Obviously, the error variable detection of the if statement is
for the mprotect callback function, so it is also put into the
scope of calling callbck.
This is a cleanup which makes this site consistent with the rest of this
function's error handling.
Link: https://lkml.kernel.org/r/20210118133310.98375-1-tianjia.zhang@linux.alibaba.com
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reported-by: Jia Zhang <zhang.jia@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Background
==========
1. SGX enclave pages are populated with data by copying from normal memory
via ioctl() (SGX_IOC_ENCLAVE_ADD_PAGES), which will be added later in
this series.
2. It is desirable to be able to restrict those normal memory data sources.
For instance, to ensure that the source data is executable before
copying data to an executable enclave page.
3. Enclave page permissions are dynamic (just like normal permissions) and
can be adjusted at runtime with mprotect().
This creates a problem because the original data source may have long since
vanished at the time when enclave page permissions are established (mmap()
or mprotect()).
The solution (elsewhere in this series) is to force enclave creators to
declare their paging permission *intent* up front to the ioctl(). This
intent can be immediately compared to the source data’s mapping and
rejected if necessary.
The “intent” is also stashed off for later comparison with enclave
PTEs. This ensures that any future mmap()/mprotect() operations
performed by the enclave creator or done on behalf of the enclave
can be compared with the earlier declared permissions.
Problem
=======
There is an existing mmap() hook which allows SGX to perform this
permission comparison at mmap() time. However, there is no corresponding
->mprotect() hook.
Solution
========
Add a vm_ops->mprotect() hook so that mprotect() operations which are
inconsistent with any page's stashed intent can be rejected by the driver.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hdanton@sina.com>
Cc: linux-mm@kvack.org
Link: https://lkml.kernel.org/r/20201112220135.165028-11-jarkko@kernel.org
Similarly to arch_validate_prot() called from do_mprotect_pkey(), an
architecture may need to sanity-check the new vm_flags.
Define a dummy function always returning true. In addition to
do_mprotect_pkey(), also invoke it from mmap_region() prior to updating
vma->vm_page_prot to allow the architecture code to veto potentially
inconsistent vm_flags.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many places where all basic VMA access flags (read, write,
exec) are initialized or checked against as a group. One such example
is during page fault. Existing vma_is_accessible() wrapper already
creates the notion of VMA accessibility as a group access permissions.
Hence lets just create VM_ACCESS_FLAGS (VM_READ|VM_WRITE|VM_EXEC) which
will not only reduce code duplication but also extend the VMA
accessibility concept in general.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rob Springer <rspringer@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Link: http://lkml.kernel.org/r/1583391014-8170-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For either swap and page migration, we all use the bit 2 of the entry to
identify whether this entry is uffd write-protected. It plays a similar
role as the existing soft dirty bit in swap entries but only for keeping
the uffd-wp tracking for a specific PTE/PMD.
Something special here is that when we want to recover the uffd-wp bit
from a swap/migration entry to the PTE bit we'll also need to take care of
the _PAGE_RW bit and make sure it's cleared, otherwise even with the
_PAGE_UFFD_WP bit we can't trap it at all.
In change_pte_range() we do nothing for uffd if the PTE is a swap entry.
That can lead to data mismatch if the page that we are going to write
protect is swapped out when sending the UFFDIO_WRITEPROTECT. This patch
also applies/removes the uffd-wp bit even for the swap entries.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Firstly, introduce two new flags MM_CP_UFFD_WP[_RESOLVE] for
change_protection() when used with uffd-wp and make sure the two new flags
are exclusively used. Then,
- For MM_CP_UFFD_WP: apply the _PAGE_UFFD_WP bit and remove _PAGE_RW
when a range of memory is write protected by uffd
- For MM_CP_UFFD_WP_RESOLVE: remove the _PAGE_UFFD_WP bit and recover
_PAGE_RW when write protection is resolved from userspace
And use this new interface in mwriteprotect_range() to replace the old
MM_CP_DIRTY_ACCT.
Do this change for both PTEs and huge PMDs. Then we can start to identify
which PTE/PMD is write protected by general (e.g., COW or soft dirty
tracking), and which is for userfaultfd-wp.
Since we should keep the _PAGE_UFFD_WP when doing pte_modify(), add it
into _PAGE_CHG_MASK as well. Meanwhile, since we have this new bit, we
can be even more strict when detecting uffd-wp page faults in either
do_wp_page() or wp_huge_pmd().
After we're with _PAGE_UFFD_WP, a special case is when a page is both
protected by the general COW logic and also userfault-wp. Here the
userfault-wp will have higher priority and will be handled first. Only
after the uffd-wp bit is cleared on the PTE/PMD will we continue to handle
the general COW. These are the steps on what will happen with such a
page:
1. CPU accesses write protected shared page (so both protected by
general COW and uffd-wp), blocked by uffd-wp first because in
do_wp_page we'll handle uffd-wp first, so it has higher priority
than general COW.
2. Uffd service thread receives the request, do UFFDIO_WRITEPROTECT
to remove the uffd-wp bit upon the PTE/PMD. However here we
still keep the write bit cleared. Notify the blocked CPU.
3. The blocked CPU resumes the page fault process with a fault
retry, during retry it'll notice it was not with the uffd-wp bit
this time but it is still write protected by general COW, then
it'll go though the COW path in the fault handler, copy the page,
apply write bit where necessary, and retry again.
4. The CPU will be able to access this page with write bit set.
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-8-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
change_protection() was used by either the NUMA or mprotect() code,
there's one parameter for each of the callers (dirty_accountable and
prot_numa). Further, these parameters are passed along the calls:
- change_protection_range()
- change_p4d_range()
- change_pud_range()
- change_pmd_range()
- ...
Now we introduce a flag for change_protect() and all these helpers to
replace these parameters. Then we can avoid passing multiple parameters
multiple times along the way.
More importantly, it'll greatly simplify the work if we want to introduce
any new parameters to change_protection(). In the follow up patches, a
new parameter for userfaultfd write protection will be introduced.
No functional change at all.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-7-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked. This makes
page_is_file_cache() isn't consistent with its comments. So the function
is renamed to page_is_file_lru() to make them consistent again. All these
are put in one patch as one logical change.
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
: A user reported a bug against a distribution kernel while running a
: proprietary workload described as "memory intensive that is not swapping"
: that is expected to apply to mainline kernels. The workload is
: read/write/modifying ranges of memory and checking the contents. They
: reported that within a few hours that a bad PMD would be reported followed
: by a memory corruption where expected data was all zeros. A partial
: report of the bad PMD looked like
:
: [ 5195.338482] ../mm/pgtable-generic.c:33: bad pmd ffff8888157ba008(000002e0396009e2)
: [ 5195.341184] ------------[ cut here ]------------
: [ 5195.356880] kernel BUG at ../mm/pgtable-generic.c:35!
: ....
: [ 5195.410033] Call Trace:
: [ 5195.410471] [<ffffffff811bc75d>] change_protection_range+0x7dd/0x930
: [ 5195.410716] [<ffffffff811d4be8>] change_prot_numa+0x18/0x30
: [ 5195.410918] [<ffffffff810adefe>] task_numa_work+0x1fe/0x310
: [ 5195.411200] [<ffffffff81098322>] task_work_run+0x72/0x90
: [ 5195.411246] [<ffffffff81077139>] exit_to_usermode_loop+0x91/0xc2
: [ 5195.411494] [<ffffffff81003a51>] prepare_exit_to_usermode+0x31/0x40
: [ 5195.411739] [<ffffffff815e56af>] retint_user+0x8/0x10
:
: Decoding revealed that the PMD was a valid prot_numa PMD and the bad PMD
: was a false detection. The bug does not trigger if automatic NUMA
: balancing or transparent huge pages is disabled.
:
: The bug is due a race in change_pmd_range between a pmd_trans_huge and
: pmd_nond_or_clear_bad check without any locks held. During the
: pmd_trans_huge check, a parallel protection update under lock can have
: cleared the PMD and filled it with a prot_numa entry between the transhuge
: check and the pmd_none_or_clear_bad check.
:
: While this could be fixed with heavy locking, it's only necessary to make
: a copy of the PMD on the stack during change_pmd_range and avoid races. A
: new helper is created for this as the check if quite subtle and the
: existing similar helpful is not suitable. This passed 154 hours of
: testing (usually triggers between 20 minutes and 24 hours) without
: detecting bad PMDs or corruption. A basic test of an autonuma-intensive
: workload showed no significant change in behaviour.
Although Mel withdrew the patch on the face of LKML comment
https://lkml.org/lkml/2017/4/10/922 the race window aforementioned is
still open, and we have reports of Linpack test reporting bad residuals
after the bad PMD warning is observed. In addition to that, bad
rss-counter and non-zero pgtables assertions are triggered on mm teardown
for the task hitting the bad PMD.
host kernel: mm/pgtable-generic.c:40: bad pmd 00000000b3152f68(8000000d2d2008e7)
....
host kernel: BUG: Bad rss-counter state mm:00000000b583043d idx:1 val:512
host kernel: BUG: non-zero pgtables_bytes on freeing mm: 4096
The issue is observed on a v4.18-based distribution kernel, but the race
window is expected to be applicable to mainline kernels, as well.
[akpm@linux-foundation.org: fix comment typo, per Rafael]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200216191800.22423-1-aquini@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In auto NUMA balancing page table scanning, if the pte_protnone() is
true, the PTE needs not to be changed because it's in target state
already. So other checking on corresponding struct page is unnecessary
too.
So, if we check pte_protnone() firstly for each PTE, we can avoid
unnecessary struct page accessing, so that reduce the cache footprint of
NUMA balancing page table scanning.
In the performance test of pmbench memory accessing benchmark with 80:20
read/write ratio and normal access address distribution on a 2 socket
Intel server with Optance DC Persistent Memory, perf profiling shows
that the autonuma page table scanning time reduces from 1.23% to 0.97%
(that is, reduced 21%) with the patch.
Link: http://lkml.kernel.org/r/20191101075727.26683-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Since 0cbe3e26ab ("mm: update ptep_modify_prot_start/commit to take
vm_area_struct as arg") the only place that uses the local 'mm' variable
in change_pte_range() is the call to set_pte_at().
Many architectures define set_pte_at() as macro that does not use the 'mm'
parameter, which generates the following compilation warning:
CC mm/mprotect.o
mm/mprotect.c: In function 'change_pte_range':
mm/mprotect.c:42:20: warning: unused variable 'mm' [-Wunused-variable]
struct mm_struct *mm = vma->vm_mm;
^~
Fix it by passing vma->mm to set_pte_at() and dropping the local 'mm'
variable in change_pte_range().
[liu.song.a23@gmail.com: fix missed conversions]
Link: http://lkml.kernel.org/r/CAPhsuW6wcQgYLHNdBdw6m0YiR4RWsS4XzfpSKU7wBLLeOCTbpw@mail.gmail.comLink: http://lkml.kernel.org/r/1557305432-4940-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This updates each existing invalidation to use the correct mmu notifier
event that represent what is happening to the CPU page table. See the
patch which introduced the events to see the rational behind this.
Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Enable that by passing old pte value as
the arg.
Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates. This patch series does that.
This patch (of 5):
Some architectures may want to call flush_tlb_range from these helpers.
Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks. No functional changes with this patch.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3
fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n
Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For L1TF PROT_NONE mappings are protected by inverting the PFN in the page
table entry. This sets the high bits in the CPU's address space, thus
making sure to point to not point an unmapped entry to valid cached memory.
Some server system BIOSes put the MMIO mappings high up in the physical
address space. If such an high mapping was mapped to unprivileged users
they could attack low memory by setting such a mapping to PROT_NONE. This
could happen through a special device driver which is not access
protected. Normal /dev/mem is of course access protected.
To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings.
Valid page mappings are allowed because the system is then unsafe anyways.
It's not expected that users commonly use PROT_NONE on MMIO. But to
minimize any impact this is only enforced if the mapping actually refers to
a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip
the check for root.
For mmaps this is straight forward and can be handled in vm_insert_pfn and
in remap_pfn_range().
For mprotect it's a bit trickier. At the point where the actual PTEs are
accessed a lot of state has been changed and it would be difficult to undo
on an error. Since this is a uncommon case use a separate early page talk
walk pass for MMIO PROT_NONE mappings that checks for this condition
early. For non MMIO and non PROT_NONE there are no changes.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
change_pte_range is called from task work context to mark PTEs for
receiving NUMA faulting hints. If the marked pages are dirty then
migration may fail. Some filesystems cannot migrate dirty pages without
blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU.
Even when they can, it can be a waste of cycles when the pages are
shared forcing higher scan rates. This patch avoids marking shared
dirty pages for hinting faults but also will skip a migration if the
page was dirtied after the scanner updated a clean page.
This is most noticeable running the NASA Parallel Benchmark when backed
by btrfs, the default root filesystem for some distributions, but also
noticeable when using XFS.
The following are results from a 4-socket machine running a 4.16-rc4
kernel with some scheduler patches that are pending for the next merge
window.
4.16.0-rc4 4.16.0-rc4
schedtip-20180309 nodirty-v1
Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%)
Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%)
Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%)
Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%)
Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%)
is.D regresses slightly in terms of absolute time but note that that
particular load varies quite a bit from run to run. The more relevant
observation is the total system CPU usage.
4.16.0-rc4 4.16.0-rc4
schedtip-20180309 nodirty-v1
User 71471.91 70627.04
System 11078.96 8256.13
Elapsed 661.66 632.74
That is a substantial drop in system CPU usage and overall the workload
completes faster. The NUMA balancing statistics are also interesting
NUMA base PTE updates 111407972 139848884
NUMA huge PMD updates 206506 264869
NUMA page range updates 217139044 275461812
NUMA hint faults 4300924 3719784
NUMA hint local faults 3012539 3416618
NUMA hint local percent 70 91
NUMA pages migrated 1517487 1358420
While more PTEs are scanned due to changes in what faults are gathered,
it's clear that a far higher percentage of faults are local as the bulk
of the remote hits were dirty pages that, in this case with btrfs, had
no chance of migrating.
The following is a comparison when using XFS as that is a more realistic
filesystem choice for a data partition
4.16.0-rc4 4.16.0-rc4
schedtip-20180309 nodirty-v1r47
Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%)
Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%)
Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%)
Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%)
Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%)
That is a reasonable gain on two relatively long-lived workloads. While
not presented, there is also a substantial drop in system CPu usage and
the NUMA balancing stats show similar improvements in locality as btrfs
did.
Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When protection bits are changed on a VMA, some of the architecture
specific flags should be cleared as well. An examples of this are the
PKEY flags on x86. This patch expands the current code that clears
PKEY flags for x86, to support similar functionality for other
architectures as well.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
A protection flag may not be valid across entire address space and
hence arch_validate_prot() might need the address a protection bit is
being set on to ensure it is a valid protection flag. For example, sparc
processors support memory corruption detection (as part of ADI feature)
flag on memory addresses mapped on to physical RAM but not on PFN mapped
pages or addresses mapped on to devices. This patch adds address to the
parameters being passed to arch_validate_prot() so protection bits can
be validated in the relevant context.
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Khalid Aziz <khalid@gonehiking.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Workloads consisting of a large number of processes running the same
program with a very large shared data segment may experience performance
problems when numa balancing attempts to migrate the shared cow pages.
This manifests itself with many processes or tasks in
TASK_UNINTERRUPTIBLE state waiting for the shared pages to be migrated.
The program listed below simulates the conditions with these results
when run with 288 processes on a 144 core/8 socket machine.
Average throughput Average throughput Average throughput
with numa_balancing=0 with numa_balancing=1 with numa_balancing=1
without the patch with the patch
--------------------- --------------------- ---------------------
2118782 2021534 2107979
Complex production environments show less variability and fewer poorly
performing outliers accompanied with a smaller number of processes
waiting on NUMA page migration with this patch applied. In some cases,
%iowait drops from 16%-26% to 0.
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/time.h>
#include <stdio.h>
#include <wait.h>
#include <sys/mman.h>
int a[1000000] = {13};
int main(int argc, const char **argv)
{
int n = 0;
int i;
pid_t pid;
int stat;
int *count_array;
int cpu_count = 288;
long total = 0;
struct timeval t1, t2 = {(argc > 1 ? atoi(argv[1]) : 10), 0};
if (argc > 2)
cpu_count = atoi(argv[2]);
count_array = mmap(NULL, cpu_count * sizeof(int),
(PROT_READ|PROT_WRITE),
(MAP_SHARED|MAP_ANONYMOUS), 0, 0);
if (count_array == MAP_FAILED) {
perror("mmap:");
return 0;
}
for (i = 0; i < cpu_count; ++i) {
pid = fork();
if (pid <= 0)
break;
if ((i & 0xf) == 0)
usleep(2);
}
if (pid != 0) {
if (i == 0) {
perror("fork:");
return 0;
}
for (;;) {
pid = wait(&stat);
if (pid < 0)
break;
}
for (i = 0; i < cpu_count; ++i)
total += count_array[i];
printf("Total %ld\n", total);
munmap(count_array, cpu_count * sizeof(int));
return 0;
}
gettimeofday(&t1, 0);
timeradd(&t1, &t2, &t1);
while (timercmp(&t2, &t1, <)) {
int b = 0;
int j;
for (j = 0; j < 1000000; j++)
b += a[j];
gettimeofday(&t2, 0);
n++;
}
count_array[i] = n;
return 0;
}
This patch changes change_pte_range() to skip shared copy-on-write pages
when called from change_prot_numa().
NOTE: change_prot_numa() is nominally called from task_numa_work() and
queue_pages_test_walk(). task_numa_work() is the auto NUMA balancing
path, and queue_pages_test_walk() is part of explicit NUMA policy
management. However, queue_pages_test_walk() only calls
change_prot_numa() when MPOL_MF_LAZY is specified and currently that is
not allowed, so change_prot_numa() is only called from auto NUMA
balancing.
In the case of explicit NUMA policy management, shared pages are not
migrated unless MPOL_MF_MOVE_ALL is specified, and MPOL_MF_MOVE_ALL
depends on CAP_SYS_NICE. Currently, there is no way to pass information
about MPOL_MF_MOVE_ALL to change_pte_range. This will have to be fixed
if MPOL_MF_LAZY is enabled and MPOL_MF_MOVE_ALL is to be honored in lazy
migration mode.
task_numa_work() skips the read-only VMAs of programs and shared
libraries.
Link: http://lkml.kernel.org/r/1516751617-7369-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Reviewed-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When THP migration is being used, memory management code needs to handle
pmd migration entries properly. This patch uses !pmd_present() or
is_swap_pmd() (depending on whether pmd_none() needs separate code or
not) to check pmd migration entries at the places where a pmd entry is
present.
Since pmd-related code uses split_huge_page(), split_huge_pmd(),
pmd_trans_huge(), pmd_trans_unstable(), or
pmd_none_or_trans_huge_or_clear_bad(), this patch:
1. adds pmd migration entry split code in split_huge_pmd(),
2. takes care of pmd migration entries whenever pmd_trans_huge() is present,
3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware.
Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable()
is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change
them.
Until this commit, a pmd entry should be:
1. pointing to a pte page,
2. is_swap_pmd(),
3. pmd_trans_huge(),
4. pmd_devmap(), or
5. pmd_none().
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fixes of TLB batching races", v6.
It turns out that Linux TLB batching mechanism suffers from various
races. Races that are caused due to batching during reclamation were
recently handled by Mel and this patch-set deals with others. The more
fundamental issue is that concurrent updates of the page-tables allow
for TLB flushes to be batched on one core, while another core changes
the page-tables. This other core may assume a PTE change does not
require a flush based on the updated PTE value, while it is unaware that
TLB flushes are still pending.
This behavior affects KSM (which may result in memory corruption) and
MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A
proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED.
Memory corruption in KSM is harder to produce in practice, but was
observed by hacking the kernel and adding a delay before flushing and
replacing the KSM page.
Finally, there is also one memory barrier missing, which may affect
architectures with weak memory model.
This patch (of 7):
Setting and clearing mm->tlb_flush_pending can be performed by multiple
threads, since mmap_sem may only be acquired for read in
task_numa_work(). If this happens, tlb_flush_pending might be cleared
while one of the threads still changes PTEs and batches TLB flushes.
This can lead to the same race between migration and
change_protection_range() that led to the introduction of
tlb_flush_pending. The result of this race was data corruption, which
means that this patch also addresses a theoretically possible data
corruption.
An actual data corruption was not observed, yet the race was was
confirmed by adding assertion to check tlb_flush_pending is not set by
two threads, adding artificial latency in change_protection_range() and
using sysctl to reduce kernel.numa_balancing_scan_delay_ms.
Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com
Fixes: 2084140594 ("mm: fix TLB flush race between migration, and
change_protection_range")
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.
He described the race as follows:
CPU0 CPU1
---- ----
user accesses memory using RW PTE
[PTE now cached in TLB]
try_to_unmap_one()
==> ptep_get_and_clear()
==> set_tlb_ubc_flush_pending()
mprotect(addr, PROT_READ)
==> change_pte_range()
==> [ PTE non-present - no flush ]
user writes using cached RW PTE
...
try_to_unmap_flush()
The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.
For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access. For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB. However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.
Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption. In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch. Other users such as gup as a race with
reclaim looks just at PTEs. huge page variants should be ok as they
don't race with reclaim. mincore only looks at PTEs. userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.
Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected. His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.
[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org> [v4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_offset_map_lock() finds and takes ptl, and returns pte. But some
callers return without unlocking the ptl when pte == NULL, which seems
weird.
Git history said that !pte check in change_pte_range() was introduced in
commit 1ad9f620c3 ("mm: numa: recheck for transhuge pages under lock
during protection changes") and still remains after commit 175ad4f1e7
("mm: mprotect: use pmd_trans_unstable instead of taking the pmd_lock")
which partially reverts 1ad9f620c3. So I think that it's just dead
code.
Many other caller of pte_offset_map_lock() never check NULL return, so
let's do likewise.
Link: http://lkml.kernel.org/r/1495089737-1292-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Numabalancing preserve write fix", v2.
This patch series address an issue w.r.t THP migration and autonuma
preserve write feature. migrate_misplaced_transhuge_page() cannot deal
with concurrent modification of the page. It does a page copy without
following the migration pte sequence. IIUC, this was done to keep the
migration simpler and at the time of implemenation we didn't had THP
page cache which would have required a more elaborate migration scheme.
That means thp autonuma migration expect the protnone with saved write
to be done such that both kernel and user cannot update the page
content. This patch series enables archs like ppc64 to do that. We are
good with the hash translation mode with the current code, because we
never create a hardware page table entry for a protnone pte.
This patch (of 2):
Autonuma preserves the write permission across numa fault to avoid
taking a writefault after a numa fault (Commit: b191f9b106 " mm: numa:
preserve PTE write permissions across a NUMA hinting fault").
Architecture can implement protnone in different ways and some may
choose to implement that by clearing Read/ Write/Exec bit of pte.
Setting the write bit on such pte can result in wrong behaviour. Fix
this up by allowing arch to override how to save the write bit on a
protnone pte.
[aneesh.kumar@linux.vnet.ibm.com: don't mark pte saved write in case of dirty_accountable]
Link: http://lkml.kernel.org/r/1487942884-16517-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
[aneesh.kumar@linux.vnet.ibm.com: v3]
Link: http://lkml.kernel.org/r/1487498625-10891-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1487050314-3892-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Michael Neuling <mikey@neuling.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <michaele@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_unstable does an atomic read on the pmd so it doesn't require
the pmd_lock for the same check.
This also removes the special assumption that the mmap_sem is hold for
writing if prot_numa is not set. userfaultfd will hold the mmap_sem
only for reading in change_pte_range like prot_numa, but it will not set
prot_numa.
This is always a valid micro-optimization regardless of userfaultfd.
[kirill@shutemov.name: drop unneeded pmd_trans_unstable(pmd) check after __split_huge_pmd()]
Link: http://lkml.kernel.org/r/20170208120421.GE5578@node.shutemov.name
Link: http://lkml.kernel.org/r/20161216144821.5183-43-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having code for the pkey_mprotect, pkey_alloc and pkey_free system calls
makes only sense if ARCH_HAS_PKEYS is selected. If not selected these
system calls will always return -ENOSPC or -EINVAL.
To simplify things and have less code generate the pkey system call code
only if ARCH_HAS_PKEYS is selected.
For architectures which have already wired up the system calls, but do
not select ARCH_HAS_PKEYS this will result in less generated code and a
different return code: the three system calls will now always return
-ENOSYS, using the cond_syscall mechanism.
For architectures which have not wired up the system calls less
unreachable code will be generated.
Link: http://lkml.kernel.org/r/20161114111251.70084-1-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage. This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.
Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had some problems with pages getting unmapped in single threaded
affinitized processes. It was tracked down to NUMA scanning.
In this case it doesn't make any sense to unmap pages if the process is
single threaded and the page is already on the node the process is
running on.
Add a check for this case into the numa protection code, and skip
unmapping if true.
In theory the process could be migrated later, but we will eventually
rescan and unmap and migrate then.
In theory this could be made more fancy: remembering this state per
process or even whole mm. However that would need extra tracking and be
more complicated, and the simple check seems to work fine so far.
[ak@linux.intel.com: v3: Minor updates from Mel. Change code layout]
Link: http://lkml.kernel.org/r/1476382117-5440-1-git-send-email-andi@firstfloor.org
Link: http://lkml.kernel.org/r/1476288949-20970-1-git-send-email-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull protection keys syscall interface from Thomas Gleixner:
"This is the final step of Protection Keys support which adds the
syscalls so user space can actually allocate keys and protect memory
areas with them. Details and usage examples can be found in the
documentation.
The mm side of this has been acked by Mel"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Update documentation
x86/mm/pkeys: Do not skip PKRU register if debug registers are not used
x86/pkeys: Fix pkeys build breakage for some non-x86 arches
x86/pkeys: Add self-tests
x86/pkeys: Allow configuration of init_pkru
x86/pkeys: Default to a restrictive init PKRU
pkeys: Add details of system call use to Documentation/
generic syscalls: Wire up memory protection keys syscalls
x86: Wire up protection keys system calls
x86/pkeys: Allocation/free syscalls
x86/pkeys: Make mprotect_key() mask off additional vm_flags
mm: Implement new pkey_mprotect() system call
x86/pkeys: Add fault handling for PF_PK page fault bit
The rmap_walk can access vm_page_prot (and potentially vm_flags in the
pte/pmd manipulations). So it's not safe to wait the caller to update
the vm_page_prot/vm_flags after vma_merge returned potentially removing
the "next" vma and extending the "current" vma over the
next->vm_start,vm_end range, but still with the "current" vma
vm_page_prot, after releasing the rmap locks.
The vm_page_prot/vm_flags must be transferred from the "next" vma to the
current vma while vma_merge still holds the rmap locks.
The side effect of this race condition is pte corruption during migrate
as remove_migration_ptes when run on a address of the "next" vma that
got removed, used the vm_page_prot of the current vma.
migrate mprotect
------------ -------------
migrating in "next" vma
vma_merge() # removes "next" vma and
# extends "current" vma
# current vma is not with
# vm_page_prot updated
remove_migration_ptes
read vm_page_prot of current "vma"
establish pte with wrong permissions
vm_set_page_prot(vma) # too late!
change_protection in the old vma range
only, next range is not updated
This caused segmentation faults and potentially memory corruption in
heavy mprotect loads with some light page migration caused by compaction
in the background.
Hugh Dickins pointed out the comment about the Odd case 8 in vma_merge
which confirms the case 8 is only buggy one where the race can trigger,
in all other vma_merge cases the above cannot happen.
This fix removes the oddness factor from case 8 and it converts it from:
AAAA
PPPPNNNNXXXX -> PPPPNNNNNNNN
to:
AAAA
PPPPNNNNXXXX -> PPPPXXXXXXXX
XXXX has the right vma properties for the whole merged vma returned by
vma_adjust, so it solves the problem fully. It has the added benefits
that the callers could stop updating vma properties when vma_merge
succeeds however the callers are not updated by this patch (there are
bits like VM_SOFTDIRTY that still need special care for the whole range,
as the vma merging ignores them, but as long as they're not processed by
rmap walks and instead they're accessed with the mmap_sem at least for
reading, they are fine not to be updated within vma_adjust before
releasing the rmap_locks).
Link: http://lkml.kernel.org/r/1474309513-20313-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Aditya Mandaleeka <adityam@microsoft.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated
concurrently and this prevents the risk of reading intermediate values.
Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Today, mprotect() takes 4 bits of data: PROT_READ/WRITE/EXEC/NONE.
Three of those bits: READ/WRITE/EXEC get translated directly in to
vma->vm_flags by calc_vm_prot_bits(). If a bit is unset in
mprotect()'s 'prot' argument then it must be cleared in vma->vm_flags
during the mprotect() call.
We do this clearing today by first calculating the VMA flags we
want set, then clearing the ones we do not want to inherit from
the original VMA:
vm_flags = calc_vm_prot_bits(prot, key);
...
newflags = vm_flags;
newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
However, we *also* want to mask off the original VMA's vm_flags in
which we store the protection key.
To do that, this patch adds a new macro:
ARCH_VM_PKEY_FLAGS
which allows the architecture to specify additional bits that it would
like cleared. We use that to ensure that the VM_PKEY_BIT* bits get
cleared.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163013.E48D6981@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
pkey_mprotect() is just like mprotect, except it also takes a
protection key as an argument. On systems that do not support
protection keys, it still works, but requires that key=0.
Otherwise it does exactly what mprotect does.
I expect it to get used like this, if you want to guarantee that
any mapping you create can *never* be accessed without the right
protection keys set up.
int real_prot = PROT_READ|PROT_WRITE;
pkey = pkey_alloc(0, PKEY_DENY_ACCESS);
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
This way, there is *no* window where the mapping is accessible
since it was always either PROT_NONE or had a protection key set
that denied all access.
We settled on 'unsigned long' for the type of the key here. We
only need 4 bits on x86 today, but I figured that other
architectures might need some more space.
Semantically, we have a bit of a problem if we combine this
syscall with our previously-introduced execute-only support:
What do we do when we mix execute-only pkey use with
pkey_mprotect() use? For instance:
pkey_mprotect(ptr, PAGE_SIZE, PROT_WRITE, 6); // set pkey=6
mprotect(ptr, PAGE_SIZE, PROT_EXEC); // set pkey=X_ONLY_PKEY?
mprotect(ptr, PAGE_SIZE, PROT_WRITE); // is pkey=6 again?
To solve that, we make the plain-mprotect()-initiated execute-only
support only apply to VMAs that have the default protection key (0)
set on them.
Proposed semantics:
1. protection key 0 is special and represents the default,
"unassigned" protection key. It is always allocated.
2. mprotect() never affects a mapping's pkey_mprotect()-assigned
protection key. A protection key of 0 (even if set explicitly)
represents an unassigned protection key.
2a. mprotect(PROT_EXEC) on a mapping with an assigned protection
key may or may not result in a mapping with execute-only
properties. pkey_mprotect() plus pkey_set() on all threads
should be used to _guarantee_ execute-only semantics if this
is not a strong enough semantic.
3. mprotect(PROT_EXEC) may result in an "execute-only" mapping. The
kernel will internally attempt to allocate and dedicate a
protection key for the purpose of execute-only mappings. This
may not be possible in cases where there are no free protection
keys available. It can also happen, of course, in situations
where there is no hardware support for protection keys.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163012.3DDD36C4@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
split_huge_pmd() doesn't guarantee that the pmd is normal pmd pointing
to pte entries, which can be checked with pmd_trans_unstable(). Some
callers make this assertion and some do it differently and some not, so
let's do it in a unified manner.
Link: http://lkml.kernel.org/r/1464741400-12143-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>