to
various objects as they're allocated rather than pointers as kernel
pointers are now hashed making them less useful.  Further, the debug ids
aren't reused anywhere nearly as quickly.

In addition, allow kernel services that use rxrpc, such as afs, to take
numbers from the rxrpc counter, assign them to their own call struct and
pass them in to rxrpc for both client and service calls so that the trace
lines for each will have the same ID tag.

Signed-off-by: David Howells <dhowells@redhat.com>
2018-03-27 23:03:00 +01:00
Linus Torvalds 96c22a49ac Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:

 1) The forcedeth conversion from pci_*() DMA interfaces to dma_*() ones
    missed one spot. From Zhu Yanjun.

 2) Missing CRYPTO_SHA256 Kconfig dep in cfg80211, from Johannes Berg.

 3) Fix checksum offloading in thunderx driver, from Sunil Goutham.

 4) Add SPDX to vm_sockets_diag.h, from Stephen Hemminger.

 5) Fix use after free of packet headers in TIPC, from Jon Maloy.

 6) "sizeof(ptr)" vs "sizeof(*ptr)" bug in i40e, from Gustavo A R Silva.

 7) Tunneling fixes in mlxsw driver, from Petr Machata.

 8) Fix crash in fanout_demux_rollover() of AF_PACKET, from Mike
    Maloney.

 9) Fix race in AF_PACKET bind() vs. NETDEV_UP notifier, from Eric
    Dumazet.

10) Fix regression in sch_sfq.c due to one of the timer_setup()
    conversions. From Paolo Abeni.

11) SCTP does list_for_each_entry() using wrong struct member, fix from
    Xin Long.

12) Don't use big endian netlink attribute read for
    IFLA_BOND_AD_ACTOR_SYSTEM, it is in cpu endianness. Also from Xin
    Long.

13) Fix mis-initialization of q->link.clock in CBQ scheduler, preventing
    adding filters there. From Jiri Pirko.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (67 commits)
  ethernet: dwmac-stm32: Fix copyright
  net: via: via-rhine: use %p to format void * address instead of %x
  net: ethernet: xilinx: Mark XILINX_LL_TEMAC broken on 64-bit
  myri10ge: Update MAINTAINERS
  net: sched: cbq: create block for q->link.block
  atm: suni: remove extraneous space to fix indentation
  atm: lanai: use %p to format kernel addresses instead of %x
  VSOCK: Don't set sk_state to TCP_CLOSE before testing it
  atm: fore200e: use %pK to format kernel addresses instead of %x
  ambassador: fix incorrect indentation of assignment statement
  vxlan: use __be32 type for the param vni in __vxlan_fdb_delete
  bonding: use nla_get_u64 to extract the value for IFLA_BOND_AD_ACTOR_SYSTEM
  sctp: use right member as the param of list_for_each_entry
  sch_sfq: fix null pointer dereference at timer expiration
  cls_bpf: don't decrement net's refcount when offload fails
  net/packet: fix a race in packet_bind() and packet_notifier()
  packet: fix crash in fanout_demux_rollover()
  sctp: remove extern from stream sched
  sctp: force the params with right types for sctp csum apis
  sctp: force SCTP_ERROR_INV_STRM with __u32 when calling sctp_chunk_fail
  ...
2017-11-29 13:10:25 -08:00
David Howells bd1fdf8cfd rxrpc: Add a timeout for detecting lost ACKs/lost DATA
Add an extra timeout that is set/updated when we send a DATA packet that
has the request-ack flag set.  This allows us to detect if we don't get an
ACK in response to the latest flagged packet.

The ACK packet is adjudged to have been lost if it doesn't turn up within
2*RTT of the transmission.

If the timeout occurs, we schedule the sending of a PING ACK to find out
the state of the other side.  If a new DATA packet is ready to go sooner,
we cancel the sending of the ping and set the request-ack flag on that
instead.

If we get back a PING-RESPONSE ACK that indicates a lower tx_top than what
we had at the time of the ping transmission, we adjudge all the DATA
packets sent between the response tx_top and the ping-time tx_top to have
been lost and retransmit immediately.

Rather than sending a PING ACK, we could just pick a DATA packet and
speculatively retransmit that with request-ack set.  It should result in
either a REQUESTED ACK or a DUPLICATE ACK which we can then use in lieu the
a PING-RESPONSE ACK mentioned above.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-24 10:18:42 +00:00
David Howells a158bdd324 rxrpc: Fix call timeouts
Fix the rxrpc call expiration timeouts and make them settable from
userspace.  By analogy with other rx implementations, there should be three
timeouts:

 (1) "Normal timeout"

     This is set for all calls and is triggered if we haven't received any
     packets from the peer in a while.  It is measured from the last time
     we received any packet on that call.  This is not reset by any
     connection packets (such as CHALLENGE/RESPONSE packets).

     If a service operation takes a long time, the server should generate
     PING ACKs at a duration that's substantially less than the normal
     timeout so is to keep both sides alive.  This is set at 1/6 of normal
     timeout.

 (2) "Idle timeout"

     This is set only for a service call and is triggered if we stop
     receiving the DATA packets that comprise the request data.  It is
     measured from the last time we received a DATA packet.

 (3) "Hard timeout"

     This can be set for a call and specified the maximum lifetime of that
     call.  It should not be specified by default.  Some operations (such
     as volume transfer) take a long time.

Allow userspace to set/change the timeouts on a call with sendmsg, using a
control message:

	RXRPC_SET_CALL_TIMEOUTS

The data to the message is a number of 32-bit words, not all of which need
be given:

	u32 hard_timeout;	/* sec from first packet */
	u32 idle_timeout;	/* msec from packet Rx */
	u32 normal_timeout;	/* msec from data Rx */

This can be set in combination with any other sendmsg() that affects a
call.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-24 10:18:41 +00:00
David Howells 4812417894 rxrpc: Split the call params from the operation params
When rxrpc_sendmsg() parses the control message buffer, it places the
parameters extracted into a structure, but lumps together call parameters
(such as user call ID) with operation parameters (such as whether to send
data, send an abort or accept a call).

Split the call parameters out into their own structure, a copy of which is
then embedded in the operation parameters struct.

The call parameters struct is then passed down into the places that need it
instead of passing the individual parameters.  This allows for extra call
parameters to be added.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-24 10:18:41 +00:00
David Howells 9faaff5934 rxrpc: Provide a different lockdep key for call->user_mutex for kernel calls
Provide a different lockdep key for rxrpc_call::user_mutex when the call is
made on a kernel socket, such as by the AFS filesystem.

The problem is that lockdep registers a false positive between userspace
calling the sendmsg syscall on a user socket where call->user_mutex is held
whilst userspace memory is accessed whereas the AFS filesystem may perform
operations with mmap_sem held by the caller.

In such a case, the following warning is produced.

======================================================
WARNING: possible circular locking dependency detected
4.14.0-fscache+ #243 Tainted: G            E
------------------------------------------------------
modpost/16701 is trying to acquire lock:
 (&vnode->io_lock){+.+.}, at: [<ffffffffa000fc40>] afs_begin_vnode_operation+0x33/0x77 [kafs]

but task is already holding lock:
 (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (&mm->mmap_sem){++++}:
       __might_fault+0x61/0x89
       _copy_from_iter_full+0x40/0x1fa
       rxrpc_send_data+0x8dc/0xff3
       rxrpc_do_sendmsg+0x62f/0x6a1
       rxrpc_sendmsg+0x166/0x1b7
       sock_sendmsg+0x2d/0x39
       ___sys_sendmsg+0x1ad/0x22b
       __sys_sendmsg+0x41/0x62
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #2 (&call->user_mutex){+.+.}:
       __mutex_lock+0x86/0x7d2
       rxrpc_new_client_call+0x378/0x80e
       rxrpc_kernel_begin_call+0xf3/0x154
       afs_make_call+0x195/0x454 [kafs]
       afs_vl_get_capabilities+0x193/0x198 [kafs]
       afs_vl_lookup_vldb+0x5f/0x151 [kafs]
       afs_create_volume+0x2e/0x2f4 [kafs]
       afs_mount+0x56a/0x8d7 [kafs]
       mount_fs+0x6a/0x109
       vfs_kern_mount+0x67/0x135
       do_mount+0x90b/0xb57
       SyS_mount+0x72/0x98
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #1 (k-sk_lock-AF_RXRPC){+.+.}:
       lock_sock_nested+0x74/0x8a
       rxrpc_kernel_begin_call+0x8a/0x154
       afs_make_call+0x195/0x454 [kafs]
       afs_fs_get_capabilities+0x17a/0x17f [kafs]
       afs_probe_fileserver+0xf7/0x2f0 [kafs]
       afs_select_fileserver+0x83f/0x903 [kafs]
       afs_fetch_status+0x89/0x11d [kafs]
       afs_iget+0x16f/0x4f8 [kafs]
       afs_mount+0x6c6/0x8d7 [kafs]
       mount_fs+0x6a/0x109
       vfs_kern_mount+0x67/0x135
       do_mount+0x90b/0xb57
       SyS_mount+0x72/0x98
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

-> #0 (&vnode->io_lock){+.+.}:
       lock_acquire+0x174/0x19f
       __mutex_lock+0x86/0x7d2
       afs_begin_vnode_operation+0x33/0x77 [kafs]
       afs_fetch_data+0x80/0x12a [kafs]
       afs_readpages+0x314/0x405 [kafs]
       __do_page_cache_readahead+0x203/0x2ba
       filemap_fault+0x179/0x54d
       __do_fault+0x17/0x60
       __handle_mm_fault+0x6d7/0x95c
       handle_mm_fault+0x24e/0x2a3
       __do_page_fault+0x301/0x486
       do_page_fault+0x236/0x259
       page_fault+0x22/0x30
       __clear_user+0x3d/0x60
       padzero+0x1c/0x2b
       load_elf_binary+0x785/0xdc7
       search_binary_handler+0x81/0x1ff
       do_execveat_common.isra.14+0x600/0x888
       do_execve+0x1f/0x21
       SyS_execve+0x28/0x2f
       do_syscall_64+0x89/0x1be
       return_from_SYSCALL_64+0x0/0x75

other info that might help us debug this:

Chain exists of:
  &vnode->io_lock --> &call->user_mutex --> &mm->mmap_sem

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&mm->mmap_sem);
                               lock(&call->user_mutex);
                               lock(&mm->mmap_sem);
  lock(&vnode->io_lock);

 *** DEADLOCK ***

1 lock held by modpost/16701:
 #0:  (&mm->mmap_sem){++++}, at: [<ffffffff8104376a>] __do_page_fault+0x1ef/0x486

stack backtrace:
CPU: 0 PID: 16701 Comm: modpost Tainted: G            E   4.14.0-fscache+ #243
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
 dump_stack+0x67/0x8e
 print_circular_bug+0x341/0x34f
 check_prev_add+0x11f/0x5d4
 ? add_lock_to_list.isra.12+0x8b/0x8b
 ? add_lock_to_list.isra.12+0x8b/0x8b
 ? __lock_acquire+0xf77/0x10b4
 __lock_acquire+0xf77/0x10b4
 lock_acquire+0x174/0x19f
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 __mutex_lock+0x86/0x7d2
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 ? afs_begin_vnode_operation+0x33/0x77 [kafs]
 afs_begin_vnode_operation+0x33/0x77 [kafs]
 afs_fetch_data+0x80/0x12a [kafs]
 afs_readpages+0x314/0x405 [kafs]
 __do_page_cache_readahead+0x203/0x2ba
 ? filemap_fault+0x179/0x54d
 filemap_fault+0x179/0x54d
 __do_fault+0x17/0x60
 __handle_mm_fault+0x6d7/0x95c
 handle_mm_fault+0x24e/0x2a3
 __do_page_fault+0x301/0x486
 do_page_fault+0x236/0x259
 page_fault+0x22/0x30
RIP: 0010:__clear_user+0x3d/0x60
RSP: 0018:ffff880071e93da0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 000000000000011c RCX: 000000000000011c
RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000060f720
RBP: 000000000060f720 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffff8800b5459b68 R12: ffff8800ce150e00
R13: 000000000060f720 R14: 00000000006127a8 R15: 0000000000000000
 padzero+0x1c/0x2b
 load_elf_binary+0x785/0xdc7
 search_binary_handler+0x81/0x1ff
 do_execveat_common.isra.14+0x600/0x888
 do_execve+0x1f/0x21
 SyS_execve+0x28/0x2f
 do_syscall_64+0x89/0x1be
 entry_SYSCALL64_slow_path+0x25/0x25
RIP: 0033:0x7fdb6009ee07
RSP: 002b:00007fff566d9728 EFLAGS: 00000246 ORIG_RAX: 000000000000003b
RAX: ffffffffffffffda RBX: 000055ba57280900 RCX: 00007fdb6009ee07
RDX: 000055ba5727f270 RSI: 000055ba5727cac0 RDI: 000055ba57280900
RBP: 000055ba57280900 R08: 00007fff566d9700 R09: 0000000000000000
R10: 000055ba5727cac0 R11: 0000000000000246 R12: 0000000000000000
R13: 000055ba5727cac0 R14: 000055ba5727f270 R15: 0000000000000000

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-24 10:18:40 +00:00
Kees Cook e99e88a9d2 treewide: setup_timer() -> timer_setup()
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.

Casting from unsigned long:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, ptr);

and forced object casts:

    void my_callback(struct something *ptr)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);

become:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

Direct function assignments:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    ptr->my_timer.function = my_callback;

have a temporary cast added, along with converting the args:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;

And finally, callbacks without a data assignment:

    void my_callback(unsigned long data)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, 0);

have their argument renamed to verify they're unused during conversion:

    void my_callback(struct timer_list *unused)
    {
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

The conversion is done with the following Coccinelle script:

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/timer_setup.cocci

@fix_address_of@
expression e;
@@

 setup_timer(
-&(e)
+&e
 , ...)

// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@

(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)

@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@

(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
 _E->_timer@_stl.function = _callback;
|
 _E->_timer@_stl.function = &_callback;
|
 _E->_timer@_stl.function = (_cast_func)_callback;
|
 _E->_timer@_stl.function = (_cast_func)&_callback;
|
 _E._timer@_stl.function = _callback;
|
 _E._timer@_stl.function = &_callback;
|
 _E._timer@_stl.function = (_cast_func)_callback;
|
 _E._timer@_stl.function = (_cast_func)&_callback;
)

// callback(unsigned long arg)
@change_callback_handle_cast
 depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
(
	... when != _origarg
	_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
)
 }

// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
 depends on change_timer_function_usage &&
                     !change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
+	_handletype *_origarg = from_timer(_origarg, t, _timer);
+
	... when != _origarg
-	(_handletype *)_origarg
+	_origarg
	... when != _origarg
 }

// Avoid already converted callbacks.
@match_callback_converted
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
	    !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@

 void _callback(struct timer_list *t)
 { ... }

// callback(struct something *handle)
@change_callback_handle_arg
 depends on change_timer_function_usage &&
	    !match_callback_converted &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@

 void _callback(
-_handletype *_handle
+struct timer_list *t
 )
 {
+	_handletype *_handle = from_timer(_handle, t, _timer);
	...
 }

// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
 depends on change_timer_function_usage &&
	    change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@

 void _callback(struct timer_list *t)
 {
-	_handletype *_handle = from_timer(_handle, t, _timer);
 }

// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg &&
	    !change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@

(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)

// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@

(
 _E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
)

// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@

 _callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
 )

// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@

(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)

@change_callback_unused_data
 depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *unused
 )
 {
	... when != _origarg
 }

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:07 -08:00
David Howells 20acbd9a7a rxrpc: Lock around calling a kernel service Rx notification
Place a spinlock around the invocation of call->notify_rx() for a kernel
service call and lock again when ending the call and replace the
notification pointer with a pointer to a dummy function.

This is required because it's possible for rxrpc_notify_socket() to be
called after the call has been ended by the kernel service if called from
the asynchronous work function rxrpc_process_call().

However, rxrpc_notify_socket() currently only holds the RCU read lock when
invoking ->notify_rx(), which means that the afs_call struct would need to
be disposed of by call_rcu() rather than by kfree().

But we shouldn't see any notifications from a call after calling
rxrpc_kernel_end_call(), so a lock is required in rxrpc code.

Without this, we may see the call wait queue as having a corrupt spinlock:

    BUG: spinlock bad magic on CPU#0, kworker/0:2/1612
    general protection fault: 0000 [#1] SMP
    ...
    Workqueue: krxrpcd rxrpc_process_call
    task: ffff88040b83c400 task.stack: ffff88040adfc000
    RIP: 0010:spin_bug+0x161/0x18f
    RSP: 0018:ffff88040adffcc0 EFLAGS: 00010002
    RAX: 0000000000000032 RBX: 6b6b6b6b6b6b6b6b RCX: ffffffff81ab16cf
    RDX: ffff88041fa14c01 RSI: ffff88041fa0ccb8 RDI: ffff88041fa0ccb8
    RBP: ffff88040adffcd8 R08: 00000000ffffffff R09: 00000000ffffffff
    R10: ffff88040adffc60 R11: 000000000000022c R12: ffff88040aca2208
    R13: ffffffff81a58114 R14: 0000000000000000 R15: 0000000000000000
    ....
    Call Trace:
     do_raw_spin_lock+0x1d/0x89
     _raw_spin_lock_irqsave+0x3d/0x49
     ? __wake_up_common_lock+0x4c/0xa7
     __wake_up_common_lock+0x4c/0xa7
     ? __lock_is_held+0x47/0x7a
     __wake_up+0xe/0x10
     afs_wake_up_call_waiter+0x11b/0x122 [kafs]
     rxrpc_notify_socket+0x12b/0x258
     rxrpc_process_call+0x18e/0x7d0
     process_one_work+0x298/0x4de
     ? rescuer_thread+0x280/0x280
     worker_thread+0x1d1/0x2ae
     ? rescuer_thread+0x280/0x280
     kthread+0x12c/0x134
     ? kthread_create_on_node+0x3a/0x3a
     ret_from_fork+0x27/0x40

In this case, note the corrupt data in EBX.  The address of the offending
afs_call is in R12, plus the offset to the spinlock.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:07:18 +00:00
David Howells c038a58ccf rxrpc: Allow failed client calls to be retried
Allow a client call that failed on network error to be retried, provided
that the Tx queue still holds DATA packet 1.  This allows an operation to
be submitted to another server or another address for the same server
without having to repackage and re-encrypt the data so far processed.

Two new functions are provided:

 (1) rxrpc_kernel_check_call() - This is used to find out the completion
     state of a call to guess whether it can be retried and whether it
     should be retried.

 (2) rxrpc_kernel_retry_call() - Disconnect the call from its current
     connection, reset the state and submit it as a new client call to a
     new address.  The new address need not match the previous address.

A call may be retried even if all the data hasn't been loaded into it yet;
a partially constructed will be retained at the same point it was at when
an error condition was detected.  msg_data_left() can be used to find out
how much data was packaged before the error occurred.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-08-29 10:55:20 +01:00
David Howells f7aec129a3 rxrpc: Cache the congestion window setting
Cache the congestion window setting that was determined during a call's
transmission phase when it finishes so that it can be used by the next call
to the same peer, thereby shortcutting the slow-start algorithm.

The value is stored in the rxrpc_peer struct and is accessed without
locking.  Each call takes the value that happens to be there when it starts
and just overwrites the value when it finishes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-14 15:42:45 -04:00
David Howells e754eba685 rxrpc: Provide a cmsg to specify the amount of Tx data for a call
Provide a control message that can be specified on the first sendmsg() of a
client call or the first sendmsg() of a service response to indicate the
total length of the data to be transmitted for that call.

Currently, because the length of the payload of an encrypted DATA packet is
encrypted in front of the data, the packet cannot be encrypted until we
know how much data it will hold.

By specifying the length at the beginning of the transmit phase, each DATA
packet length can be set before we start loading data from userspace (where
several sendmsg() calls may contribute to a particular packet).

An error will be returned if too little or too much data is presented in
the Tx phase.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-06-07 17:15:46 +01:00
David Howells 2baec2c3f8 rxrpc: Support network namespacing
Support network namespacing in AF_RXRPC with the following changes:

 (1) All the local endpoint, peer and call lists, locks, counters, etc. are
     moved into the per-namespace record.

 (2) All the connection tracking is moved into the per-namespace record
     with the exception of the client connection ID tree, which is kept
     global so that connection IDs are kept unique per-machine.

 (3) Each namespace gets its own epoch.  This allows each network namespace
     to pretend to be a separate client machine.

 (4) The /proc/net/rxrpc_xxx files are now called /proc/net/rxrpc/xxx and
     the contents reflect the namespace.

fs/afs/ should be okay with this patch as it explicitly requires the current
net namespace to be init_net to permit a mount to proceed at the moment.  It
will, however, need updating so that cells, IP addresses and DNS records are
per-namespace also.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-25 13:15:11 -04:00
David Howells 3a92789af0 rxrpc: Use negative error codes in rxrpc_call struct
Use negative error codes in struct rxrpc_call::error because that's what
the kernel normally deals with and to make the code consistent.  We only
turn them positive when transcribing into a cmsg for userspace recvmsg.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-06 10:11:56 +01:00
David Howells 540b1c48c3 rxrpc: Fix deadlock between call creation and sendmsg/recvmsg
All the routines by which rxrpc is accessed from the outside are serialised
by means of the socket lock (sendmsg, recvmsg, bind,
rxrpc_kernel_begin_call(), ...) and this presents a problem:

 (1) If a number of calls on the same socket are in the process of
     connection to the same peer, a maximum of four concurrent live calls
     are permitted before further calls need to wait for a slot.

 (2) If a call is waiting for a slot, it is deep inside sendmsg() or
     rxrpc_kernel_begin_call() and the entry function is holding the socket
     lock.

 (3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
     from servicing the other calls as they need to take the socket lock to
     do so.

 (4) The socket is stuck until a call is aborted and makes its slot
     available to the waiter.

Fix this by:

 (1) Provide each call with a mutex ('user_mutex') that arbitrates access
     by the users of rxrpc separately for each specific call.

 (2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
     they've got a call and taken its mutex.

     Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
     set but someone else has the lock.  Should I instead only return
     EWOULDBLOCK if there's nothing currently to be done on a socket, and
     sleep in this particular instance because there is something to be
     done, but we appear to be blocked by the interrupt handler doing its
     ping?

 (3) Make rxrpc_new_client_call() unlock the socket after allocating a new
     call, locking its user mutex and adding it to the socket's call tree.
     The call is returned locked so that sendmsg() can add data to it
     immediately.

     From the moment the call is in the socket tree, it is subject to
     access by sendmsg() and recvmsg() - even if it isn't connected yet.

 (4) Lock new service calls in the UDP data_ready handler (in
     rxrpc_new_incoming_call()) because they may already be in the socket's
     tree and the data_ready handler makes them live immediately if a user
     ID has already been preassigned.

     Note that the new call is locked before any notifications are sent
     that it is live, so doing mutex_trylock() *ought* to always succeed.
     Userspace is prevented from doing sendmsg() on calls that are in a
     too-early state in rxrpc_do_sendmsg().

 (5) Make rxrpc_new_incoming_call() return the call with the user mutex
     held so that a ping can be scheduled immediately under it.

     Note that it might be worth moving the ping call into
     rxrpc_new_incoming_call() and then we can drop the mutex there.

 (6) Make rxrpc_accept_call() take the lock on the call it is accepting and
     release the socket after adding the call to the socket's tree.  This
     is slightly tricky as we've dequeued the call by that point and have
     to requeue it.

     Note that requeuing emits a trace event.

 (7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
     new mutex immediately and don't bother with the socket mutex at all.

This patch has the nice bonus that calls on the same socket are now to some
extent parallelisable.

Note that we might want to move rxrpc_service_prealloc() calls out from the
socket lock and give it its own lock, so that we don't hang progress in
other calls because we're waiting for the allocator.

We probably also want to avoid calling rxrpc_notify_socket() from within
the socket lock (rxrpc_accept_call()).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.c.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 09:50:58 -08:00
David Howells b54a134a7d rxrpc: Fix handling of enums-to-string translation in tracing
Fix the way enum values are translated into strings in AF_RXRPC
tracepoints.  The problem with just doing a lookup in a normal flat array
of strings or chars is that external tracing infrastructure can't find it.
Rather, TRACE_DEFINE_ENUM must be used.

Also sort the enums and string tables to make it easier to keep them in
order so that a future patch to __print_symbolic() can be optimised to try
a direct lookup into the table first before iterating over it.

A couple of _proto() macro calls are removed because they refered to tables
that got moved to the tracing infrastructure.  The relevant data can be
found by way of tracing.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-05 10:38:33 +00:00
David Howells 54fde42345 rxrpc: Fix checker warning by not passing always-zero value to ERR_PTR()
Fix the following checker warning:

	net/rxrpc/call_object.c:279 rxrpc_new_client_call()
	warn: passing zero to 'ERR_PTR'

where a value that's always zero is passed to ERR_PTR() so that it can be
passed to a tracepoint in an auxiliary pointer field.

Just pass NULL instead to the tracepoint.

Fixes: a84a46d730 ("rxrpc: Add some additional call tracing")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-13 08:39:52 +01:00
David Howells a5af7e1fc6 rxrpc: Fix loss of PING RESPONSE ACK production due to PING ACKs
Separate the output of PING ACKs from the output of other sorts of ACK so
that if we receive a PING ACK and schedule transmission of a PING RESPONSE
ACK, the response doesn't get cancelled by a PING ACK we happen to be
scheduling transmission of at the same time.

If a PING RESPONSE gets lost, the other side might just sit there waiting
for it and refuse to proceed otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:49 +01:00
David Howells 26cb02aa6d rxrpc: Fix warning by splitting rxrpc_send_call_packet()
Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation.  This simplifies the code a bit and
fixes the following warning:

In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:49 +01:00
David Howells 405dea1deb rxrpc: Fix the call timer handling
The call timer's concept of a call timeout (of which there are three) that
is inactive is that it is the timeout has the same expiration time as the
call expiration timeout (the expiration timer is never inactive).  However,
I'm not resetting the timeouts when they expire, leading to repeated
processing of expired timeouts when other timeout events occur.

Fix this by:

 (1) Move the timer expiry detection into rxrpc_set_timer() inside the
     locked section.  This means that if a timeout is set that will expire
     immediately, we deal with it immediately.

 (2) If a timeout is at or before now then it has expired.  When an expiry
     is detected, an event is raised, the timeout is automatically
     inactivated and the event processor is queued.

 (3) If a timeout is at or after the expiry timeout then it is inactive.
     Inactive timeouts do not contribute to the timer setting.

 (4) The call timer callback can now just call rxrpc_set_timer() to handle
     things.

 (5) The call processor work function now checks the event flags rather
     than checking the timeouts directly.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:40:11 +01:00
David Howells df0adc788a rxrpc: Keep the call timeouts as ktimes rather than jiffies
Keep that call timeouts as ktimes rather than jiffies so that they can be
expressed as functions of RTT.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:40:11 +01:00