commit 6c24849f55 upstream.
Qais reported that iterating over all tasks when rebuilding root domains
for finding out which ones are DEADLINE and need their bandwidth
correctly restored on such root domains can be a costly operation (10+
ms delays on suspend-resume).
To fix the problem keep track of the number of DEADLINE tasks belonging
to each cpuset and then use this information (followup patch) to only
perform the above iteration if DEADLINE tasks are actually present in
the cpuset for which a corresponding root domain is being rebuilt.
Reported-by: Qais Yousef (Google) <qyousef@layalina.io>
Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
[ Conflict in kernel/cgroup/cpuset.c and kernel/sched/deadline.c due to
pulling new code. Reject new code/fields. ]
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6f363f5aa8 upstream.
We found a refcount UAF bug as follows:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 342 at lib/refcount.c:25 refcount_warn_saturate+0xa0/0x148
Workqueue: events cpuset_hotplug_workfn
Call trace:
refcount_warn_saturate+0xa0/0x148
__refcount_add.constprop.0+0x5c/0x80
css_task_iter_advance_css_set+0xd8/0x210
css_task_iter_advance+0xa8/0x120
css_task_iter_next+0x94/0x158
update_tasks_root_domain+0x58/0x98
rebuild_root_domains+0xa0/0x1b0
rebuild_sched_domains_locked+0x144/0x188
cpuset_hotplug_workfn+0x138/0x5a0
process_one_work+0x1e8/0x448
worker_thread+0x228/0x3e0
kthread+0xe0/0xf0
ret_from_fork+0x10/0x20
then a kernel panic will be triggered as below:
Unable to handle kernel paging request at virtual address 00000000c0000010
Call trace:
cgroup_apply_control_disable+0xa4/0x16c
rebind_subsystems+0x224/0x590
cgroup_destroy_root+0x64/0x2e0
css_free_rwork_fn+0x198/0x2a0
process_one_work+0x1d4/0x4bc
worker_thread+0x158/0x410
kthread+0x108/0x13c
ret_from_fork+0x10/0x18
The race that cause this bug can be shown as below:
(hotplug cpu) | (umount cpuset)
mutex_lock(&cpuset_mutex) | mutex_lock(&cgroup_mutex)
cpuset_hotplug_workfn |
rebuild_root_domains | rebind_subsystems
update_tasks_root_domain | spin_lock_irq(&css_set_lock)
css_task_iter_start | list_move_tail(&cset->e_cset_node[ss->id]
while(css_task_iter_next) | &dcgrp->e_csets[ss->id]);
css_task_iter_end | spin_unlock_irq(&css_set_lock)
mutex_unlock(&cpuset_mutex) | mutex_unlock(&cgroup_mutex)
Inside css_task_iter_start/next/end, css_set_lock is hold and then
released, so when iterating task(left side), the css_set may be moved to
another list(right side), then it->cset_head points to the old list head
and it->cset_pos->next points to the head node of new list, which can't
be used as struct css_set.
To fix this issue, switch from all css_sets to only scgrp's css_sets to
patch in-flight iterators to preserve correct iteration, and then
update it->cset_head as well.
Reported-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Link: https://www.spinics.net/lists/cgroups/msg37935.html
Suggested-by: Michal Koutný <mkoutny@suse.com>
Link: https://lore.kernel.org/all/20230526114139.70274-1-xiujianfeng@huaweicloud.com/
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Fixes: 2d8f243a5e ("cgroup: implement cgroup->e_csets[]")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2bd1103392 upstream.
A successful call to cgroup_css_set_fork() will always have taken
a ref on kargs->cset (regardless of CLONE_INTO_CGROUP), so always
do a corresponding put in cgroup_css_set_put_fork().
Without this, a cset and its contained css structures will be
leaked for some fork failures. The following script reproduces
the leak for a fork failure due to exceeding pids.max in the
pids controller. A similar thing can happen if we jump to the
bad_fork_cancel_cgroup label in copy_process().
[ -z "$1" ] && echo "Usage $0 pids-root" && exit 1
PID_ROOT=$1
CGROUP=$PID_ROOT/foo
[ -e $CGROUP ] && rmdir -f $CGROUP
mkdir $CGROUP
echo 5 > $CGROUP/pids.max
echo $$ > $CGROUP/cgroup.procs
fork_bomb()
{
set -e
for i in $(seq 10); do
/bin/sleep 3600 &
done
}
(fork_bomb) &
wait
echo $$ > $PID_ROOT/cgroup.procs
kill $(cat $CGROUP/cgroup.procs)
rmdir $CGROUP
Fixes: ef2c41cf38 ("clone3: allow spawning processes into cgroups")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: John Sperbeck <jsperbeck@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
[TJM: This backport accommodates the lack of cgroup_unlock]
Signed-off-by: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 74e4b956eb ]
cgroup_get_from_path() is not widely used function. Its callers presume
the path is resolved under cgroup namespace. (There is one caller
currently and resolving in init NS won't make harm (netfilter). However,
future users may be subject to different effects when resolving
globally.)
Since, there's currently no use for the global resolution, modify the
existing function to take cgroup NS into account.
Fixes: a79a908fd2 ("cgroup: introduce cgroup namespaces")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df02452f3d ]
cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace.
Reported-by: Marco Patalano <mpatalan@redhat.com>
Fixes: 6b658c4863 ("scsi: cgroup: Add cgroup_get_from_id()")
Cc: Muneendra <muneendra.kumar@broadcom.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Cc: stable@vger.kernel.org # v5.14+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit be28816971 ]
Currently cgroup_get_from_path() and cgroup_get_from_id() grab
cgroup_mutex before traversing the default hierarchy to find the
kernfs_node corresponding to the path/id and then extract the linked
cgroup. Since cgroup_mutex is still held, it is guaranteed that the
cgroup will be alive and the reference can be taken on it.
However similar guarantee can be provided without depending on the
cgroup_mutex and potentially reducing avenues of cgroup_mutex contentions.
The kernfs_node's priv pointer is RCU protected pointer and with just
rcu read lock we can grab the reference on the cgroup without
cgroup_mutex. So, remove cgroup_mutex from them.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: df02452f3d ("cgroup: cgroup_get_from_id() must check the looked-up kn is a directory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f7e723643 ]
Bringing up a CPU may involve creating and destroying tasks which requires
read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
cpus_read_lock(). However, cpuset's ->attach(), which may be called with
thredagroup_rwsem write-locked, also wants to disable CPU hotplug and
acquires cpus_read_lock(), leading to a deadlock.
Fix it by guaranteeing that ->attach() is always called with CPU hotplug
disabled and removing cpus_read_lock() call from cpuset_attach().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Imran Khan <imran.f.khan@oracle.com>
Reported-and-tested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Fixes: 05c7b7a92c ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 671c11f061 ]
cgroup_update_dfl_csses() write-lock the threadgroup_rwsem as updating the
csses can trigger process migrations. However, if the subtree doesn't
contain any tasks, there aren't gonna be any cgroup migrations. This
condition can be trivially detected by testing whether
mgctx.preloaded_src_csets is empty. Elide write-locking threadgroup_rwsem if
the subtree is empty.
After this optimization, the usage pattern of creating a cgroup, enabling
the necessary controllers, and then seeding it with CLONE_INTO_CGROUP and
then removing the cgroup after it becomes empty doesn't need to write-lock
threadgroup_rwsem at all.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 763f4fb76e upstream.
Root cause:
The rebind_subsystems() is no lock held when move css object from A
list to B list,then let B's head be treated as css node at
list_for_each_entry_rcu().
Solution:
Add grace period before invalidating the removed rstat_css_node.
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lore.kernel.org/linux-arm-kernel/d8f0bc5e2fb6ed259f9334c83279b4c011283c41.camel@mediatek.com/T/
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Fixes: a7df69b81a ("cgroup: rstat: support cgroup1")
Cc: stable@vger.kernel.org # v5.13+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 07fd5b6cdf upstream.
Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.
Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:
#1> mkdir -p /sys/fs/cgroup/misc/a/b
#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
#4> PID=$!
#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs
the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.
After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:
1. cgroup_migrate_add_src() is called on B for the leader.
2. cgroup_migrate_add_src() is called on A for the other threads.
3. cgroup_migrate_prepare_dst() is called. It scans the src list.
4. It notices that B wants to migrate to A, so it tries to A to the dst
list but realizes that its ->mg_preload_node is already busy.
5. and then it notices A wants to migrate to A as it's an identity
migration, it culls it by list_del_init()'ing its ->mg_preload_node and
putting references accordingly.
6. The rest of migration takes place with B on the src list but nothing on
the dst list.
This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.
This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.
This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9851 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a06247c680 upstream.
With write operation on psi files replacing old trigger with a new one,
the lifetime of its waitqueue is totally arbitrary. Overwriting an
existing trigger causes its waitqueue to be freed and pending poll()
will stumble on trigger->event_wait which was destroyed.
Fix this by disallowing to redefine an existing psi trigger. If a write
operation is used on a file descriptor with an already existing psi
trigger, the operation will fail with EBUSY error.
Also bypass a check for psi_disabled in the psi_trigger_destroy as the
flag can be flipped after the trigger is created, leading to a memory
leak.
Fixes: 0e94682b73 ("psi: introduce psi monitor")
Reported-by: syzbot+cdb5dd11c97cc532efad@syzkaller.appspotmail.com
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Analyzed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220111232309.1786347-1-surenb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e574576416 upstream.
cgroup process migration permission checks are performed at write time as
whether a given operation is allowed or not is dependent on the content of
the write - the PID. This currently uses current's cgroup namespace which is
a potential security weakness as it may allow scenarios where a less
privileged process tricks a more privileged one into writing into a fd that
it created.
This patch makes cgroup remember the cgroup namespace at the time of open
and uses it for migration permission checks instad of current's. Note that
this only applies to cgroup2 as cgroup1 doesn't have namespace support.
This also fixes a use-after-free bug on cgroupns reported in
https://lore.kernel.org/r/00000000000048c15c05d0083397@google.com
Note that backporting this fix also requires the preceding patch.
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reported-by: syzbot+50f5cf33a284ce738b62@syzkaller.appspotmail.com
Link: https://lore.kernel.org/r/00000000000048c15c05d0083397@google.com
Fixes: 5136f6365c ("cgroup: implement "nsdelegate" mount option")
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0d2b5955b3 upstream.
of->priv is currently used by each interface file implementation to store
private information. This patch collects the current two private data usages
into struct cgroup_file_ctx which is allocated and freed by the common path.
This allows generic private data which applies to multiple files, which will
be used to in the following patch.
Note that cgroup_procs iterator is now embedded as procs.iter in the new
cgroup_file_ctx so that it doesn't need to be allocated and freed
separately.
v2: union dropped from cgroup_file_ctx and the procs iterator is embedded in
cgroup_file_ctx as suggested by Linus.
v3: Michal pointed out that cgroup1's procs pidlist uses of->priv too.
Converted. Didn't change to embedded allocation as cgroup1 pidlists get
stored for caching.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1756d7994a upstream.
cgroup process migration permission checks are performed at write time as
whether a given operation is allowed or not is dependent on the content of
the write - the PID. This currently uses current's credentials which is a
potential security weakness as it may allow scenarios where a less
privileged process tricks a more privileged one into writing into a fd that
it created.
This patch makes both cgroup2 and cgroup1 process migration interfaces to
use the credentials saved at the time of open (file->f_cred) instead of
current's.
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Fixes: 187fe84067 ("cgroup: require write perm on common ancestor when moving processes on the default hierarchy")
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7ee285395b ]
It was found that the following warning was displayed when remounting
controllers from cgroup v2 to v1:
[ 8042.997778] WARNING: CPU: 88 PID: 80682 at kernel/cgroup/cgroup.c:3130 cgroup_apply_control_disable+0x158/0x190
:
[ 8043.091109] RIP: 0010:cgroup_apply_control_disable+0x158/0x190
[ 8043.096946] Code: ff f6 45 54 01 74 39 48 8d 7d 10 48 c7 c6 e0 46 5a a4 e8 7b 67 33 00 e9 41 ff ff ff 49 8b 84 24 e8 01 00 00 0f b7 40 08 eb 95 <0f> 0b e9 5f ff ff ff 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3
[ 8043.115692] RSP: 0018:ffffba8a47c23d28 EFLAGS: 00010202
[ 8043.120916] RAX: 0000000000000036 RBX: ffffffffa624ce40 RCX: 000000000000181a
[ 8043.128047] RDX: ffffffffa63c43e0 RSI: ffffffffa63c43e0 RDI: ffff9d7284ee1000
[ 8043.135180] RBP: ffff9d72874c5800 R08: ffffffffa624b090 R09: 0000000000000004
[ 8043.142314] R10: ffffffffa624b080 R11: 0000000000002000 R12: ffff9d7284ee1000
[ 8043.149447] R13: ffff9d7284ee1000 R14: ffffffffa624ce70 R15: ffffffffa6269e20
[ 8043.156576] FS: 00007f7747cff740(0000) GS:ffff9d7a5fc00000(0000) knlGS:0000000000000000
[ 8043.164663] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8043.170409] CR2: 00007f7747e96680 CR3: 0000000887d60001 CR4: 00000000007706e0
[ 8043.177539] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 8043.184673] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 8043.191804] PKRU: 55555554
[ 8043.194517] Call Trace:
[ 8043.196970] rebind_subsystems+0x18c/0x470
[ 8043.201070] cgroup_setup_root+0x16c/0x2f0
[ 8043.205177] cgroup1_root_to_use+0x204/0x2a0
[ 8043.209456] cgroup1_get_tree+0x3e/0x120
[ 8043.213384] vfs_get_tree+0x22/0xb0
[ 8043.216883] do_new_mount+0x176/0x2d0
[ 8043.220550] __x64_sys_mount+0x103/0x140
[ 8043.224474] do_syscall_64+0x38/0x90
[ 8043.228063] entry_SYSCALL_64_after_hwframe+0x44/0xae
It was caused by the fact that rebind_subsystem() disables
controllers to be rebound one by one. If more than one disabled
controllers are originally from the default hierarchy, it means that
cgroup_apply_control_disable() will be called multiple times for the
same default hierarchy. A controller may be killed by css_kill() in
the first round. In the second round, the killed controller may not be
completely dead yet leading to the warning.
To avoid this problem, we collect all the ssid's of controllers that
needed to be disabled from the default hierarchy and then disable them
in one go instead of one by one.
Fixes: 334c3679ec ("cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
When enabling CONFIG_CGROUP_BPF, kmemleak can be observed by running
the command as below:
$mount -t cgroup -o none,name=foo cgroup cgroup/
$umount cgroup/
unreferenced object 0xc3585c40 (size 64):
comm "mount", pid 425, jiffies 4294959825 (age 31.990s)
hex dump (first 32 bytes):
01 00 00 80 84 8c 28 c0 00 00 00 00 00 00 00 00 ......(.........
00 00 00 00 00 00 00 00 6c 43 a0 c3 00 00 00 00 ........lC......
backtrace:
[<e95a2f9e>] cgroup_bpf_inherit+0x44/0x24c
[<1f03679c>] cgroup_setup_root+0x174/0x37c
[<ed4b0ac5>] cgroup1_get_tree+0x2c0/0x4a0
[<f85b12fd>] vfs_get_tree+0x24/0x108
[<f55aec5c>] path_mount+0x384/0x988
[<e2d5e9cd>] do_mount+0x64/0x9c
[<208c9cfe>] sys_mount+0xfc/0x1f4
[<06dd06e0>] ret_fast_syscall+0x0/0x48
[<a8308cb3>] 0xbeb4daa8
This is because that since the commit 2b0d3d3e4f ("percpu_ref: reduce
memory footprint of percpu_ref in fast path") root_cgrp->bpf.refcnt.data
is allocated by the function percpu_ref_init in cgroup_bpf_inherit which
is called by cgroup_setup_root when mounting, but not freed along with
root_cgrp when umounting. Adding cgroup_bpf_offline which calls
percpu_ref_kill to cgroup_kill_sb can free root_cgrp->bpf.refcnt.data in
umount path.
This patch also fixes the commit 4bfc0bb2c6 ("bpf: decouple the lifetime
of cgroup_bpf from cgroup itself"). A cgroup_bpf_offline is needed to do a
cleanup that frees the resources which are allocated by cgroup_bpf_inherit
in cgroup_setup_root.
And inside cgroup_bpf_offline, cgroup_get() is at the beginning and
cgroup_put is at the end of cgroup_bpf_release which is called by
cgroup_bpf_offline. So cgroup_bpf_offline can keep the balance of
cgroup's refcount.
Fixes: 2b0d3d3e4f ("percpu_ref: reduce memory footprint of percpu_ref in fast path")
Fixes: 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Signed-off-by: Quanyang Wang <quanyang.wang@windriver.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211018075623.26884-1-quanyang.wang@windriver.com
If cgroup_sk_alloc() is called from interrupt context, then just assign the
root cgroup to skcd->cgroup. Prior to commit 8520e224f5 ("bpf, cgroups:
Fix cgroup v2 fallback on v1/v2 mixed mode") we would just return, and later
on in sock_cgroup_ptr(), we were NULL-testing the cgroup in fast-path, and
iff indeed NULL returning the root cgroup (v ?: &cgrp_dfl_root.cgrp). Rather
than re-adding the NULL-test to the fast-path we can just assign it once from
cgroup_sk_alloc() given v1/v2 handling has been simplified. The migration from
NULL test with returning &cgrp_dfl_root.cgrp to assigning &cgrp_dfl_root.cgrp
directly does /not/ change behavior for callers of sock_cgroup_ptr().
syzkaller was able to trigger a splat in the legacy netrom code base, where
the RX handler in nr_rx_frame() calls nr_make_new() which calls sk_alloc()
and therefore cgroup_sk_alloc() with in_interrupt() condition. Thus the NULL
skcd->cgroup, where it trips over on cgroup_sk_free() side given it expects
a non-NULL object. There are a few other candidates aside from netrom which
have similar pattern where in their accept-like implementation, they just call
to sk_alloc() and thus cgroup_sk_alloc() instead of sk_clone_lock() with the
corresponding cgroup_sk_clone() which then inherits the cgroup from the parent
socket. None of them are related to core protocols where BPF cgroup programs
are running from. However, in future, they should follow to implement a similar
inheritance mechanism.
Additionally, with a !CONFIG_CGROUP_NET_PRIO and !CONFIG_CGROUP_NET_CLASSID
configuration, the same issue was exposed also prior to 8520e224f5 due to
commit e876ecc67d ("cgroup: memcg: net: do not associate sock with unrelated
cgroup") which added the early in_interrupt() return back then.
Fixes: 8520e224f5 ("bpf, cgroups: Fix cgroup v2 fallback on v1/v2 mixed mode")
Fixes: e876ecc67d ("cgroup: memcg: net: do not associate sock with unrelated cgroup")
Reported-by: syzbot+df709157a4ecaf192b03@syzkaller.appspotmail.com
Reported-by: syzbot+533f389d4026d86a2a95@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: syzbot+df709157a4ecaf192b03@syzkaller.appspotmail.com
Tested-by: syzbot+533f389d4026d86a2a95@syzkaller.appspotmail.com
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20210927123921.21535-1-daniel@iogearbox.net
Fix cgroup v1 interference when non-root cgroup v2 BPF programs are used.
Back in the days, commit bd1060a1d6 ("sock, cgroup: add sock->sk_cgroup")
embedded per-socket cgroup information into sock->sk_cgrp_data and in order
to save 8 bytes in struct sock made both mutually exclusive, that is, when
cgroup v1 socket tagging (e.g. net_cls/net_prio) is used, then cgroup v2
falls back to the root cgroup in sock_cgroup_ptr() (&cgrp_dfl_root.cgrp).
The assumption made was "there is no reason to mix the two and this is in line
with how legacy and v2 compatibility is handled" as stated in bd1060a1d6.
However, with Kubernetes more widely supporting cgroups v2 as well nowadays,
this assumption no longer holds, and the possibility of the v1/v2 mixed mode
with the v2 root fallback being hit becomes a real security issue.
Many of the cgroup v2 BPF programs are also used for policy enforcement, just
to pick _one_ example, that is, to programmatically deny socket related system
calls like connect(2) or bind(2). A v2 root fallback would implicitly cause
a policy bypass for the affected Pods.
In production environments, we have recently seen this case due to various
circumstances: i) a different 3rd party agent and/or ii) a container runtime
such as [0] in the user's environment configuring legacy cgroup v1 net_cls
tags, which triggered implicitly mentioned root fallback. Another case is
Kubernetes projects like kind [1] which create Kubernetes nodes in a container
and also add cgroup namespaces to the mix, meaning programs which are attached
to the cgroup v2 root of the cgroup namespace get attached to a non-root
cgroup v2 path from init namespace point of view. And the latter's root is
out of reach for agents on a kind Kubernetes node to configure. Meaning, any
entity on the node setting cgroup v1 net_cls tag will trigger the bypass
despite cgroup v2 BPF programs attached to the namespace root.
Generally, this mutual exclusiveness does not hold anymore in today's user
environments and makes cgroup v2 usage from BPF side fragile and unreliable.
This fix adds proper struct cgroup pointer for the cgroup v2 case to struct
sock_cgroup_data in order to address these issues; this implicitly also fixes
the tradeoffs being made back then with regards to races and refcount leaks
as stated in bd1060a1d6, and removes the fallback, so that cgroup v2 BPF
programs always operate as expected.
[0] https://github.com/nestybox/sysbox/
[1] https://kind.sigs.k8s.io/
Fixes: bd1060a1d6 ("sock, cgroup: add sock->sk_cgroup")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20210913230759.2313-1-daniel@iogearbox.net
As done before in commit cb4a316752 ("cgroup: use bitmask to filter
for_each_subsys"), avoid compiler warnings for the pathological case of
having no subsystems (i.e. CGROUP_SUBSYS_COUNT == 0). This condition is
hit for the arm multi_v7_defconfig config under -Wzero-length-bounds:
In file included from ./arch/arm/include/generated/asm/rwonce.h:1,
from include/linux/compiler.h:264,
from include/uapi/linux/swab.h:6,
from include/linux/swab.h:5,
from arch/arm/include/asm/opcodes.h:86,
from arch/arm/include/asm/bug.h:7,
from include/linux/bug.h:5,
from include/linux/thread_info.h:13,
from include/asm-generic/current.h:5,
from ./arch/arm/include/generated/asm/current.h:1,
from include/linux/sched.h:12,
from include/linux/cgroup.h:12,
from kernel/cgroup/cgroup-internal.h:5,
from kernel/cgroup/cgroup.c:31:
kernel/cgroup/cgroup.c: In function 'of_css':
kernel/cgroup/cgroup.c:651:42: warning: array subscript '<unknown>' is outside the bounds of an
interior zero-length array 'struct cgroup_subsys_state *[0]' [-Wzero-length-bounds]
651 | return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Git rid of an outdated comment.
Since cgroup was fully switched to fs_context, cgroup_mount() is gone and
it's confusing to mention in comments of cgroup_kill_sb(). Delete it.
Signed-off-by: zhaoxiaoqiang11 <zhaoxiaoqiang11@jd.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This series consists of the usual driver updates (ufs, ibmvfc,
megaraid_sas, lpfc, elx, mpi3mr, qedi, iscsi, storvsc, mpt3sas) with
elx and mpi3mr being new drivers. The major core change is a rework
to drop the status byte handling macros and the old bit shifted
definitions and the rest of the updates are minor fixes.
Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
-----BEGIN PGP SIGNATURE-----
iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCYN7I6iYcamFtZXMuYm90
dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishXpRAQCkngYZ
35yQrqOxgOk2pfrysE95tHrV1MfJm2U49NFTwAEAuZutEvBUTfBF+sbcJ06r6q7i
H0hkJN/Io7enFs5v3WA=
=zwIa
-----END PGP SIGNATURE-----
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI updates from James Bottomley:
"This series consists of the usual driver updates (ufs, ibmvfc,
megaraid_sas, lpfc, elx, mpi3mr, qedi, iscsi, storvsc, mpt3sas) with
elx and mpi3mr being new drivers.
The major core change is a rework to drop the status byte handling
macros and the old bit shifted definitions and the rest of the updates
are minor fixes"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (287 commits)
scsi: aha1740: Avoid over-read of sense buffer
scsi: arcmsr: Avoid over-read of sense buffer
scsi: ips: Avoid over-read of sense buffer
scsi: ufs: ufs-mediatek: Add missing of_node_put() in ufs_mtk_probe()
scsi: elx: libefc: Fix IRQ restore in efc_domain_dispatch_frame()
scsi: elx: libefc: Fix less than zero comparison of a unsigned int
scsi: elx: efct: Fix pointer error checking in debugfs init
scsi: elx: efct: Fix is_originator return code type
scsi: elx: efct: Fix link error for _bad_cmpxchg
scsi: elx: efct: Eliminate unnecessary boolean check in efct_hw_command_cancel()
scsi: elx: efct: Do not use id uninitialized in efct_lio_setup_session()
scsi: elx: efct: Fix error handling in efct_hw_init()
scsi: elx: efct: Remove redundant initialization of variable lun
scsi: elx: efct: Fix spelling mistake "Unexected" -> "Unexpected"
scsi: lpfc: Fix build error in lpfc_scsi.c
scsi: target: iscsi: Remove redundant continue statement
scsi: qla4xxx: Remove redundant continue statement
scsi: ppa: Switch to use module_parport_driver()
scsi: imm: Switch to use module_parport_driver()
scsi: mpt3sas: Fix error return value in _scsih_expander_add()
...
Pull cgroup updates from Tejun Heo:
- cgroup.kill is added which implements atomic killing of the whole
subtree.
Down the line, this should be able to replace the multiple userland
implementations of "keep killing till empty".
- PSI can now be turned off at boot time to avoid overhead for
configurations which don't care about PSI.
* 'for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: make per-cgroup pressure stall tracking configurable
cgroup: Fix kernel-doc
cgroup: inline cgroup_task_freeze()
tests/cgroup: test cgroup.kill
tests/cgroup: move cg_wait_for(), cg_prepare_for_wait()
tests/cgroup: use cgroup.kill in cg_killall()
docs/cgroup: add entry for cgroup.kill
cgroup: introduce cgroup.kill
The current code only associates with the existing blkcg when aio is used
to access the backing file. This patch covers all types of i/o to the
backing file and also associates the memcg so if the backing file is on
tmpfs, memory is charged appropriately.
This patch also exports cgroup_get_e_css and int_active_memcg so it can be
used by the loop module.
Link: https://lkml.kernel.org/r/20210610173944.1203706-4-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new function, cgroup_get_from_id(), to retrieve the cgroup associated
with a cgroup id. Also export the function cgroup_get_e_css() as this is
needed in blk-cgroup.h.
Link: https://lore.kernel.org/r/20210608043556.274139-2-muneendra.kumar@broadcom.com
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Muneendra Kumar <muneendra.kumar@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
PSI accounts stalls for each cgroup separately and aggregates it at each
level of the hierarchy. This causes additional overhead with psi_avgs_work
being called for each cgroup in the hierarchy. psi_avgs_work has been
highly optimized, however on systems with large number of cgroups the
overhead becomes noticeable.
Systems which use PSI only at the system level could avoid this overhead
if PSI can be configured to skip per-cgroup stall accounting.
Add "cgroup_disable=pressure" kernel command-line option to allow
requesting system-wide only pressure stall accounting. When set, it
keeps system-wide accounting under /proc/pressure/ but skips accounting
for individual cgroups and does not expose PSI nodes in cgroup hierarchy.
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix function name in cgroup.c and rstat.c kernel-doc comment
to remove these warnings found by clang_w1.
kernel/cgroup/cgroup.c:2401: warning: expecting prototype for
cgroup_taskset_migrate(). Prototype was for cgroup_migrate_execute()
instead.
kernel/cgroup/rstat.c:233: warning: expecting prototype for
cgroup_rstat_flush_begin(). Prototype was for cgroup_rstat_flush_hold()
instead.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Fixes: 'commit e595cd7069 ("cgroup: track migration context in cgroup_mgctx")'
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix some spelling mistakes in comments:
hierarhcy ==> hierarchy
automtically ==> automatically
overriden ==> overridden
In absense of .. or ==> In absence of .. and
assocaited ==> associated
taget ==> target
initate ==> initiate
succeded ==> succeeded
curremt ==> current
udpated ==> updated
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch effectively reverts the commit a3e72739b7 ("cgroup: fix
too early usage of static_branch_disable()"). The commit 6041186a32
("init: initialize jump labels before command line option parsing") has
moved the jump_label_init() before parse_args() which has made the
commit a3e72739b7 unnecessary. On the other hand there are
consequences of disabling the controllers later as there are subsystems
doing the controller checks for different decisions. One such incident
is reported [1] regarding the memory controller and its impact on memory
reclaim code.
[1] https://lore.kernel.org/linux-mm/921e53f3-4b13-aab8-4a9e-e83ff15371e4@nec.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: NOMURA JUNICHI(野村 淳一) <junichi.nomura@nec.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Jun'ichi Nomura <junichi.nomura@nec.com>
After the introduction of the cgroup.kill there is only one call site
of cgroup_task_freeze() left: cgroup_exit(). cgroup_task_freeze() is
currently taking rcu_read_lock() to read task's cgroup flags, but
because it's always called with css_set_lock locked, the rcu protection
is excessive.
Simplify the code by inlining cgroup_task_freeze().
v2: fix build
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Introduce the cgroup.kill file. It does what it says on the tin and
allows a caller to kill a cgroup by writing "1" into cgroup.kill.
The file is available in non-root cgroups.
Killing cgroups is a process directed operation, i.e. the whole
thread-group is affected. Consequently trying to write to cgroup.kill in
threaded cgroups will be rejected and EOPNOTSUPP returned. This behavior
aligns with cgroup.procs where reads in threaded-cgroups are rejected
with EOPNOTSUPP.
The cgroup.kill file is write-only since killing a cgroup is an event
not which makes it different from e.g. freezer where a cgroup
transitions between the two states.
As with all new cgroup features cgroup.kill is recursive by default.
Killing a cgroup is protected against concurrent migrations through the
cgroup mutex. To protect against forkbombs and to mitigate the effect of
racing forks a new CGRP_KILL css set lock protected flag is introduced
that is set prior to killing a cgroup and unset after the cgroup has
been killed. We can then check in cgroup_post_fork() where we hold the
css set lock already whether the cgroup is currently being killed. If so
we send the child a SIGKILL signal immediately taking it down as soon as
it returns to userspace. To make the killing of the child semantically
clean it is killed after all cgroup attachment operations have been
finalized.
There are various use-cases of this interface:
- Containers usually have a conservative layout where each container
usually has a delegated cgroup. For such layouts there is a 1:1
mapping between container and cgroup. If the container in addition
uses a separate pid namespace then killing a container usually becomes
a simple kill -9 <container-init-pid> from an ancestor pid namespace.
However, there are quite a few scenarios where that isn't true. For
example, there are containers that share the cgroup with other
processes on purpose that are supposed to be bound to the lifetime of
the container but are not in the same pidns of the container.
Containers that are in a delegated cgroup but share the pid namespace
with the host or other containers.
- Service managers such as systemd use cgroups to group and organize
processes belonging to a service. They usually rely on a recursive
algorithm now to kill a service. With cgroup.kill this becomes a
simple write to cgroup.kill.
- Userspace OOM implementations can make good use of this feature to
efficiently take down whole cgroups quickly.
- The kill program can gain a new
kill --cgroup /sys/fs/cgroup/delegated
flag to take down cgroups.
A few observations about the semantics:
- If parent and child are in the same cgroup and CLONE_INTO_CGROUP is
not specified we are not taking cgroup mutex meaning the cgroup can be
killed while a process in that cgroup is forking.
If the kill request happens right before cgroup_can_fork() and before
the parent grabs its siglock the parent is guaranteed to see the
pending SIGKILL. In addition we perform another check in
cgroup_post_fork() whether the cgroup is being killed and is so take
down the child (see above). This is robust enough and protects gainst
forkbombs. If userspace really really wants to have stricter
protection the simple solution would be to grab the write side of the
cgroup threadgroup rwsem which will force all ongoing forks to
complete before killing starts. We concluded that this is not
necessary as the semantics for concurrent forking should simply align
with freezer where a similar check as cgroup_post_fork() is performed.
For all other cases CLONE_INTO_CGROUP is required. In this case we
will grab the cgroup mutex so the cgroup can't be killed while we
fork. Once we're done with the fork and have dropped cgroup mutex we
are visible and will be found by any subsequent kill request.
- We obviously don't kill kthreads. This means a cgroup that has a
kthread will not become empty after killing and consequently no
unpopulated event will be generated. The assumption is that kthreads
should be in the root cgroup only anyway so this is not an issue.
- We skip killing tasks that already have pending fatal signals.
- Freezer doesn't care about tasks in different pid namespaces, i.e. if
you have two tasks in different pid namespaces the cgroup would still
be frozen. The cgroup.kill mechanism consequently behaves the same
way, i.e. we kill all processes and ignore in which pid namespace they
exist.
- If the caller is located in a cgroup that is killed the caller will
obviously be killed as well.
Link: https://lore.kernel.org/r/20210503143922.3093755-1-brauner@kernel.org
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: cgroups@vger.kernel.org
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Rstat currently only supports the default hierarchy in cgroup2. In
order to replace memcg's private stats infrastructure - used in both
cgroup1 and cgroup2 - with rstat, the latter needs to support cgroup1.
The initialization and destruction callbacks for regular cgroups are
already in place. Remove the cgroup_on_dfl() guards to handle cgroup1.
The initialization of the root cgroup is currently hardcoded to only
handle cgrp_dfl_root.cgrp. Move those callbacks to cgroup_setup_root()
and cgroup_destroy_root() to handle the default root as well as the
various cgroup1 roots we may set up during mounting.
The linking of css to cgroups happens in code shared between cgroup1 and
cgroup2 as well. Simply remove the cgroup_on_dfl() guard.
Linkage of the root css to the root cgroup is a bit trickier: per
default, the root css of a subsystem controller belongs to the default
hierarchy (i.e. the cgroup2 root). When a controller is mounted in its
cgroup1 version, the root css is stolen and moved to the cgroup1 root;
on unmount, the css moves back to the default hierarchy. Annotate
rebind_subsystems() to move the root css linkage along between roots.
Link: https://lkml.kernel.org/r/20210209163304.77088-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
Pull cgroup updates from Tejun Heo:
"Nothing interesting. Just two minor patches"
* 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: fix typos in comments
cgroup: cgroup.{procs,threads} factor out common parts
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Fix NULL pointer dereference when adding new psi monitor to the root
cgroup. PSI files for root cgroup was introduced in df5ba5be74 by using
system wide psi struct when reading, but file write/monitor was not
properly fixed. Since the PSI config for the root cgroup isn't
initialized, the current implementation tries to lock a NULL ptr,
resulting in a crash.
Can be triggered by running this as root:
$ tee /sys/fs/cgroup/cpu.pressure <<< "some 10000 1000000"
Signed-off-by: Odin Ugedal <odin@uged.al>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Dan Schatzberg <dschatzberg@fb.com>
Fixes: df5ba5be74 ("kernel/sched/psi.c: expose pressure metrics on root cgroup")
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org # 5.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
The functions cgroup_threads_write and cgroup_procs_write are almost
identical. In order to reduce duplication, factor out the common code in
similar fashion we already do for other threadgroup/task functions. No
functional changes are intended.
Suggested-by: Hao Lee <haolee.swjtu@gmail.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
"These three patches were scheduled for the merge window but I forgot
to send them out. Sorry about that.
None of them are significant and they fit well in a fix pull request
too - two are cosmetic and one fixes a memory leak in the mount option
parsing path"
* 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Fix memory leak when parsing multiple source parameters
cgroup/cgroup.c: replace 'of->kn->priv' with of_cft()
kernel: cgroup: Mundane spelling fixes throughout the file
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
With the deprecation of the non-hierarchical mode of the memory controller
there are no more examples of broken hierarchies left.
Let's remove the cgroup core code which was supposed to print warnings
about creating of broken hierarchies.
Link: https://lkml.kernel.org/r/20201110220800.929549-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1.
The non-hierarchical cgroup v1 mode is a legacy of early days
of the memory controller and doesn't bring any value today.
However, it complicates the code and creates many edge cases
all over the memory controller code.
It's a good time to deprecate it completely. This patchset removes
the internal logic, adjusts the user interface and updates
the documentation. The alt patch removes some bits of the cgroup
core code, which become obsolete.
Michal Hocko said:
"All that we know today is that we have a warning in place to complain
loudly when somebody relies on use_hierarchy=0 with a deeper
hierarchy. For all those years we have seen _zero_ reports that would
describe a sensible usecase.
Moreover we (SUSE) have backported this warning into old distribution
kernels (since 3.0 based kernels) to extend the coverage and didn't
hear even for users who adopt new kernels only very slowly. The only
report we have seen so far was a LTP test suite which doesn't really
reflect any real life usecase"
This patch (of 3):
The non-hierarchical cgroup v1 mode is a legacy of early days of the
memory controller and doesn't bring any value today. However, it
complicates the code and creates many edge cases all over the memory
controller code.
It's a good time to deprecate it completely.
Functionally this patch enabled is by default for all cgroups and forbids
switching it off. Nothing changes if cgroup v2 is used: hierarchical mode
was enforced from scratch.
To protect the ABI memory.use_hierarchy interface is preserved with a
limited functionality: reading always returns "1", writing of "1" passes
silently, writing of any other value fails with -EINVAL and a warning to
dmesg (on the first occasion).
Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCX9daOgAKCRCRxhvAZXjc
ohPkAQChXUB2BAjtIzXlCkZoDBbzHHblm5DZ37oy/4xYFmAcEwEA5sw6dQqyGHnF
GEP9def51HvXLpBV2BzNUGggo1SoGgQ=
=w/cO
-----END PGP SIGNATURE-----
Merge tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull misc fixes from Christian Brauner:
"This contains several fixes which felt worth being combined into a
single branch:
- Use put_nsproxy() instead of open-coding it switch_task_namespaces()
- Kirill's work to unify lifecycle management for all namespaces. The
lifetime counters are used identically for all namespaces types.
Namespaces may of course have additional unrelated counters and
these are not altered. This work allows us to unify the type of the
counters and reduces maintenance cost by moving the counter in one
place and indicating that basic lifetime management is identical
for all namespaces.
- Peilin's fix adding three byte padding to Dmitry's
PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.
- Two smal patches to convert from the /* fall through */ comment
annotation to the fallthrough keyword annotation which I had taken
into my branch and into -next before df561f6688 ("treewide: Use
fallthrough pseudo-keyword") made it upstream which fixed this
tree-wide.
Since I didn't want to invalidate all testing for other commits I
didn't rebase and kept them"
* tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
nsproxy: use put_nsproxy() in switch_task_namespaces()
sys: Convert to the new fallthrough notation
signal: Convert to the new fallthrough notation
time: Use generic ns_common::count
cgroup: Use generic ns_common::count
mnt: Use generic ns_common::count
user: Use generic ns_common::count
pid: Use generic ns_common::count
ipc: Use generic ns_common::count
uts: Use generic ns_common::count
net: Use generic ns_common::count
ns: Add a common refcount into ns_common
ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
we have supplied the inline function: of_cft() in cgroup.h.
So replace the direct use 'of->kn->priv' with inline func
of_cft(), which is more readable.
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Do not report failure on zero sized writes, and handle them as no-op.
There's issues for example in case of writev() when there's iovec
containing zero buffer as a first one. It's expected writev() on below
example to successfully perform the write to specified writable cgroup
file expecting integer value, and to return 2. For now it's returning
value -1, and skipping the write:
int writetest(int fd) {
const char *buf1 = "";
const char *buf2 = "1\n";
struct iovec iov[2] = {
{ .iov_base = (void*)buf1, .iov_len = 0 },
{ .iov_base = (void*)buf2, .iov_len = 2 }
};
return writev(fd, iov, 2);
}
This patch fixes the issue by checking if there's nothing to write,
and handling the write as no-op by just returning 0.
Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This step is already done in rebind_subsystems().
Not necessary to do it again.
Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Switch over cgroup namespaces to use the newly introduced common lifetime
counter.
Currently every namespace type has its own lifetime counter which is stored
in the specific namespace struct. The lifetime counters are used
identically for all namespaces types. Namespaces may of course have
additional unrelated counters and these are not altered.
This introduces a common lifetime counter into struct ns_common. The
ns_common struct encompasses information that all namespaces share. That
should include the lifetime counter since its common for all of them.
It also allows us to unify the type of the counters across all namespaces.
Most of them use refcount_t but one uses atomic_t and at least one uses
kref. Especially the last one doesn't make much sense since it's just a
wrapper around refcount_t since 2016 and actually complicates cleanup
operations by having to use container_of() to cast the correct namespace
struct out of struct ns_common.
Having the lifetime counter for the namespaces in one place reduces
maintenance cost. Not just because after switching all namespaces over we
will have removed more code than we added but also because the logic is
more easily understandable and we indicate to the user that the basic
lifetime requirements for all namespaces are currently identical.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/159644980994.604812.383801057081594972.stgit@localhost.localdomain
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When we clone a socket in sk_clone_lock(), its sk_cgrp_data is
copied, so the cgroup refcnt must be taken too. And, unlike the
sk_alloc() path, sock_update_netprioidx() is not called here.
Therefore, it is safe and necessary to grab the cgroup refcnt
even when cgroup_sk_alloc is disabled.
sk_clone_lock() is in BH context anyway, the in_interrupt()
would terminate this function if called there. And for sk_alloc()
skcd->val is always zero. So it's safe to factor out the code
to make it more readable.
The global variable 'cgroup_sk_alloc_disabled' is used to determine
whether to take these reference counts. It is impossible to make
the reference counting correct unless we save this bit of information
in skcd->val. So, add a new bit there to record whether the socket
has already taken the reference counts. This obviously relies on
kmalloc() to align cgroup pointers to at least 4 bytes,
ARCH_KMALLOC_MINALIGN is certainly larger than that.
This bug seems to be introduced since the beginning, commit
d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
tried to fix it but not compeletely. It seems not easy to trigger until
the recent commit 090e28b229
("netprio_cgroup: Fix unlimited memory leak of v2 cgroups") was merged.
Fixes: bd1060a1d6 ("sock, cgroup: add sock->sk_cgroup")
Reported-by: Cameron Berkenpas <cam@neo-zeon.de>
Reported-by: Peter Geis <pgwipeout@gmail.com>
Reported-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reported-by: Daniël Sonck <dsonck92@gmail.com>
Reported-by: Zhang Qiang <qiang.zhang@windriver.com>
Tested-by: Cameron Berkenpas <cam@neo-zeon.de>
Tested-by: Peter Geis <pgwipeout@gmail.com>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull cgroup updates from Tejun Heo:
"Just two patches: one to add system-level cpu.stat to the root cgroup
for convenience and a trivial comment update"
* 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: add cpu.stat file to root cgroup
cgroup: Remove stale comments
Currently, the root cgroup does not have a cpu.stat file. Add one which
is consistent with /proc/stat to capture global cpu statistics that
might not fall under cgroup accounting.
We haven't done this in the past because the data are already presented
in /proc/stat and we didn't want to add overhead from collecting root
cgroup stats when cgroups are configured, but no cgroups have been
created.
By keeping the data consistent with /proc/stat, I think we avoid the
first problem, while improving the usability of cgroups stats.
We avoid the second problem by computing the contents of cpu.stat from
existing data collected for /proc/stat anyway.
Signed-off-by: Boris Burkov <boris@bur.io>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>