Fix the decision on when to generate an IDLE ACK by keeping a count of the
number of packets we've received, but not yet soft-ACK'd, and the number of
packets we've processed, but not yet hard-ACK'd, rather than trying to keep
track of which DATA sequence numbers correspond to those points.
We then generate an ACK when either counter exceeds 2. The counters are
both cleared when we transcribe the information into any sort of ACK packet
for transmission. IDLE and DELAY ACKs are skipped if both counters are 0
(ie. no change).
Fixes: 805b21b929 ("rxrpc: Send an ACK after every few DATA packets we receive")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace a comma between expression statements by a semicolon.
Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a new incoming call arrives at an userspace rxrpc socket on a new
connection that has a security class set, the code currently pushes it onto
the accept queue to hold a ref on it for the socket. This doesn't work,
however, as recvmsg() pops it off, notices that it's in the SERVER_SECURING
state and discards the ref. This means that the call runs out of refs too
early and the kernel oopses.
By contrast, a kernel rxrpc socket manually pre-charges the incoming call
pool with calls that already have user call IDs assigned, so they are ref'd
by the call tree on the socket.
Change the mode of operation for userspace rxrpc server sockets to work
like this too. Although this is a UAPI change, server sockets aren't
currently functional.
Fixes: 248f219cb8 ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
There's a race between rxrpc_sendmsg setting up a call, but then failing to
send anything on it due to an error, and recvmsg() seeing the call
completion occur and trying to return the state to the user.
An assertion fails in rxrpc_recvmsg() because the call has already been
released from the socket and is about to be released again as recvmsg deals
with it. (The recvmsg_q queue on the socket holds a ref, so there's no
problem with use-after-free.)
We also have to be careful not to end up reporting an error twice, in such
a way that both returns indicate to userspace that the user ID supplied
with the call is no longer in use - which could cause the client to
malfunction if it recycles the user ID fast enough.
Fix this by the following means:
(1) When sendmsg() creates a call after the point that the call has been
successfully added to the socket, don't return any errors through
sendmsg(), but rather complete the call and let recvmsg() retrieve
them. Make sendmsg() return 0 at this point. Further calls to
sendmsg() for that call will fail with ESHUTDOWN.
Note that at this point, we haven't send any packets yet, so the
server doesn't yet know about the call.
(2) If sendmsg() returns an error when it was expected to create a new
call, it means that the user ID wasn't used.
(3) Mark the call disconnected before marking it completed to prevent an
oops in rxrpc_release_call().
(4) recvmsg() will then retrieve the error and set MSG_EOR to indicate
that the user ID is no longer known by the kernel.
An oops like the following is produced:
kernel BUG at net/rxrpc/recvmsg.c:605!
...
RIP: 0010:rxrpc_recvmsg+0x256/0x5ae
...
Call Trace:
? __init_waitqueue_head+0x2f/0x2f
____sys_recvmsg+0x8a/0x148
? import_iovec+0x69/0x9c
? copy_msghdr_from_user+0x5c/0x86
___sys_recvmsg+0x72/0xaa
? __fget_files+0x22/0x57
? __fget_light+0x46/0x51
? fdget+0x9/0x1b
do_recvmmsg+0x15e/0x232
? _raw_spin_unlock+0xa/0xb
? vtime_delta+0xf/0x25
__x64_sys_recvmmsg+0x2c/0x2f
do_syscall_64+0x4c/0x78
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: 357f5ef646 ("rxrpc: Call rxrpc_release_call() on error in rxrpc_new_client_call()")
Reported-by: syzbot+b54969381df354936d96@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
rxrpc_sendmsg() returns EPIPE if there's an outstanding error, such as if
rxrpc_recvmsg() indicating ENODATA if there's nothing for it to read.
Change rxrpc_recvmsg() to return EAGAIN instead if there's nothing to read
as this particular error doesn't get stored in ->sk_err by the networking
core.
Also change rxrpc_sendmsg() so that it doesn't fail with delayed receive
errors (there's no way for it to report which call, if any, the error was
caused by).
Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Under some circumstances, rxrpc will fail a transmit a packet through the
underlying UDP socket (ie. UDP sendmsg returns an error). This may result
in a call getting stuck.
In the instance being seen, where AFS tries to send a probe to the Volume
Location server, tracepoints show the UDP Tx failure (in this case returing
error 99 EADDRNOTAVAIL) and then nothing more:
afs_make_vl_call: c=0000015d VL.GetCapabilities
rxrpc_call: c=0000015d NWc u=1 sp=rxrpc_kernel_begin_call+0x106/0x170 [rxrpc] a=00000000dd89ee8a
rxrpc_call: c=0000015d Gus u=2 sp=rxrpc_new_client_call+0x14f/0x580 [rxrpc] a=00000000e20e4b08
rxrpc_call: c=0000015d SEE u=2 sp=rxrpc_activate_one_channel+0x7b/0x1c0 [rxrpc] a=00000000e20e4b08
rxrpc_call: c=0000015d CON u=2 sp=rxrpc_kernel_begin_call+0x106/0x170 [rxrpc] a=00000000e20e4b08
rxrpc_tx_fail: c=0000015d r=1 ret=-99 CallDataNofrag
The problem is that if the initial packet fails and the retransmission
timer hasn't been started, the call is set to completed and an error is
returned from rxrpc_send_data_packet() to rxrpc_queue_packet(). Though
rxrpc_instant_resend() is called, this does nothing because the call is
marked completed.
So rxrpc_notify_socket() isn't called and the error is passed back up to
rxrpc_send_data(), rxrpc_kernel_send_data() and thence to afs_make_call()
and afs_vl_get_capabilities() where it is simply ignored because it is
assumed that the result of a probe will be collected asynchronously.
Fileserver probing is similarly affected via afs_fs_get_capabilities().
Fix this by always issuing a notification in __rxrpc_set_call_completion()
if it shifts a call to the completed state, even if an error is also
returned to the caller through the function return value.
Also put in a little bit of optimisation to avoid taking the call
state_lock and disabling softirqs if the call is already in the completed
state and remove some now redundant rxrpc_notify_socket() calls.
Fixes: f5c17aaeb2 ("rxrpc: Calls should only have one terminal state")
Reported-by: Gerry Seidman <gerry@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Move the handling of call completion out of line so that the next patch can
add more code in that area.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
When rxrpc_recvmsg_data() sets the return value to 1 because it's drained
all the data for the last packet, it checks the last-packet flag on the
whole packet - but this is wrong, since the last-packet flag is only set on
the final subpacket of the last jumbo packet. This means that a call that
receives its last packet in a jumbo packet won't complete properly.
Fix this by having rxrpc_locate_data() determine the last-packet state of
the subpacket it's looking at and passing that back to the caller rather
than having the caller look in the packet header. The caller then needs to
cache this in the rxrpc_call struct as rxrpc_locate_data() isn't then
called again for this packet.
Fixes: 248f219cb8 ("rxrpc: Rewrite the data and ack handling code")
Fixes: e2de6c4048 ("rxrpc: Use info in skbuff instead of reparsing a jumbo packet")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix the cleanup of the crypto state on a call after the call has been
disconnected. As the call has been disconnected, its connection ref has
been discarded and so we can't go through that to get to the security ops
table.
Fix this by caching the security ops pointer in the rxrpc_call struct and
using that when freeing the call security state. Also use this in other
places we're dealing with call-specific security.
The symptoms look like:
BUG: KASAN: use-after-free in rxrpc_release_call+0xb2d/0xb60
net/rxrpc/call_object.c:481
Read of size 8 at addr ffff888062ffeb50 by task syz-executor.5/4764
Fixes: 1db88c5343 ("rxrpc: Fix -Wframe-larger-than= warnings from on-stack crypto")
Reported-by: syzbot+eed305768ece6682bb7f@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Use the previously-added transmit-phase skbuff private flag to simplify the
socket buffer tracing a bit. Which phase the skbuff comes from can now be
divined from the skb rather than having to be guessed from the call state.
We can also reduce the number of rxrpc_skb_trace values by eliminating the
difference between Tx and Rx in the symbols.
Signed-off-by: David Howells <dhowells@redhat.com>
Use the information now cached in the skbuff private data to avoid the need
to reparse a jumbo packet. We can find all the subpackets by dead
reckoning, so it's only necessary to note how many there are, whether the
last one is flagged as LAST_PACKET and whether any have the REQUEST_ACK
flag set.
This is necessary as once recvmsg() can see the packet, it can start
modifying it, such as doing in-place decryption.
Fixes: 248f219cb8 ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
Don't bother generating maxSkew in the ACK packet as it has been obsolete
since AFS 3.1.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeffrey Altman <jaltman@auristor.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allow the timestamp on the sk_buff holding the first DATA packet of a reply
to be queried. This can then be used as a base for the expiry time
calculation on the callback promise duration indicated by an operation
result.
Signed-off-by: David Howells <dhowells@redhat.com>
Push iov_iter up from rxrpc_kernel_recv_data() to its caller to allow
non-contiguous iovs to be passed down, thereby permitting file reading to
be simplified in the AFS filesystem in a future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Immediately flush any outstanding ACK on entry to rxrpc_recvmsg_data() -
which transfers data to the target buffers - if we previously had an Rx
underrun (ie. we returned -EAGAIN because we ran out of received data).
This lets the server know what we've managed to receive something.
Also flush any outstanding ACK after calling the function if it hit -EAGAIN
to let the server know we processed some data.
It might be better to send more ACKs, possibly on a time-based scheme, but
that needs some more consideration.
With this and some additional AFS patches, it is possible to get large
unencrypted O_DIRECT reads to be almost as fast as NFS over TCP. It looks
like it might be theoretically possible to improve performance yet more for
a server running a single operation as investigation of packet timestamps
indicates that the server keeps stalling.
The issue appears to be that rxrpc runs in to trouble with ACK packets
getting batched together (up to ~32 at a time) somewhere between the IP
transmit queue on the client and the ethernet receive queue on the server.
However, this case isn't too much of a worry as even a lightly loaded
server should be receiving sufficient packet flux to flush the ACK packets
to the UDP socket.
Signed-off-by: David Howells <dhowells@redhat.com>
The final ACK that closes out an rxrpc call needs to be transmitted by the
client unless we're going to follow up with a DATA packet for a new call on
the same channel (which implicitly ACK's the previous call, thereby saving
an ACK).
Currently, we don't do that, so if no follow on call is immediately
forthcoming, the server will resend the last DATA packet - at which point
rxrpc_conn_retransmit_call() will be triggered and will (re)send the final
ACK. But the server has to hold on to the last packet until the ACK is
received, thereby holding up its resources.
Fix the client side to propose a delayed final ACK, to be transmitted after
a short delay, assuming the call isn't superseded by a new one.
Signed-off-by: David Howells <dhowells@redhat.com>
The variable 'len' is being initialized with a value that is never
read and it is re-assigned later, hence the initialization is redundant
and can be removed.
Cleans up clang warning:
net/rxrpc/recvmsg.c:275:15: warning: Value stored to 'len' during its
initialization is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to a check recently added to copy_to_user(), it's now not permitted to
copy from slab-held data to userspace unless the slab is whitelisted. This
affects rxrpc_recvmsg() when it attempts to place an RXRPC_USER_CALL_ID
control message in the userspace control message buffer. A warning is
generated by usercopy_warn() because the source is the copy of the
user_call_ID retained in the rxrpc_call struct.
Work around the issue by copying the user_call_ID to a variable on the
stack and passing that to put_cmsg().
The warning generated looks like:
Bad or missing usercopy whitelist? Kernel memory exposure attempt detected from SLUB object 'dmaengine-unmap-128' (offset 680, size 8)!
WARNING: CPU: 0 PID: 1401 at mm/usercopy.c:81 usercopy_warn+0x7e/0xa0
...
RIP: 0010:usercopy_warn+0x7e/0xa0
...
Call Trace:
__check_object_size+0x9c/0x1a0
put_cmsg+0x98/0x120
rxrpc_recvmsg+0x6fc/0x1010 [rxrpc]
? finish_wait+0x80/0x80
___sys_recvmsg+0xf8/0x240
? __clear_rsb+0x25/0x3d
? __clear_rsb+0x15/0x3d
? __clear_rsb+0x25/0x3d
? __clear_rsb+0x15/0x3d
? __clear_rsb+0x25/0x3d
? __clear_rsb+0x15/0x3d
? __clear_rsb+0x25/0x3d
? __clear_rsb+0x15/0x3d
? finish_task_switch+0xa6/0x2b0
? trace_hardirqs_on_caller+0xed/0x180
? _raw_spin_unlock_irq+0x29/0x40
? __sys_recvmsg+0x4e/0x90
__sys_recvmsg+0x4e/0x90
do_syscall_64+0x7a/0x220
entry_SYSCALL_64_after_hwframe+0x26/0x9b
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Jonathan Billings <jsbillings@jsbillings.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add an extra timeout that is set/updated when we send a DATA packet that
has the request-ack flag set. This allows us to detect if we don't get an
ACK in response to the latest flagged packet.
The ACK packet is adjudged to have been lost if it doesn't turn up within
2*RTT of the transmission.
If the timeout occurs, we schedule the sending of a PING ACK to find out
the state of the other side. If a new DATA packet is ready to go sooner,
we cancel the sending of the ping and set the request-ack flag on that
instead.
If we get back a PING-RESPONSE ACK that indicates a lower tx_top than what
we had at the time of the ping transmission, we adjudge all the DATA
packets sent between the response tx_top and the ping-time tx_top to have
been lost and retransmit immediately.
Rather than sending a PING ACK, we could just pick a DATA packet and
speculatively retransmit that with request-ack set. It should result in
either a REQUESTED ACK or a DUPLICATE ACK which we can then use in lieu the
a PING-RESPONSE ACK mentioned above.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't transmit a DELAY ACK immediately on proposal when the Rx window is
rotated, but rather defer it to the work function. This means that we have
a chance to queue/consume more received packets before we actually send the
DELAY ACK, or even cancel it entirely, thereby reducing the number of
packets transmitted.
We do, however, want to continue sending other types of packet immediately,
particularly REQUESTED ACKs, as they may be used for RTT calculation by the
other side.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the rxrpc call expiration timeouts and make them settable from
userspace. By analogy with other rx implementations, there should be three
timeouts:
(1) "Normal timeout"
This is set for all calls and is triggered if we haven't received any
packets from the peer in a while. It is measured from the last time
we received any packet on that call. This is not reset by any
connection packets (such as CHALLENGE/RESPONSE packets).
If a service operation takes a long time, the server should generate
PING ACKs at a duration that's substantially less than the normal
timeout so is to keep both sides alive. This is set at 1/6 of normal
timeout.
(2) "Idle timeout"
This is set only for a service call and is triggered if we stop
receiving the DATA packets that comprise the request data. It is
measured from the last time we received a DATA packet.
(3) "Hard timeout"
This can be set for a call and specified the maximum lifetime of that
call. It should not be specified by default. Some operations (such
as volume transfer) take a long time.
Allow userspace to set/change the timeouts on a call with sendmsg, using a
control message:
RXRPC_SET_CALL_TIMEOUTS
The data to the message is a number of 32-bit words, not all of which need
be given:
u32 hard_timeout; /* sec from first packet */
u32 idle_timeout; /* msec from packet Rx */
u32 normal_timeout; /* msec from data Rx */
This can be set in combination with any other sendmsg() that affects a
call.
Signed-off-by: David Howells <dhowells@redhat.com>
Delay terminal ACK transmission on a client call by deferring it to the
connection processor. This allows it to be skipped if we can send the next
call instead, the first DATA packet of which will implicitly ack this call.
Signed-off-by: David Howells <dhowells@redhat.com>
Place a spinlock around the invocation of call->notify_rx() for a kernel
service call and lock again when ending the call and replace the
notification pointer with a pointer to a dummy function.
This is required because it's possible for rxrpc_notify_socket() to be
called after the call has been ended by the kernel service if called from
the asynchronous work function rxrpc_process_call().
However, rxrpc_notify_socket() currently only holds the RCU read lock when
invoking ->notify_rx(), which means that the afs_call struct would need to
be disposed of by call_rcu() rather than by kfree().
But we shouldn't see any notifications from a call after calling
rxrpc_kernel_end_call(), so a lock is required in rxrpc code.
Without this, we may see the call wait queue as having a corrupt spinlock:
BUG: spinlock bad magic on CPU#0, kworker/0:2/1612
general protection fault: 0000 [#1] SMP
...
Workqueue: krxrpcd rxrpc_process_call
task: ffff88040b83c400 task.stack: ffff88040adfc000
RIP: 0010:spin_bug+0x161/0x18f
RSP: 0018:ffff88040adffcc0 EFLAGS: 00010002
RAX: 0000000000000032 RBX: 6b6b6b6b6b6b6b6b RCX: ffffffff81ab16cf
RDX: ffff88041fa14c01 RSI: ffff88041fa0ccb8 RDI: ffff88041fa0ccb8
RBP: ffff88040adffcd8 R08: 00000000ffffffff R09: 00000000ffffffff
R10: ffff88040adffc60 R11: 000000000000022c R12: ffff88040aca2208
R13: ffffffff81a58114 R14: 0000000000000000 R15: 0000000000000000
....
Call Trace:
do_raw_spin_lock+0x1d/0x89
_raw_spin_lock_irqsave+0x3d/0x49
? __wake_up_common_lock+0x4c/0xa7
__wake_up_common_lock+0x4c/0xa7
? __lock_is_held+0x47/0x7a
__wake_up+0xe/0x10
afs_wake_up_call_waiter+0x11b/0x122 [kafs]
rxrpc_notify_socket+0x12b/0x258
rxrpc_process_call+0x18e/0x7d0
process_one_work+0x298/0x4de
? rescuer_thread+0x280/0x280
worker_thread+0x1d1/0x2ae
? rescuer_thread+0x280/0x280
kthread+0x12c/0x134
? kthread_create_on_node+0x3a/0x3a
ret_from_fork+0x27/0x40
In this case, note the corrupt data in EBX. The address of the offending
afs_call is in R12, plus the offset to the spinlock.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide support for a kernel service to make use of the service upgrade
facility. This involves:
(1) Pass an upgrade request flag to rxrpc_kernel_begin_call().
(2) Make rxrpc_kernel_recv_data() return the call's current service ID so
that the caller can detect service upgrade and see what the service
was upgraded to.
Signed-off-by: David Howells <dhowells@redhat.com>
Keep the rxrpc_connection struct's idea of the service ID that is exposed
in the protocol separate from the service ID that's used as a lookup key.
This allows the protocol service ID on a client connection to get upgraded
without making the connection unfindable for other client calls that also
would like to use the upgraded connection.
The connection's actual service ID is then returned through recvmsg() by
way of msg_name.
Whilst we're at it, we get rid of the last_service_id field from each
channel. The service ID is per-connection, not per-call and an entire
connection is upgraded in one go.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint (rxrpc_rx_proto) to record protocol errors in received
packets. The following changes are made:
(1) Add a function, __rxrpc_abort_eproto(), to note a protocol error on a
call and mark the call aborted. This is wrapped by
rxrpc_abort_eproto() that makes the why string usable in trace.
(2) Add trace_rxrpc_rx_proto() or rxrpc_abort_eproto() to protocol error
generation points, replacing rxrpc_abort_call() with the latter.
(3) Only send an abort packet in rxkad_verify_packet*() if we actually
managed to abort the call.
Note that a trace event is also emitted if a kernel user (e.g. afs) tries
to send data through a call when it's not in the transmission phase, though
it's not technically a receive event.
Signed-off-by: David Howells <dhowells@redhat.com>
Use negative error codes in struct rxrpc_call::error because that's what
the kernel normally deals with and to make the code consistent. We only
turn them positive when transcribing into a cmsg for userspace recvmsg.
Signed-off-by: David Howells <dhowells@redhat.com>
The call state may be changed at any time by the data-ready routine in
response to received packets, so if the call state is to be read and acted
upon several times in a function, READ_ONCE() must be used unless the call
state lock is held.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller:
1) Fix double-free in batman-adv, from Sven Eckelmann.
2) Fix packet stats for fast-RX path, from Joannes Berg.
3) Netfilter's ip_route_me_harder() doesn't handle request sockets
properly, fix from Florian Westphal.
4) Fix sendmsg deadlock in rxrpc, from David Howells.
5) Add missing RCU locking to transport hashtable scan, from Xin Long.
6) Fix potential packet loss in mlxsw driver, from Ido Schimmel.
7) Fix race in NAPI handling between poll handlers and busy polling,
from Eric Dumazet.
8) TX path in vxlan and geneve need proper RCU locking, from Jakub
Kicinski.
9) SYN processing in DCCP and TCP need to disable BH, from Eric
Dumazet.
10) Properly handle net_enable_timestamp() being invoked from IRQ
context, also from Eric Dumazet.
11) Fix crash on device-tree systems in xgene driver, from Alban Bedel.
12) Do not call sk_free() on a locked socket, from Arnaldo Carvalho de
Melo.
13) Fix use-after-free in netvsc driver, from Dexuan Cui.
14) Fix max MTU setting in bonding driver, from WANG Cong.
15) xen-netback hash table can be allocated from softirq context, so use
GFP_ATOMIC. From Anoob Soman.
16) Fix MAC address change bug in bgmac driver, from Hari Vyas.
17) strparser needs to destroy strp_wq on module exit, from WANG Cong.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (69 commits)
strparser: destroy workqueue on module exit
sfc: fix IPID endianness in TSOv2
sfc: avoid max() in array size
rds: remove unnecessary returned value check
rxrpc: Fix potential NULL-pointer exception
nfp: correct DMA direction in XDP DMA sync
nfp: don't tell FW about the reserved buffer space
net: ethernet: bgmac: mac address change bug
net: ethernet: bgmac: init sequence bug
xen-netback: don't vfree() queues under spinlock
xen-netback: keep a local pointer for vif in backend_disconnect()
netfilter: nf_tables: don't call nfnetlink_set_err() if nfnetlink_send() fails
netfilter: nft_set_rbtree: incorrect assumption on lower interval lookups
netfilter: nf_conntrack_sip: fix wrong memory initialisation
can: flexcan: fix typo in comment
can: usb_8dev: Fix memory leak of priv->cmd_msg_buffer
can: gs_usb: fix coding style
can: gs_usb: Don't use stack memory for USB transfers
ixgbe: Limit use of 2K buffers on architectures with 256B or larger cache lines
ixgbe: update the rss key on h/w, when ethtool ask for it
...
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All the routines by which rxrpc is accessed from the outside are serialised
by means of the socket lock (sendmsg, recvmsg, bind,
rxrpc_kernel_begin_call(), ...) and this presents a problem:
(1) If a number of calls on the same socket are in the process of
connection to the same peer, a maximum of four concurrent live calls
are permitted before further calls need to wait for a slot.
(2) If a call is waiting for a slot, it is deep inside sendmsg() or
rxrpc_kernel_begin_call() and the entry function is holding the socket
lock.
(3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
from servicing the other calls as they need to take the socket lock to
do so.
(4) The socket is stuck until a call is aborted and makes its slot
available to the waiter.
Fix this by:
(1) Provide each call with a mutex ('user_mutex') that arbitrates access
by the users of rxrpc separately for each specific call.
(2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
they've got a call and taken its mutex.
Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
set but someone else has the lock. Should I instead only return
EWOULDBLOCK if there's nothing currently to be done on a socket, and
sleep in this particular instance because there is something to be
done, but we appear to be blocked by the interrupt handler doing its
ping?
(3) Make rxrpc_new_client_call() unlock the socket after allocating a new
call, locking its user mutex and adding it to the socket's call tree.
The call is returned locked so that sendmsg() can add data to it
immediately.
From the moment the call is in the socket tree, it is subject to
access by sendmsg() and recvmsg() - even if it isn't connected yet.
(4) Lock new service calls in the UDP data_ready handler (in
rxrpc_new_incoming_call()) because they may already be in the socket's
tree and the data_ready handler makes them live immediately if a user
ID has already been preassigned.
Note that the new call is locked before any notifications are sent
that it is live, so doing mutex_trylock() *ought* to always succeed.
Userspace is prevented from doing sendmsg() on calls that are in a
too-early state in rxrpc_do_sendmsg().
(5) Make rxrpc_new_incoming_call() return the call with the user mutex
held so that a ping can be scheduled immediately under it.
Note that it might be worth moving the ping call into
rxrpc_new_incoming_call() and then we can drop the mutex there.
(6) Make rxrpc_accept_call() take the lock on the call it is accepting and
release the socket after adding the call to the socket's tree. This
is slightly tricky as we've dequeued the call by that point and have
to requeue it.
Note that requeuing emits a trace event.
(7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
new mutex immediately and don't bother with the socket mutex at all.
This patch has the nice bonus that calls on the same socket are now to some
extent parallelisable.
Note that we might want to move rxrpc_service_prealloc() calls out from the
socket lock and give it its own lock, so that we don't hang progress in
other calls because we're waiting for the allocator.
We probably also want to avoid calling rxrpc_notify_socket() from within
the socket lock (rxrpc_accept_call()).
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.c.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Calls made through the in-kernel interface can end up getting stuck because
of a missed variable update in a loop in rxrpc_recvmsg_data(). The problem
is like this:
(1) A new packet comes in and doesn't cause a notification to be given to
the client as there's still another packet in the ring - the
assumption being that if the client will keep drawing off data until
the ring is empty.
(2) The client is in rxrpc_recvmsg_data(), inside the big while loop that
iterates through the packets. This copies the window pointers into
variables rather than using the information in the call struct
because:
(a) MSG_PEEK might be in effect;
(b) we need a barrier after reading call->rx_top to pair with the
barrier in the softirq routine that loads the buffer.
(3) The reading of call->rx_top is done outside of the loop, and top is
never updated whilst we're in the loop. This means that even through
there's a new packet available, we don't see it and may return -EFAULT
to the caller - who will happily return to the scheduler and await the
next notification.
(4) No further notifications are forthcoming until there's an abort as the
ring isn't empty.
The fix is to move the read of call->rx_top inside the loop - but it needs
to be done before the condition is checked.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to generate a DELAY ACK from the service end of an operation if we
start doing the actual operation work and it takes longer than expected.
This will hard-ACK the request data and allow the client to release its
resources.
To make this work:
(1) We have to set the ack timer and propose an ACK when the call moves to
the RXRPC_CALL_SERVER_ACK_REQUEST and clear the pending ACK and cancel
the timer when we start transmitting the reply (the first DATA packet
of the reply implicitly ACKs the request phase).
(2) It must be possible to set the timer when the caller is holding
call->state_lock, so split the lock-getting part of the timer function
out.
(3) Add trace notes for the ACK we're requesting and the timer we clear.
Signed-off-by: David Howells <dhowells@redhat.com>
In rxrpc_kernel_recv_data(), when we return the error number incurred by a
failed call, we must negate it before returning it as it's stored as
positive (that's what we have to pass back to userspace).
Signed-off-by: David Howells <dhowells@redhat.com>
Separate the output of PING ACKs from the output of other sorts of ACK so
that if we receive a PING ACK and schedule transmission of a PING RESPONSE
ACK, the response doesn't get cancelled by a PING ACK we happen to be
scheduling transmission of at the same time.
If a PING RESPONSE gets lost, the other side might just sit there waiting
for it and refuse to proceed otherwise.
Signed-off-by: David Howells <dhowells@redhat.com>
Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation. This simplifies the code a bit and
fixes the following warning:
In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Send an ACK if we haven't sent one for the last two packets we've received.
This keeps the other end apprised of where we've got to - which is
important if they're doing slow-start.
We do this in recvmsg so that we can dispatch a packet directly without the
need to wake up the background thread.
This should possibly be made configurable in future.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to log proposed ACKs, including whether the proposal is
used to update a pending ACK or is discarded in favour of an easlier,
higher priority ACK.
Whilst we're at it, get rid of the rxrpc_acks() function and access the
name array directly. We do, however, need to validate the ACK reason
number given to trace_rxrpc_rx_ack() to make sure we don't overrun the
array.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't send an IDLE ACK at the end of the transmission of the response to a
service call. The service end resends DATA packets until the client sends an
ACK that hard-acks all the send data. At that point, the call is complete.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve sk_buff tracing within AF_RXRPC by the following means:
(1) Use an enum to note the event type rather than plain integers and use
an array of event names rather than a big multi ?: list.
(2) Distinguish Rx from Tx packets and account them separately. This
requires the call phase to be tracked so that we know what we might
find in rxtx_buffer[].
(3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the
event type.
(4) A pair of 'rotate' events are added to indicate packets that are about
to be rotated out of the Rx and Tx windows.
(5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for
packet loss injection recording.
Signed-off-by: David Howells <dhowells@redhat.com>
Remove _enter/_debug/_leave calls from rxrpc_recvmsg_data() of which one
uses an uninitialised variable.
Signed-off-by: David Howells <dhowells@redhat.com>
The code for determining the last packet in rxrpc_recvmsg_data() has been
using the RXRPC_CALL_RX_LAST flag to determine if the rx_top pointer points
to the last packet or not. This isn't a good idea, however, as the input
code may be running simultaneously on another CPU and that sets the flag
*before* updating the top pointer.
Fix this by the following means:
(1) Restrict the use of RXRPC_CALL_RX_LAST to the input routines only.
There's otherwise a synchronisation problem between detecting the flag
and checking tx_top. This could probably be dealt with by appropriate
application of memory barriers, but there's a simpler way.
(2) Set RXRPC_CALL_RX_LAST after setting rx_top.
(3) Make rxrpc_rotate_rx_window() consult the flags header field of the
DATA packet it's about to discard to see if that was the last packet.
Use this as the basis for ending the Rx phase. This shouldn't be a
problem because the recvmsg side of things is guaranteed to see the
packets in order.
(4) Make rxrpc_recvmsg_data() return 1 to indicate the end of the data if:
(a) the packet it has just processed is marked as RXRPC_LAST_PACKET
(b) the call's Rx phase has been ended.
Signed-off-by: David Howells <dhowells@redhat.com>