Граф коммитов

32 Коммитов

Автор SHA1 Сообщение Дата
Andrey Ryabinin 0207df4fa1 kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN
KASAN learns about hotadded memory via the memory hotplug notifier.
devm_memremap_pages() intentionally skips calling memory hotplug
notifiers.  So KASAN doesn't know anything about new memory added by
devm_memremap_pages().  This causes a crash when KASAN tries to access
non-existent shadow memory:

 BUG: unable to handle kernel paging request at ffffed0078000000
 RIP: 0010:check_memory_region+0x82/0x1e0
 Call Trace:
  memcpy+0x1f/0x50
  pmem_do_bvec+0x163/0x720
  pmem_make_request+0x305/0xac0
  generic_make_request+0x54f/0xcf0
  submit_bio+0x9c/0x370
  submit_bh_wbc+0x4c7/0x700
  block_read_full_page+0x5ef/0x870
  do_read_cache_page+0x2b8/0xb30
  read_dev_sector+0xbd/0x3f0
  read_lba.isra.0+0x277/0x670
  efi_partition+0x41a/0x18f0
  check_partition+0x30d/0x5e9
  rescan_partitions+0x18c/0x840
  __blkdev_get+0x859/0x1060
  blkdev_get+0x23f/0x810
  __device_add_disk+0x9c8/0xde0
  pmem_attach_disk+0x9a8/0xf50
  nvdimm_bus_probe+0xf3/0x3c0
  driver_probe_device+0x493/0xbd0
  bus_for_each_drv+0x118/0x1b0
  __device_attach+0x1cd/0x2b0
  bus_probe_device+0x1ac/0x260
  device_add+0x90d/0x1380
  nd_async_device_register+0xe/0x50
  async_run_entry_fn+0xc3/0x5d0
  process_one_work+0xa0a/0x1810
  worker_thread+0x87/0xe80
  kthread+0x2d7/0x390
  ret_from_fork+0x3a/0x50

Add kasan_add_zero_shadow()/kasan_remove_zero_shadow() - post mm_init()
interface to map/unmap kasan_zero_page at requested virtual addresses.
And use it to add/remove the shadow memory for hotplugged/unplugged
device memory.

Link: http://lkml.kernel.org/r/20180629164932.740-1-aryabinin@virtuozzo.com
Fixes: 41e94a8513 ("add devm_memremap_pages")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Alexey Dobriyan be4a7988b3 kasan: make kasan_cache_create() work with 32-bit slab cache sizes
If SLAB doesn't support 4GB+ kmem caches (it never did), KASAN should
not do it as well.

Link: http://lkml.kernel.org/r/20180305200730.15812-20-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Kirill A. Shutemov c65e774fb3 x86/mm: Make PGDIR_SHIFT and PTRS_PER_P4D variable
For boot-time switching between 4- and 5-level paging we need to be able
to fold p4d page table level at runtime. It requires variable
PGDIR_SHIFT and PTRS_PER_P4D.

The change doesn't affect the kernel image size much:

   text	   data	    bss	    dec	    hex	filename
8628091	4734304	1368064	14730459	 e0c4db	vmlinux.before
8628393	4734340	1368064	14730797	 e0c62d	vmlinux.after

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-14 13:11:14 +01:00
Andrey Konovalov 917538e212 kasan: clean up KASAN_SHADOW_SCALE_SHIFT usage
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.

This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov 6860f6340c kasan: detect invalid frees for large mempool objects
Detect frees of pointers into middle of mempool objects.

I did a one-off test, but it turned out to be very tricky, so I reverted
it.  First, mempool does not call kasan_poison_kfree() unless allocation
function fails.  I stubbed an allocation function to fail on second and
subsequent allocations.  But then mempool stopped to call
kasan_poison_kfree() at all, because it does it only when allocation
function is mempool_kmalloc().  We could support this special failing
test allocation function in mempool, but it also can't live with kasan
tests, because these are in a module.

Link: http://lkml.kernel.org/r/bf7a7d035d7a5ed62d2dd0e3d2e8a4fcdf456aa7.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov ee3ce779b5 kasan: don't use __builtin_return_address(1)
__builtin_return_address(1) is unreliable without frame pointers.
With defconfig on kmalloc_pagealloc_invalid_free test I am getting:

BUG: KASAN: double-free or invalid-free in           (null)

Pass caller PC from callers explicitly.

Link: http://lkml.kernel.org/r/9b01bc2d237a4df74ff8472a3bf6b7635908de01.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov 47adccce3e kasan: detect invalid frees for large objects
Patch series "kasan: detect invalid frees".

KASAN detects double-frees, but does not detect invalid-frees (when a
pointer into a middle of heap object is passed to free).  We recently had
a very unpleasant case in crypto code which freed an inner object inside
of a heap allocation.  This left unnoticed during free, but totally
corrupted heap and later lead to a bunch of random crashes all over kernel
code.

Detect invalid frees.

This patch (of 5):

Detect frees of pointers into middle of large heap objects.

I dropped const from kasan_kfree_large() because it starts propagating
through a bunch of functions in kasan_report.c, slab/slub nearest_obj(),
all of their local variables, fixup_red_left(), etc.

Link: http://lkml.kernel.org/r/1b45b4fe1d20fc0de1329aab674c1dd973fee723.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:42 -08:00
Alexey Dobriyan d50112edde slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).

SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.

Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Mark Rutland b0845ce583 kasan: report only the first error by default
Disable kasan after the first report.  There are several reasons for
this:

 - Single bug quite often has multiple invalid memory accesses causing
   storm in the dmesg.

 - Write OOB access might corrupt metadata so the next report will print
   bogus alloc/free stacktraces.

 - Reports after the first easily could be not bugs by itself but just
   side effects of the first one.

Given that multiple reports usually only do harm, it makes sense to
disable kasan after the first one.  If user wants to see all the
reports, the boot-time parameter kasan_multi_shot must be used.

[aryabinin@virtuozzo.com: wrote changelog and doc, added missing include]
Link: http://lkml.kernel.org/r/20170323154416.30257-1-aryabinin@virtuozzo.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-31 17:13:30 -07:00
Masami Hiramatsu 5be9b730b0 kasan: add a prototype of task_struct to avoid warning
Add a prototype of task_struct to fix below warning on arm64.

  In file included from arch/arm64/kernel/probes/kprobes.c:19:0:
  include/linux/kasan.h:81:132: error: 'struct task_struct' declared inside parameter list will not be visible outside of this definition or declaration [-Werror]
   static inline void kasan_unpoison_task_stack(struct task_struct *task) {}

As same as other types (kmem_cache, page, and vm_struct) this adds a
prototype of task_struct data structure on top of kasan.h.

[arnd] A related warning was fixed before, but now appears in a
different line in the same file in v4.11-rc2.  The patch from Masami
Hiramatsu still seems appropriate, so let's take his version.

Fixes: 71af2ed5ee ("kasan, sched/headers: Remove <linux/sched.h> from <linux/kasan.h>")
Link: https://patchwork.kernel.org/patch/9569839/
Link: http://lkml.kernel.org/r/20170313141517.3397802-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-16 16:56:18 -07:00
Kirill A. Shutemov c2febafc67 mm: convert generic code to 5-level paging
Convert all non-architecture-specific code to 5-level paging.

It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 11:48:47 -08:00
Ingo Molnar 71af2ed5ee kasan, sched/headers: Remove <linux/sched.h> from <linux/kasan.h>
<linux/kasan.h> is a low level header that is included early
in affected kernel headers. But it includes <linux/sched.h>
which complicates the cleanup of sched.h dependencies.

Remove it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-03 01:45:32 +01:00
Ingo Molnar af8601ad42 kasan, sched/headers: Uninline kasan_enable/disable_current()
<linux/kasan.h> is a low level header that is included early
in affected kernel headers. But it includes <linux/sched.h>
which complicates the cleanup of sched.h dependencies.

But kasan.h has almost no need for sched.h: its only use of
scheduler functionality is in two inline functions which are
not used very frequently - so uninline kasan_enable_current()
and kasan_disable_current().

Also add a <linux/sched.h> dependency to a .c file that depended
on kasan.h including it.

This paves the way to remove the <linux/sched.h> include from kasan.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:25 +01:00
Greg Thelen f9fa1d919c kasan: drain quarantine of memcg slab objects
Per memcg slab accounting and kasan have a problem with kmem_cache
destruction.
 - kmem_cache_create() allocates a kmem_cache, which is used for
   allocations from processes running in root (top) memcg.
 - Processes running in non root memcg and allocating with either
   __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg
   kmem_cache.
 - Kasan catches use-after-free by having kfree() and kmem_cache_free()
   defer freeing of objects. Objects are placed in a quarantine.
 - kmem_cache_destroy() destroys root and non root kmem_caches. It takes
   care to drain the quarantine of objects from the root memcg's
   kmem_cache, but ignores objects associated with non root memcg. This
   causes leaks because quarantined per memcg objects refer to per memcg
   kmem cache being destroyed.

To see the problem:

 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,)
 2) from non root memcg, allocate and free a few objects from cache
 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy()
    will trigger a "Slab cache still has objects" warning indicating
    that the per memcg kmem_cache structure was leaked.

Fix the leak by draining kasan quarantined objects allocated from non
root memcg.

Racing memcg deletion is tricky, but handled.  kmem_cache_destroy() =>
shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache()
flushes per memcg quarantined objects, even if that memcg has been
rmdir'd and gone through memcg_deactivate_kmem_caches().

This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is
enabled.  So I don't think it's worth patching stable kernels.

Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Dmitry Vyukov 9f7d416c36 kprobes: Unpoison stack in jprobe_return() for KASAN
I observed false KSAN positives in the sctp code, when
sctp uses jprobe_return() in jsctp_sf_eat_sack().

The stray 0xf4 in shadow memory are stack redzones:

[     ] ==================================================================
[     ] BUG: KASAN: stack-out-of-bounds in memcmp+0xe9/0x150 at addr ffff88005e48f480
[     ] Read of size 1 by task syz-executor/18535
[     ] page:ffffea00017923c0 count:0 mapcount:0 mapping:          (null) index:0x0
[     ] flags: 0x1fffc0000000000()
[     ] page dumped because: kasan: bad access detected
[     ] CPU: 1 PID: 18535 Comm: syz-executor Not tainted 4.8.0+ #28
[     ] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[     ]  ffff88005e48f2d0 ffffffff82d2b849 ffffffff0bc91e90 fffffbfff10971e8
[     ]  ffffed000bc91e90 ffffed000bc91e90 0000000000000001 0000000000000000
[     ]  ffff88005e48f480 ffff88005e48f350 ffffffff817d3169 ffff88005e48f370
[     ] Call Trace:
[     ]  [<ffffffff82d2b849>] dump_stack+0x12e/0x185
[     ]  [<ffffffff817d3169>] kasan_report+0x489/0x4b0
[     ]  [<ffffffff817d31a9>] __asan_report_load1_noabort+0x19/0x20
[     ]  [<ffffffff82d49529>] memcmp+0xe9/0x150
[     ]  [<ffffffff82df7486>] depot_save_stack+0x176/0x5c0
[     ]  [<ffffffff817d2031>] save_stack+0xb1/0xd0
[     ]  [<ffffffff817d27f2>] kasan_slab_free+0x72/0xc0
[     ]  [<ffffffff817d05b8>] kfree+0xc8/0x2a0
[     ]  [<ffffffff85b03f19>] skb_free_head+0x79/0xb0
[     ]  [<ffffffff85b0900a>] skb_release_data+0x37a/0x420
[     ]  [<ffffffff85b090ff>] skb_release_all+0x4f/0x60
[     ]  [<ffffffff85b11348>] consume_skb+0x138/0x370
[     ]  [<ffffffff8676ad7b>] sctp_chunk_put+0xcb/0x180
[     ]  [<ffffffff8676ae88>] sctp_chunk_free+0x58/0x70
[     ]  [<ffffffff8677fa5f>] sctp_inq_pop+0x68f/0xef0
[     ]  [<ffffffff8675ee36>] sctp_assoc_bh_rcv+0xd6/0x4b0
[     ]  [<ffffffff8677f2c1>] sctp_inq_push+0x131/0x190
[     ]  [<ffffffff867bad69>] sctp_backlog_rcv+0xe9/0xa20
[ ... ]
[     ] Memory state around the buggy address:
[     ]  ffff88005e48f380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]  ffff88005e48f400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ] >ffff88005e48f480: f4 f4 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]                    ^
[     ]  ffff88005e48f500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]  ffff88005e48f580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ] ==================================================================

KASAN stack instrumentation poisons stack redzones on function entry
and unpoisons them on function exit. If a function exits abnormally
(e.g. with a longjmp like jprobe_return()), stack redzones are left
poisoned. Later this leads to random KASAN false reports.

Unpoison stack redzones in the frames we are going to jump over
before doing actual longjmp in jprobe_return().

Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: kasan-dev@googlegroups.com
Cc: surovegin@google.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1476454043-101898-1-git-send-email-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-16 11:02:31 +02:00
Andrey Ryabinin b3cbd9bf77 mm/kasan: get rid of ->state in struct kasan_alloc_meta
The state of object currently tracked in two places - shadow memory, and
the ->state field in struct kasan_alloc_meta.  We can get rid of the
latter.  The will save us a little bit of memory.  Also, this allow us
to move free stack into struct kasan_alloc_meta, without increasing
memory consumption.  So now we should always know when the last time the
object was freed.  This may be useful for long delayed use-after-free
bugs.

As a side effect this fixes following UBSAN warning:
	UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13
	member access within misaligned address ffff88000d1efebc for type 'struct qlist_node'
	which requires 8 byte alignment

Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Alexander Potapenko 80a9201a59 mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
For KASAN builds:
 - switch SLUB allocator to using stackdepot instead of storing the
   allocation/deallocation stacks in the objects;
 - change the freelist hook so that parts of the freelist can be put
   into the quarantine.

[aryabinin@virtuozzo.com: fixes]
  Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Andrey Ryabinin 9b75a867cc mm: mempool: kasan: don't poot mempool objects in quarantine
Currently we may put reserved by mempool elements into quarantine via
kasan_kfree().  This is totally wrong since quarantine may really free
these objects.  So when mempool will try to use such element,
use-after-free will happen.  Or mempool may decide that it no longer
need that element and double-free it.

So don't put object into quarantine in kasan_kfree(), just poison it.
Rename kasan_kfree() to kasan_poison_kfree() to respect that.

Also, we shouldn't use kasan_slab_alloc()/kasan_krealloc() in
kasan_unpoison_element() because those functions may update allocation
stacktrace.  This would be wrong for the most of the remove_element call
sites.

(The only call site where we may want to update alloc stacktrace is
 in mempool_alloc(). Kmemleak solves this by calling
 kmemleak_update_trace(), so we could make something like that too.
 But this is out of scope of this patch).

Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/575977C3.1010905@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Alexander Potapenko 55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko 505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko 7ed2f9e663 mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Mark Rutland e3ae116339 kasan: add functions to clear stack poison
Functions which the compiler has instrumented for ASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.

In some cases (e.g. hotplug and idle), CPUs may exit the kernel a
number of levels deep in C code.  If there are any instrumented
functions on this critical path, these will leave portions of the idle
thread stack shadow poisoned.

If a CPU returns to the kernel via a different path (e.g. a cold
entry), then depending on stack frame layout subsequent calls to
instrumented functions may use regions of the stack with stale poison,
resulting in (spurious) KASAN splats to the console.

Contemporary GCCs always add stack shadow poisoning when ASAN is
enabled, even when asked to not instrument a function [1], so we can't
simply annotate functions on the critical path to avoid poisoning.

Instead, this series explicitly removes any stale poison before it can
be hit.  In the common hotplug case we clear the entire stack shadow in
common code, before a CPU is brought online.

On architectures which perform a cold return as part of cpu idle may
retain an architecture-specific amount of stack contents.  To retain the
poison for this retained context, the arch code must call the core KASAN
code, passing a "watermark" stack pointer value beyond which shadow will
be cleared.  Architectures which don't perform a cold return as part of
idle do not need any additional code.

This patch (of 3):

Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.

In some cases (e.g.  hotplug and idle), CPUs may exit the kernel a number
of levels deep in C code.  If there are any instrumented functions on this
critical path, these will leave portions of the stack shadow poisoned.

If a CPU returns to the kernel via a different path (e.g.  a cold entry),
then depending on stack frame layout subsequent calls to instrumented
functions may use regions of the stack with stale poison, resulting in
(spurious) KASAN splats to the console.

To avoid this, we must clear stale poison from the stack prior to
instrumented functions being called.  This patch adds functions to the
KASAN core for removing poison from (portions of) a task's stack.  These
will be used by subsequent patches to avoid problems with hotplug and
idle.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Andrey Ryabinin 69786cdb37 x86/kasan, mm: Introduce generic kasan_populate_zero_shadow()
Introduce generic kasan_populate_zero_shadow(shadow_start,
shadow_end). This function maps kasan_zero_page to the
[shadow_start, shadow_end] addresses.

This replaces x86_64 specific populate_zero_shadow() and will
be used for ARM64 in follow on patches.

The main changes from original version are:

 * Use p?d_populate*() instead of set_p?d()
 * Use memblock allocator directly instead of vmemmap_alloc_block()
 * __pa() instead of __pa_nodebug(). __pa() causes troubles
   iff we use it before kasan_early_init(). kasan_populate_zero_shadow()
   will be used later, so we ok with __pa() here.

Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David Keitel <dkeitel@codeaurora.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yury <yury.norov@gmail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1439444244-26057-3-git-send-email-ryabinin.a.a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-22 14:54:55 +02:00
Andrey Ryabinin 920e277e17 x86/kasan: Define KASAN_SHADOW_OFFSET per architecture
Current definition of  KASAN_SHADOW_OFFSET in
include/linux/kasan.h will not work for upcomming arm64, so move
it to the arch header.

Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Keitel <dkeitel@codeaurora.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yury <yury.norov@gmail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1439444244-26057-2-git-send-email-ryabinin.a.a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-22 14:54:55 +02:00
Andrey Ryabinin 923936157b mm/mempool.c: kasan: poison mempool elements
Mempools keep allocated objects in reserved for situations when ordinary
allocation may not be possible to satisfy.  These objects shouldn't be
accessed before they leave the pool.

This patch poison elements when get into the pool and unpoison when they
leave it.  This will let KASan to detect use-after-free of mempool's
elements.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Tested-by: David Rientjes <rientjes@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Chernenkov <drcheren@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:20 -07:00
Andrey Ryabinin d3733e5c98 kasan, module: move MODULE_ALIGN macro into <linux/moduleloader.h>
include/linux/moduleloader.h is more suitable place for this macro.
Also change alignment to PAGE_SIZE for CONFIG_KASAN=n as such
alignment already assumed in several places.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Andrey Ryabinin a5af5aa8b6 kasan, module, vmalloc: rework shadow allocation for modules
Current approach in handling shadow memory for modules is broken.

Shadow memory could be freed only after memory shadow corresponds it is no
longer used.  vfree() called from interrupt context could use memory its
freeing to store 'struct llist_node' in it:

    void vfree(const void *addr)
    {
    ...
        if (unlikely(in_interrupt())) {
            struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
            if (llist_add((struct llist_node *)addr, &p->list))
                    schedule_work(&p->wq);

Later this list node used in free_work() which actually frees memory.
Currently module_memfree() called in interrupt context will free shadow
before freeing module's memory which could provoke kernel crash.

So shadow memory should be freed after module's memory.  However, such
deallocation order could race with kasan_module_alloc() in module_alloc().

Free shadow right before releasing vm area.  At this point vfree()'d
memory is not used anymore and yet not available for other allocations.
New VM_KASAN flag used to indicate that vm area has dynamically allocated
shadow memory so kasan frees shadow only if it was previously allocated.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Andrey Ryabinin bebf56a1b1 kasan: enable instrumentation of global variables
This feature let us to detect accesses out of bounds of global variables.
This will work as for globals in kernel image, so for globals in modules.
Currently this won't work for symbols in user-specified sections (e.g.
__init, __read_mostly, ...)

The idea of this is simple.  Compiler increases each global variable by
redzone size and add constructors invoking __asan_register_globals()
function.  Information about global variable (address, size, size with
redzone ...) passed to __asan_register_globals() so we could poison
variable's redzone.

This patch also forces module_alloc() to return 8*PAGE_SIZE aligned
address making shadow memory handling (
kasan_module_alloc()/kasan_module_free() ) more simple.  Such alignment
guarantees that each shadow page backing modules address space correspond
to only one module_alloc() allocation.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:42 -08:00
Andrey Ryabinin 0316bec22e mm: slub: add kernel address sanitizer support for slub allocator
With this patch kasan will be able to catch bugs in memory allocated by
slub.  Initially all objects in newly allocated slab page, marked as
redzone.  Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).

We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area.  Such callers could validly access whole
allocated memory, so it should be marked as accessible.

Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin b8c73fc249 mm: page_alloc: add kasan hooks on alloc and free paths
Add kernel address sanitizer hooks to mark allocated page's addresses as
accessible in corresponding shadow region.  Mark freed pages as
inaccessible.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrey Ryabinin 0b24becc81 kasan: add kernel address sanitizer infrastructure
Kernel Address sanitizer (KASan) is a dynamic memory error detector.  It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.

KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required.  v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.

This patch only adds infrastructure for kernel address sanitizer.  It's
not available for use yet.  The idea and some code was borrowed from [1].

Basic idea:

The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.

Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.

Here is function to translate address to corresponding shadow address:

     unsigned long kasan_mem_to_shadow(unsigned long addr)
     {
                return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
     }

where KASAN_SHADOW_SCALE_SHIFT = 3.

So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible.  Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).

To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.

These functions check whether memory region is valid to access or not by
checking corresponding shadow memory.  If access is not valid an error
printed.

Historical background of the address sanitizer from Dmitry Vyukov:

	"We've developed the set of tools, AddressSanitizer (Asan),
	ThreadSanitizer and MemorySanitizer, for user space. We actively use
	them for testing inside of Google (continuous testing, fuzzing,
	running prod services). To date the tools have found more than 10'000
	scary bugs in Chromium, Google internal codebase and various
	open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
	lots of others): [2] [3] [4].
	The tools are part of both gcc and clang compilers.

	We have not yet done massive testing under the Kernel AddressSanitizer
	(it's kind of chicken and egg problem, you need it to be upstream to
	start applying it extensively). To date it has found about 50 bugs.
	Bugs that we've found in upstream kernel are listed in [5].
	We've also found ~20 bugs in out internal version of the kernel. Also
	people from Samsung and Oracle have found some.

	[...]

	As others noted, the main feature of AddressSanitizer is its
	performance due to inline compiler instrumentation and simple linear
	shadow memory. User-space Asan has ~2x slowdown on computational
	programs and ~2x memory consumption increase. Taking into account that
	kernel usually consumes only small fraction of CPU and memory when
	running real user-space programs, I would expect that kernel Asan will
	have ~10-30% slowdown and similar memory consumption increase (when we
	finish all tuning).

	I agree that Asan can well replace kmemcheck. We have plans to start
	working on Kernel MemorySanitizer that finds uses of unitialized
	memory. Asan+Msan will provide feature-parity with kmemcheck. As
	others noted, Asan will unlikely replace debug slab and pagealloc that
	can be enabled at runtime. Asan uses compiler instrumentation, so even
	if it is disabled, it still incurs visible overheads.

	Asan technology is easily portable to other architectures. Compiler
	instrumentation is fully portable. Runtime has some arch-dependent
	parts like shadow mapping and atomic operation interception. They are
	relatively easy to port."

Comparison with other debugging features:
========================================

KMEMCHECK:

  - KASan can do almost everything that kmemcheck can.  KASan uses
    compile-time instrumentation, which makes it significantly faster than
    kmemcheck.  The only advantage of kmemcheck over KASan is detection of
    uninitialized memory reads.

    Some brief performance testing showed that kasan could be
    x500-x600 times faster than kmemcheck:

$ netperf -l 30
		MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
		Recv   Send    Send
		Socket Socket  Message  Elapsed
		Size   Size    Size     Time     Throughput
		bytes  bytes   bytes    secs.    10^6bits/sec

no debug:	87380  16384  16384    30.00    41624.72

kasan inline:	87380  16384  16384    30.00    12870.54

kasan outline:	87380  16384  16384    30.00    10586.39

kmemcheck: 	87380  16384  16384    30.03      20.23

  - Also kmemcheck couldn't work on several CPUs.  It always sets
    number of CPUs to 1.  KASan doesn't have such limitation.

DEBUG_PAGEALLOC:
	- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
	  granularity level, so it able to find more bugs.

SLUB_DEBUG (poisoning, redzones):
	- SLUB_DEBUG has lower overhead than KASan.

	- SLUB_DEBUG in most cases are not able to detect bad reads,
	  KASan able to detect both reads and writes.

	- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
	  bugs only on allocation/freeing of object. KASan catch
	  bugs right before it will happen, so we always know exact
	  place of first bad read/write.

[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies

Based on work by Andrey Konovalov.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:40 -08:00