An async transaction to a frozen process will still be successfully
put in the queue. But this pending async transaction won't be processed
until the target process is unfrozen at an unspecified time in the
future. Pass this important information back to the user space caller
by returning BR_TRANSACTION_PENDING_FROZEN.
Signed-off-by: Li Li <dualli@google.com>
Acked-by: Carlos Llamas <cmllamas@google.com>
Link: https://lore.kernel.org/r/20221123201654.589322-2-dualli@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the target process is busy, incoming oneway transactions are
queued in the async_todo list. If the clients continue sending extra
oneway transactions while the target process is frozen, this queue can
become too large to accommodate new transactions. That's why binder
driver introduced ONEWAY_SPAM_DETECTION to detect this situation. It's
helpful to debug the async binder buffer exhausting issue, but the
issue itself isn't solved directly.
In real cases applications are designed to send oneway transactions
repeatedly, delivering updated inforamtion to the target process.
Typical examples are Wi-Fi signal strength and some real time sensor
data. Even if the apps might only care about the lastet information,
all outdated oneway transactions are still accumulated there until the
frozen process is thawed later. For this kind of situations, there's
no existing method to skip those outdated transactions and deliver the
latest one only.
This patch introduces a new transaction flag TF_UPDATE_TXN. To use it,
use apps can set this new flag along with TF_ONE_WAY. When such an
oneway transaction is to be queued into the async_todo list of a frozen
process, binder driver will check if any previous pending transactions
can be superseded by comparing their code, flags and target node. If
such an outdated pending transaction is found, the latest transaction
will supersede that outdated one. This effectively prevents the async
binder buffer running out and saves unnecessary binder read workloads.
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Li Li <dualli@google.com>
Link: https://lore.kernel.org/r/20220526220018.3334775-2-dualli@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Here is the large set of char, misc, and other driver subsystem updates
for 5.19-rc1. The merge request for this has been delayed as I wanted
to get lots of linux-next testing due to some late arrivals of changes
for the habannalabs driver.
Highlights of this merge are:
- habanalabs driver updates for new hardware types and fixes and
other updates
- IIO driver tree merge which includes loads of new IIO drivers
and cleanups and additions
- PHY driver tree merge with new drivers and small updates to
existing ones
- interconnect driver tree merge with fixes and updates
- soundwire driver tree merge with some small fixes
- coresight driver tree merge with small fixes and updates
- mhi bus driver tree merge with lots of updates and new device
support
- firmware driver updates
- fpga driver updates
- lkdtm driver updates (with a merge conflict, more on that
below)
- extcon driver tree merge with small updates
- lots of other tiny driver updates and fixes and cleanups, full
details in the shortlog.
All of these have been in linux-next for almost 2 weeks with no reported
problems.
Note, there are 3 merge conflicts when merging this with your tree:
- MAINTAINERS, should be easy to resolve
- drivers/slimbus/qcom-ctrl.c, should be straightforward
resolution
- drivers/misc/lkdtm/stackleak.c, not an easy resolution. This
has been noted in the linux-next tree for a while, and
resolved there, here's a link to the resolution that Stephen
came up with and that Kees says is correct:
https://lore.kernel.org/r/20220509185344.3fe1a354@canb.auug.org.au
I will be glad to provide a merge point that contains these resolutions
if that makes things any easier for you.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYpnkbA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylOrgCggbbAFwESBY9o2YfpG+2VOLpc0GAAoJgY1XN8
P/gumbLEpFvoBZ5xLIW8
=KCgk
-----END PGP SIGNATURE-----
Merge tag 'char-misc-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char / misc / other smaller driver subsystem updates from Greg KH:
"Here is the large set of char, misc, and other driver subsystem
updates for 5.19-rc1. The merge request for this has been delayed as I
wanted to get lots of linux-next testing due to some late arrivals of
changes for the habannalabs driver.
Highlights of this merge are:
- habanalabs driver updates for new hardware types and fixes and
other updates
- IIO driver tree merge which includes loads of new IIO drivers and
cleanups and additions
- PHY driver tree merge with new drivers and small updates to
existing ones
- interconnect driver tree merge with fixes and updates
- soundwire driver tree merge with some small fixes
- coresight driver tree merge with small fixes and updates
- mhi bus driver tree merge with lots of updates and new device
support
- firmware driver updates
- fpga driver updates
- lkdtm driver updates (with a merge conflict, more on that below)
- extcon driver tree merge with small updates
- lots of other tiny driver updates and fixes and cleanups, full
details in the shortlog.
All of these have been in linux-next for almost 2 weeks with no
reported problems"
* tag 'char-misc-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (387 commits)
habanalabs: use separate structure info for each error collect data
habanalabs: fix missing handle shift during mmap
habanalabs: remove hdev from hl_ctx_get args
habanalabs: do MMU prefetch as deferred work
habanalabs: order memory manager messages
habanalabs: return -EFAULT on copy_to_user error
habanalabs: use NULL for eventfd
habanalabs: update firmware header
habanalabs: add support for notification via eventfd
habanalabs: add topic to memory manager buffer
habanalabs: handle race in driver fini
habanalabs: add device memory scrub ability through debugfs
habanalabs: use unified memory manager for CB flow
habanalabs: unified memory manager new code for CB flow
habanalabs/gaudi: set arbitration timeout to a high value
habanalabs: add put by handle method to memory manager
habanalabs: hide memory manager page shift
habanalabs: Add separate poll interval value for protocol
habanalabs: use get_task_pid() to take PID
habanalabs: add prefetch flag to the MAP operation
...
The {pid,uid}_t fields of struct binder_transaction were recently
replaced to use kernel types in commit 169adc2b6b ("android/binder.h:
add linux/android/binder(fs).h to UAPI compile-test coverage").
However, using __kernel_uid_t here breaks backwards compatibility in
architectures using 16-bits for this type, since glibc and some others
still expect a 32-bit uid_t. Instead, let's use __kernel_uid32_t which
avoids this compatibility problem.
Fixes: 169adc2b6b ("android/binder.h: add linux/android/binder(fs).h to UAPI compile-test coverage")
Reported-by: Christopher Ferris <cferris@google.com>
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Provide a userspace mechanism to pull precise error information upon
failed operations. Extending the current error codes returned by the
interfaces allows userspace to better determine the course of action.
This could be for instance, retrying a failed transaction at a later
point and thus offloading the error handling from the driver.
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Link: https://lore.kernel.org/r/20220429235644.697372-3-cmllamas@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
linux/android/binder.h and linux/android/binderfs.h are currently
excluded from the UAPI compile-test because of the errors like follows:
HDRTEST usr/include/linux/android/binder.h
In file included from <command-line>:
./usr/include/linux/android/binder.h:291:9: error: unknown type name ‘pid_t’
291 | pid_t sender_pid;
| ^~~~~
./usr/include/linux/android/binder.h:292:9: error: unknown type name ‘uid_t’
292 | uid_t sender_euid;
| ^~~~~
The errors can be fixed by replacing {pid,uid}_t with __kernel_{pid,uid}_t.
Then, remove the no-header-test entries from user/include/Makefile.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Currently cgroup freezer is used to freeze the application threads, and
BINDER_FREEZE is used to freeze the corresponding binder interface.
There's already a mechanism in ioctl(BINDER_FREEZE) to wait for any
existing transactions to drain out before actually freezing the binder
interface.
But freezing an app requires 2 steps, freezing the binder interface with
ioctl(BINDER_FREEZE) and then freezing the application main threads with
cgroupfs. This is not an atomic operation. The following race issue
might happen.
1) Binder interface is frozen by ioctl(BINDER_FREEZE);
2) Main thread A initiates a new sync binder transaction to process B;
3) Main thread A is frozen by "echo 1 > cgroup.freeze";
4) The response from process B reaches the frozen thread, which will
unexpectedly fail.
This patch provides a mechanism to check if there's any new pending
transaction happening between ioctl(BINDER_FREEZE) and freezing the
main thread. If there's any, the main thread freezing operation can
be rolled back to finish the pending transaction.
Furthermore, the response might reach the binder driver before the
rollback actually happens. That will still cause failed transaction.
As the other process doesn't wait for another response of the response,
the response transaction failure can be fixed by treating the response
transaction like an oneway/async one, allowing it to reach the frozen
thread. And it will be consumed when the thread gets unfrozen later.
NOTE: This patch reuses the existing definition of struct
binder_frozen_status_info but expands the bit assignments of __u32
member sync_recv.
To ensure backward compatibility, bit 0 of sync_recv still indicates
there's an outstanding sync binder transaction. This patch adds new
information to bit 1 of sync_recv, indicating the binder transaction
happens exactly when there's a race.
If an existing userspace app runs on a new kernel, a sync binder call
will set bit 0 of sync_recv so ioctl(BINDER_GET_FROZEN_INFO) still
return the expected value (true). The app just doesn't check bit 1
intentionally so it doesn't have the ability to tell if there's a race.
This behavior is aligned with what happens on an old kernel which
doesn't set bit 1 at all.
A new userspace app can 1) check bit 0 to know if there's a sync binder
transaction happened when being frozen - same as before; and 2) check
bit 1 to know if that sync binder transaction happened exactly when
there's a race - a new information for rollback decision.
the same time, confirmed the pending transactions succeeded.
Fixes: 432ff1e916 ("binder: BINDER_FREEZE ioctl")
Acked-by: Todd Kjos <tkjos@google.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Li Li <dualli@google.com>
Test: stress test with apps being frozen and initiating binder calls at
Link: https://lore.kernel.org/r/20210910164210.2282716-2-dualli@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When async binder buffer got exhausted, some normal oneway transactions
will also be discarded and may cause system or application failures. By
that time, the binder debug information we dump may not be relevant to
the root cause. And this issue is difficult to debug if without the
backtrace of the thread sending spam.
This change will send BR_ONEWAY_SPAM_SUSPECT to userspace when oneway
spamming is detected, request to dump current backtrace. Oneway spamming
will be reported only once when exceeding the threshold (target process
dips below 80% of its oneway space, and current process is responsible for
either more than 50 transactions, or more than 50% of the oneway space).
And the detection will restart when the async buffer has returned to a
healthy state.
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Hang Lu <hangl@codeaurora.org>
Link: https://lore.kernel.org/r/1617961246-4502-3-git-send-email-hangl@codeaurora.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
User space needs to know if binder transactions occurred to frozen
processes. Introduce a new BINDER_GET_FROZEN ioctl and keep track of
transactions occurring to frozen proceses.
Signed-off-by: Marco Ballesio <balejs@google.com>
Signed-off-by: Li Li <dualli@google.com>
Acked-by: Todd Kjos <tkjos@google.com>
Link: https://lore.kernel.org/r/20210316011630.1121213-4-dualli@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Frozen tasks can't process binder transactions, so a way is required to
inform transmitting ends of communication failures due to the frozen
state of their receiving counterparts. Additionally, races are possible
between transitions to frozen state and binder transactions enqueued to
a specific process.
Implement BINDER_FREEZE ioctl for user space to inform the binder driver
about the intention to freeze or unfreeze a process. When the ioctl is
called, block the caller until any pending binder transactions toward
the target process are flushed. Return an error to transactions to
processes marked as frozen.
Co-developed-by: Todd Kjos <tkjos@google.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Marco Ballesio <balejs@google.com>
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Li Li <dualli@google.com>
Link: https://lore.kernel.org/r/20210316011630.1121213-2-dualli@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a per-transaction flag to indicate that the buffer
must be cleared when the transaction is complete to
prevent copies of sensitive data from being preserved
in memory.
Signed-off-by: Todd Kjos <tkjos@google.com>
Link: https://lore.kernel.org/r/20201120233743.3617529-1-tkjos@google.com
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
To allow servers to verify client identity, allow a node
flag to be set that causes the sender's security context
to be delivered with the transaction. The BR_TRANSACTION
command is extended in BR_TRANSACTION_SEC_CTX to
contain a pointer to the security context string.
Signed-off-by: Todd Kjos <tkjos@google.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We allow more then 255 binderfs binder devices to be created since there
are workloads that require more than that. If we use __u8 we'll overflow
after 255. So let's use a __u32.
Note that there's no released kernel with binderfs out there so this is
not a regression.
Signed-off-by: Christian Brauner <christian@brauner.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When we switched over from binder_ctl.h to binderfs.h we forgot to change
the include guards. It's minor but it's obviously correct.
Signed-off-by: Christian Brauner <christian@brauner.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It doesn't make sense to call the header binder_ctl.h when its sole
existence is tied to binderfs. So give it a sensible name. Users will far
more easily remember binderfs.h than binder_ctl.h.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This allows the context manager to retrieve information about nodes
that it holds a reference to, such as the current number of
references to those nodes.
Such information can for example be used to determine whether the
servicemanager is the only process holding a reference to a node.
This information can then be passed on to the process holding the
node, which can in turn decide whether it wants to shut down to
reduce resource usage.
Signed-off-by: Martijn Coenen <maco@android.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be. This makes it hard for
compliance tools to determine the correct license.
Update these files with an SPDX license identifier. The identifier was
chosen based on the license information in the file.
GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.
Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier. The format
is:
((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text. The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The BINDER_GET_NODE_DEBUG_INFO ioctl will return debug info on
a node. Each successive call reusing the previous return value
will return the next node. The data will be used by
libmemunreachable to mark the pointers with kernel references
as reachable.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
binder_fd_array_object starts with a 4-byte header,
followed by a few fields that are 8 bytes when
ANDROID_BINDER_IPC_32BIT=N.
This can cause alignment issues in a 64-bit kernel
with a 32-bit userspace, as on x86_32 an 8-byte primitive
may be aligned to a 4-byte address. Pad with a __u32
to fix this.
Signed-off-by: Martijn Coenen <maco@android.com>
Cc: stable <stable@vger.kernel.org> # 4.11+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Regularly, when a new header is created in include/uapi/, the developer
forgets to add it in the corresponding Kbuild file. This error is usually
detected after the release is out.
In fact, all headers under uapi directories should be exported, thus it's
useless to have an exhaustive list.
After this patch, the following files, which were not exported, are now
exported (with make headers_install_all):
asm-arc/kvm_para.h
asm-arc/ucontext.h
asm-blackfin/shmparam.h
asm-blackfin/ucontext.h
asm-c6x/shmparam.h
asm-c6x/ucontext.h
asm-cris/kvm_para.h
asm-h8300/shmparam.h
asm-h8300/ucontext.h
asm-hexagon/shmparam.h
asm-m32r/kvm_para.h
asm-m68k/kvm_para.h
asm-m68k/shmparam.h
asm-metag/kvm_para.h
asm-metag/shmparam.h
asm-metag/ucontext.h
asm-mips/hwcap.h
asm-mips/reg.h
asm-mips/ucontext.h
asm-nios2/kvm_para.h
asm-nios2/ucontext.h
asm-openrisc/shmparam.h
asm-parisc/kvm_para.h
asm-powerpc/perf_regs.h
asm-sh/kvm_para.h
asm-sh/ucontext.h
asm-tile/shmparam.h
asm-unicore32/shmparam.h
asm-unicore32/ucontext.h
asm-x86/hwcap2.h
asm-xtensa/kvm_para.h
drm/armada_drm.h
drm/etnaviv_drm.h
drm/vgem_drm.h
linux/aspeed-lpc-ctrl.h
linux/auto_dev-ioctl.h
linux/bcache.h
linux/btrfs_tree.h
linux/can/vxcan.h
linux/cifs/cifs_mount.h
linux/coresight-stm.h
linux/cryptouser.h
linux/fsmap.h
linux/genwqe/genwqe_card.h
linux/hash_info.h
linux/kcm.h
linux/kcov.h
linux/kfd_ioctl.h
linux/lightnvm.h
linux/module.h
linux/nbd-netlink.h
linux/nilfs2_api.h
linux/nilfs2_ondisk.h
linux/nsfs.h
linux/pr.h
linux/qrtr.h
linux/rpmsg.h
linux/sched/types.h
linux/sed-opal.h
linux/smc.h
linux/smc_diag.h
linux/stm.h
linux/switchtec_ioctl.h
linux/vfio_ccw.h
linux/wil6210_uapi.h
rdma/bnxt_re-abi.h
Note that I have removed from this list the files which are generated in every
exported directories (like .install or .install.cmd).
Thanks to Julien Floret <julien.floret@6wind.com> for the tip to get all
subdirs with a pure makefile command.
For the record, note that exported files for asm directories are a mix of
files listed by:
- include/uapi/asm-generic/Kbuild.asm;
- arch/<arch>/include/uapi/asm/Kbuild;
- arch/<arch>/include/asm/Kbuild.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Mark Salter <msalter@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
This patch introduces a new binder_fd_array object,
that allows us to support one or more file descriptors
embedded in a buffer that is scatter-gathered.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Martijn Coenen <maco@google.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Amit Pundir <amit.pundir@linaro.org>
Cc: Serban Constantinescu <serban.constantinescu@arm.com>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Cc: Rom Lemarchand <romlem@google.com>
Cc: Android Kernel Team <kernel-team@android.com>
Signed-off-by: Martijn Coenen <maco@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Previously all data passed over binder needed
to be serialized, with the exception of Binder
objects and file descriptors.
This patchs adds support for scatter-gathering raw
memory buffers into a binder transaction, avoiding
the need to first serialize them into a Parcel.
To remain backwards compatibile with existing
binder clients, it introduces two new command
ioctls for this purpose - BC_TRANSACTION_SG and
BC_REPLY_SG. These commands may only be used with
the new binder_transaction_data_sg structure,
which adds a field for the total size of the
buffers we are scatter-gathering.
Because memory buffers may contain pointers to
other buffers, we allow callers to specify
a parent buffer and an offset into it, to indicate
this is a location pointing to the buffer that
we are fixing up. The kernel will then take care
of fixing up the pointer to that buffer as well.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Martijn Coenen <maco@google.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Amit Pundir <amit.pundir@linaro.org>
Cc: Serban Constantinescu <serban.constantinescu@arm.com>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Cc: Rom Lemarchand <romlem@google.com>
Cc: Android Kernel Team <kernel-team@android.com>
Signed-off-by: Martijn Coenen <maco@google.com>
[jstultz: Fold in small fix from Amit Pundir <amit.pundir@linaro.org>]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
flat_binder_object is used for both handling
binder objects and file descriptors, even though
the two are mostly independent. Since we'll
have more fixup objects in binder in the future,
instead of extending flat_binder_object again,
split out file descriptors to their own object
while retaining backwards compatibility to
existing user-space clients. All binder objects
just share a header.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Martijn Coenen <maco@google.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Amit Pundir <amit.pundir@linaro.org>
Cc: Serban Constantinescu <serban.constantinescu@arm.com>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Cc: Rom Lemarchand <romlem@google.com>
Cc: Android Kernel Team <kernel-team@android.com>
Signed-off-by: Martijn Coenen <maco@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The Android binder code has been "stable" for many years now. No matter
what comes in the future, we are going to have to support this API, so
might as well move it to the "real" part of the kernel as there's no
real work that needs to be done to the existing code.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>