Switch over pid namespaces to use the newly introduced common lifetime
counter.
Currently every namespace type has its own lifetime counter which is stored
in the specific namespace struct. The lifetime counters are used
identically for all namespaces types. Namespaces may of course have
additional unrelated counters and these are not altered.
This introduces a common lifetime counter into struct ns_common. The
ns_common struct encompasses information that all namespaces share. That
should include the lifetime counter since its common for all of them.
It also allows us to unify the type of the counters across all namespaces.
Most of them use refcount_t but one uses atomic_t and at least one uses
kref. Especially the last one doesn't make much sense since it's just a
wrapper around refcount_t since 2016 and actually complicates cleanup
operations by having to use container_of() to cast the correct namespace
struct out of struct ns_common.
Having the lifetime counter for the namespaces in one place reduces
maintenance cost. Not just because after switching all namespaces over we
will have removed more code than we added but also because the logic is
more easily understandable and we indicate to the user that the basic
lifetime requirements for all namespaces are currently identical.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/159644979226.604812.7512601754841882036.stgit@localhost.localdomain
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This patch allows to have multiple procfs instances inside the
same pid namespace. The aim here is lightweight sandboxes, and to allow
that we have to modernize procfs internals.
1) The main aim of this work is to have on embedded systems one
supervisor for apps. Right now we have some lightweight sandbox support,
however if we create pid namespacess we have to manages all the
processes inside too, where our goal is to be able to run a bunch of
apps each one inside its own mount namespace without being able to
notice each other. We only want to use mount namespaces, and we want
procfs to behave more like a real mount point.
2) Linux Security Modules have multiple ptrace paths inside some
subsystems, however inside procfs, the implementation does not guarantee
that the ptrace() check which triggers the security_ptrace_check() hook
will always run. We have the 'hidepid' mount option that can be used to
force the ptrace_may_access() check inside has_pid_permissions() to run.
The problem is that 'hidepid' is per pid namespace and not attached to
the mount point, any remount or modification of 'hidepid' will propagate
to all other procfs mounts.
This also does not allow to support Yama LSM easily in desktop and user
sessions. Yama ptrace scope which restricts ptrace and some other
syscalls to be allowed only on inferiors, can be updated to have a
per-task context, where the context will be inherited during fork(),
clone() and preserved across execve(). If we support multiple private
procfs instances, then we may force the ptrace_may_access() on
/proc/<pids>/ to always run inside that new procfs instances. This will
allow to specifiy on user sessions if we should populate procfs with
pids that the user can ptrace or not.
By using Yama ptrace scope, some restricted users will only be able to see
inferiors inside /proc, they won't even be able to see their other
processes. Some software like Chromium, Firefox's crash handler, Wine
and others are already using Yama to restrict which processes can be
ptracable. With this change this will give the possibility to restrict
/proc/<pids>/ but more importantly this will give desktop users a
generic and usuable way to specifiy which users should see all processes
and which users can not.
Side notes:
* This covers the lack of seccomp where it is not able to parse
arguments, it is easy to install a seccomp filter on direct syscalls
that operate on pids, however /proc/<pid>/ is a Linux ABI using
filesystem syscalls. With this change LSMs should be able to analyze
open/read/write/close...
In the new patch set version I removed the 'newinstance' option
as suggested by Eric W. Biederman.
Selftest has been added to verify new behavior.
Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
There remains no more code in the kernel using pids_ns->proc_mnt,
therefore remove it from the kernel.
The big benefit of this change is that one of the most error prone and
tricky parts of the pid namespace implementation, maintaining kernel
mounts of proc is removed.
In addition removing the unnecessary complexity of the kernel mount
fixes a regression that caused the proc mount options to be ignored.
Now that the initial mount of proc comes from userspace, those mount
options are again honored. This fixes Android's usage of the proc
hidepid option.
Reported-by: Alistair Strachan <astrachan@google.com>
Fixes: e94591d0d9 ("proc: Convert proc_mount to use mount_ns.")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The main motivation to add set_tid to clone3() is CRIU.
To restore a process with the same PID/TID CRIU currently uses
/proc/sys/kernel/ns_last_pid. It writes the desired (PID - 1) to
ns_last_pid and then (quickly) does a clone(). This works most of the
time, but it is racy. It is also slow as it requires multiple syscalls.
Extending clone3() to support *set_tid makes it possible restore a
process using CRIU without accessing /proc/sys/kernel/ns_last_pid and
race free (as long as the desired PID/TID is available).
This clone3() extension places the same restrictions (CAP_SYS_ADMIN)
on clone3() with *set_tid as they are currently in place for ns_last_pid.
The original version of this change was using a single value for
set_tid. At the 2019 LPC, after presenting set_tid, it was, however,
decided to change set_tid to an array to enable setting the PID of a
process in multiple PID namespaces at the same time. If a process is
created in a PID namespace it is possible to influence the PID inside
and outside of the PID namespace. Details also in the corresponding
selftest.
To create a process with the following PIDs:
PID NS level Requested PID
0 (host) 31496
1 42
2 1
For that example the two newly introduced parameters to struct
clone_args (set_tid and set_tid_size) would need to be:
set_tid[0] = 1;
set_tid[1] = 42;
set_tid[2] = 31496;
set_tid_size = 3;
If only the PIDs of the two innermost nested PID namespaces should be
defined it would look like this:
set_tid[0] = 1;
set_tid[1] = 42;
set_tid_size = 2;
The PID of the newly created process would then be the next available
free PID in the PID namespace level 0 (host) and 42 in the PID namespace
at level 1 and the PID of the process in the innermost PID namespace
would be 1.
The set_tid array is used to specify the PID of a process starting
from the innermost nested PID namespaces up to set_tid_size PID namespaces.
set_tid_size cannot be larger then the current PID namespace level.
Signed-off-by: Adrian Reber <areber@redhat.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Link: https://lore.kernel.org/r/20191115123621.142252-1-areber@redhat.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
pidhash is no longer required as all the information can be looked up
from idr tree. nr_hashed represented the number of pids that had been
hashed. Since, nr_hashed and PIDNS_HASH_ADDING are no longer relevant,
it has been renamed to pid_allocated and PIDNS_ADDING respectively.
[gs051095@gmail.com: v6]
Link: http://lkml.kernel.org/r/1507760379-21662-3-git-send-email-gs051095@gmail.com
Link: http://lkml.kernel.org/r/1507583624-22146-3-git-send-email-gs051095@gmail.com
Signed-off-by: Gargi Sharma <gs051095@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com> [ia64]
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Replacing PID bitmap implementation with IDR API", v4.
This series replaces kernel bitmap implementation of PID allocation with
IDR API. These patches are written to simplify the kernel by replacing
custom code with calls to generic code.
The following are the stats for pid and pid_namespace object files
before and after the replacement. There is a noteworthy change between
the IDR and bitmap implementation.
Before
text data bss dec hex filename
8447 3894 64 12405 3075 kernel/pid.o
After
text data bss dec hex filename
3397 304 0 3701 e75 kernel/pid.o
Before
text data bss dec hex filename
5692 1842 192 7726 1e2e kernel/pid_namespace.o
After
text data bss dec hex filename
2854 216 16 3086 c0e kernel/pid_namespace.o
The following are the stats for ps, pstree and calling readdir on /proc
for 10,000 processes.
ps:
With IDR API With bitmap
real 0m1.479s 0m2.319s
user 0m0.070s 0m0.060s
sys 0m0.289s 0m0.516s
pstree:
With IDR API With bitmap
real 0m1.024s 0m1.794s
user 0m0.348s 0m0.612s
sys 0m0.184s 0m0.264s
proc:
With IDR API With bitmap
real 0m0.059s 0m0.074s
user 0m0.000s 0m0.004s
sys 0m0.016s 0m0.016s
This patch (of 2):
Replace the current bitmap implementation for Process ID allocation.
Functions that are no longer required, for example, free_pidmap(),
alloc_pidmap(), etc. are removed. The rest of the functions are
modified to use the IDR API. The change was made to make the PID
allocation less complex by replacing custom code with calls to generic
API.
[gs051095@gmail.com: v6]
Link: http://lkml.kernel.org/r/1507760379-21662-2-git-send-email-gs051095@gmail.com
[avagin@openvz.org: restore the old behaviour of the ns_last_pid sysctl]
Link: http://lkml.kernel.org/r/20171106183144.16368-1-avagin@openvz.org
Link: http://lkml.kernel.org/r/1507583624-22146-2-git-send-email-gs051095@gmail.com
Signed-off-by: Gargi Sharma <gs051095@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This marks many critical kernel structures for randomization. These are
structures that have been targeted in the past in security exploits, or
contain functions pointers, pointers to function pointer tables, lists,
workqueues, ref-counters, credentials, permissions, or are otherwise
sensitive. This initial list was extracted from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Left out of this list is task_struct, which requires special handling
and will be covered in a subsequent patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
Previously, the hidepid parameter was checked by comparing literal
integers 0, 1, 2. Let's add a proper enum for this, to make the
checking more expressive:
0 → HIDEPID_OFF
1 → HIDEPID_NO_ACCESS
2 → HIDEPID_INVISIBLE
This changes the internal labelling only, the userspace-facing interface
remains unmodified, and still works with literal integers 0, 1, 2.
No functional changes.
Link: http://lkml.kernel.org/r/1484572984-13388-2-git-send-email-djalal@gmail.com
Signed-off-by: Lafcadio Wluiki <wluikil@gmail.com>
Signed-off-by: Djalal Harouni <tixxdz@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for now - just move corresponding ->proc_inum instances over there
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
/proc/thread-self is derived from /proc/self. /proc/thread-self
points to the directory in proc containing information about the
current thread.
This funtionality has been missing for a long time, and is tricky to
implement in userspace as gettid() is not exported by glibc. More
importantly this allows fixing defects in /proc/mounts and /proc/net
where in a threaded application today they wind up being empty files
when only the initial pthread has exited, causing problems for other
threads.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Move BITS_PER_PAGE from pid_namespace.c to pid_namespace.h, since we can
simplify the define PID_MAP_ENTRIES by using the BITS_PER_PAGE.
[akpm@linux-foundation.org: kernel/pid.c:54:1: warning: "BITS_PER_PAGE" redefined]
Signed-off-by: Raphael S.Carvalho <raphael.scarv@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg pointed out that in a pid namespace the sequence.
- pid 1 becomes a zombie
- setns(thepidns), fork,...
- reaping pid 1.
- The injected processes exiting.
Can lead to processes attempting access their child reaper and
instead following a stale pointer.
That waitpid for init can return before all of the processes in
the pid namespace have exited is also unfortunate.
Avoid these problems by disabling the allocation of new pids in a pid
namespace when init dies, instead of when the last process in a pid
namespace is reaped.
Pointed-out-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Assign a unique proc inode to each namespace, and use that
inode number to ensure we only allocate at most one proc
inode for every namespace in proc.
A single proc inode per namespace allows userspace to test
to see if two processes are in the same namespace.
This has been a long requested feature and only blocked because
a naive implementation would put the id in a global space and
would ultimately require having a namespace for the names of
namespaces, making migration and certain virtualization tricks
impossible.
We still don't have per superblock inode numbers for proc, which
appears necessary for application unaware checkpoint/restart and
migrations (if the application is using namespace file descriptors)
but that is now allowd by the design if it becomes important.
I have preallocated the ipc and uts initial proc inode numbers so
their structures can be statically initialized.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Track the number of pids in the proc hash table. When the number of
pids goes to 0 schedule work to unmount the kernel mount of proc.
Move the mount of proc into alloc_pid when we allocate the pid for
init.
Remove the surprising calls of pid_ns_release proc in fork and
proc_flush_task. Those code paths really shouldn't know about proc
namespace implementation details and people have demonstrated several
times that finding and understanding those code paths is difficult and
non-obvious.
Because of the call path detach pid is alwasy called with the
rtnl_lock held free_pid is not allowed to sleep, so the work to
unmounting proc is moved to a work queue. This has the side benefit
of not blocking the entire world waiting for the unnecessary
rcu_barrier in deactivate_locked_super.
In the process of making the code clear and obvious this fixes a bug
reported by Gao feng <gaofeng@cn.fujitsu.com> where we would leak a
mount of proc during clone(CLONE_NEWPID|CLONE_NEWNET) if copy_pid_ns
succeeded and copy_net_ns failed.
Acked-by: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
- Capture the the user namespace that creates the pid namespace
- Use that user namespace to test if it is ok to write to
/proc/sys/kernel/ns_last_pid.
Zhao Hongjiang <zhaohongjiang@huawei.com> noticed I was missing a put_user_ns
in when destroying a pid_ns. I have foloded his patch into this one
so that bisects will work properly.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
free_pid_ns() operates in a recursive fashion:
free_pid_ns(parent)
put_pid_ns(parent)
kref_put(&ns->kref, free_pid_ns);
free_pid_ns
thus if there was a huge nesting of namespaces the userspace may trigger
avalanche calling of free_pid_ns leading to kernel stack exhausting and a
panic eventually.
This patch turns the recursion into an iterative loop.
Based on a patch by Andrew Vagin.
[akpm@linux-foundation.org: export put_pid_ns() to modules]
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the case of a child pid namespace, rebooting the system does not really
makes sense. When the pid namespace is used in conjunction with the other
namespaces in order to create a linux container, the reboot syscall leads
to some problems.
A container can reboot the host. That can be fixed by dropping the
sys_reboot capability but we are unable to correctly to poweroff/
halt/reboot a container and the container stays stuck at the shutdown time
with the container's init process waiting indefinitively.
After several attempts, no solution from userspace was found to reliabily
handle the shutdown from a container.
This patch propose to make the init process of the child pid namespace to
exit with a signal status set to : SIGINT if the child pid namespace
called "halt/poweroff" and SIGHUP if the child pid namespace called
"reboot". When the reboot syscall is called and we are not in the initial
pid namespace, we kill the pid namespace for "HALT", "POWEROFF",
"RESTART", and "RESTART2". Otherwise we return EINVAL.
Returning EINVAL is also an easy way to check if this feature is supported
by the kernel when invoking another 'reboot' option like CAD.
By this way the parent process of the child pid namespace knows if it
rebooted or not and can take the right decision.
Test case:
==========
#include <alloca.h>
#include <stdio.h>
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <sys/reboot.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/reboot.h>
static int do_reboot(void *arg)
{
int *cmd = arg;
if (reboot(*cmd))
printf("failed to reboot(%d): %m\n", *cmd);
}
int test_reboot(int cmd, int sig)
{
long stack_size = 4096;
void *stack = alloca(stack_size) + stack_size;
int status;
pid_t ret;
ret = clone(do_reboot, stack, CLONE_NEWPID | SIGCHLD, &cmd);
if (ret < 0) {
printf("failed to clone: %m\n");
return -1;
}
if (wait(&status) < 0) {
printf("unexpected wait error: %m\n");
return -1;
}
if (!WIFSIGNALED(status)) {
printf("child process exited but was not signaled\n");
return -1;
}
if (WTERMSIG(status) != sig) {
printf("signal termination is not the one expected\n");
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
int status;
status = test_reboot(LINUX_REBOOT_CMD_RESTART, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_RESTART2, SIGHUP);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_RESTART2) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_HALT, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_HALT) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_POWER_OFF, SIGINT);
if (status < 0)
return 1;
printf("reboot(LINUX_REBOOT_CMD_POWERR_OFF) succeed\n");
status = test_reboot(LINUX_REBOOT_CMD_CAD_ON, -1);
if (status >= 0) {
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) should have failed\n");
return 1;
}
printf("reboot(LINUX_REBOOT_CMD_CAD_ON) has failed as expected\n");
return 0;
}
[akpm@linux-foundation.org: tweak and add comments]
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a header file is making use of BUG, BUG_ON, BUILD_BUG_ON, or any
other BUG variant in a static inline (i.e. not in a #define) then
that header really should be including <linux/bug.h> and not just
expecting it to be implicitly present.
We can make this change risk-free, since if the files using these
headers didn't have exposure to linux/bug.h already, they would have
been causing compile failures/warnings.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Add support for mount options to restrict access to /proc/PID/
directories. The default backward-compatible "relaxed" behaviour is left
untouched.
The first mount option is called "hidepid" and its value defines how much
info about processes we want to be available for non-owners:
hidepid=0 (default) means the old behavior - anybody may read all
world-readable /proc/PID/* files.
hidepid=1 means users may not access any /proc/<pid>/ directories, but
their own. Sensitive files like cmdline, sched*, status are now protected
against other users. As permission checking done in proc_pid_permission()
and files' permissions are left untouched, programs expecting specific
files' modes are not confused.
hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other
users. It doesn't mean that it hides whether a process exists (it can be
learned by other means, e.g. by kill -0 $PID), but it hides process' euid
and egid. It compicates intruder's task of gathering info about running
processes, whether some daemon runs with elevated privileges, whether
another user runs some sensitive program, whether other users run any
program at all, etc.
gid=XXX defines a group that will be able to gather all processes' info
(as in hidepid=0 mode). This group should be used instead of putting
nonroot user in sudoers file or something. However, untrusted users (like
daemons, etc.) which are not supposed to monitor the tasks in the whole
system should not be added to the group.
hidepid=1 or higher is designed to restrict access to procfs files, which
might reveal some sensitive private information like precise keystrokes
timings:
http://www.openwall.com/lists/oss-security/2011/11/05/3
hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and
conky gracefully handle EPERM/ENOENT and behave as if the current user is
the only user running processes. pstree shows the process subtree which
contains "pstree" process.
Note: the patch doesn't deal with setuid/setgid issues of keeping
preopened descriptors of procfs files (like
https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked
information like the scheduling counters of setuid apps doesn't threaten
anybody's privacy - only the user started the setuid program may read the
counters.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg KH <greg@kroah.com>
Cc: Theodore Tso <tytso@MIT.EDU>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: James Morris <jmorris@namei.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently task_active_pid_ns is not safe to call after a task becomes a
zombie and exit_task_namespaces is called, as nsproxy becomes NULL. By
reading the pid namespace from the pid of the task we can trivially solve
this problem at the cost of one extra memory read in what should be the
same cacheline as we read the namespace from.
When moving things around I have made task_active_pid_ns out of line
because keeping it in pid_namespace.h would require adding includes of
pid.h and sched.h that I don't think we want.
This change does make task_active_pid_ns unsafe to call during
copy_process until we attach a pid on the task_struct which seems to be a
reasonable trade off.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Bastian Blank <bastian@waldi.eu.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Nadia Derbey <Nadia.Derbey@bull.net>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the bsdacct-related info will be stored in the area, pointer by this
one.
It will be NULL automatically for all new namespaces.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds proper prototypes for pid{hash,map}_init() in
include/linux/pid_namespace.h
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These values represent the nesting level of a namespace and pids living in it,
and it's always non-negative.
Turning this from int to unsigned int saves some space in pid.c (11 bytes on
x86 and 64 on ia64) by letting the compiler optimize the pid_nr_ns a bit.
E.g. on ia64 this removes the sign extension calls, which compiler adds to
optimize access to pid->nubers[ns->level].
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just like with the user namespaces, move the namespace management code into
the separate .c file and mark the (already existing) PID_NS option as "depend
on NAMESPACES"
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is my trivial patch to swat innumerable little bugs with a single
blow.
After some intensive review (my apologies for not having gotten to this
sooner) what we have looks like a good base to build on with the current
pid namespace code but it is not complete, and it is still much to simple
to find issues where the kernel does the wrong thing outside of the initial
pid namespace.
Until the dust settles and we are certain we have the ABI and the
implementation is as correct as humanly possible let's keep process ID
namespaces behind CONFIG_EXPERIMENTAL.
Allowing us the option of fixing any ABI or other bugs we find as long as
they are minor.
Allowing users of the kernel to avoid those bugs simply by ensuring their
kernel does not have support for multiple pid namespaces.
[akpm@linux-foundation.org: coding-style cleanups]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Kir Kolyshkin <kir@swsoft.com>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each pid namespace have to be visible through its own proc mount. Thus we
need to have per-namespace proc trees with their own superblocks.
We cannot easily show different pid namespace via one global proc tree, since
each pid refers to different tasks in different namespaces. E.g. pid 1
refers to the init task in the initial namespace and to some other task when
seeing from another namespace. Moreover - pid, exisintg in one namespace may
not exist in the other.
This approach has one move advantage is that the tasks from the init namespace
can see what tasks live in another namespace by reading entries from another
proc tree.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each namespace has a parent and is characterized by its "level". Level is the
number of the namespace generation. E.g. init namespace has level 0, after
cloning new one it will have level 1, the next one - 2 and so on and so forth.
This level is not explicitly limited.
True hierarchy must have some way to find each namespace's children, but it is
not used in the patches, so this ability is not added (yet).
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename the child_reaper() function to task_child_reaper() to be similar to
other task_* functions and to distinguish the function from 'struct
pid_namspace.child_reaper'.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Herbert Poetzel <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With multiple pid namespaces, a process is known by some pid_t in every
ancestor pid namespace. Every time the process forks, the child process also
gets a pid_t in every ancestor pid namespace.
While a process is visible in >=1 pid namespaces, it can see pid_t's in only
one pid namespace. We call this pid namespace it's "active pid namespace",
and it is always the youngest pid namespace in which the process is known.
This patch defines and uses a wrapper to find the active pid namespace of a
process. The implementation of the wrapper will be changed in when support
for multiple pid namespaces are added.
Changelog:
2.6.22-rc4-mm2-pidns1:
- [Pavel Emelianov, Alexey Dobriyan] Back out the change to use
task_active_pid_ns() in child_reaper() since task->nsproxy
can be NULL during task exit (so child_reaper() continues to
use init_pid_ns).
to implement child_reaper() since init_pid_ns.child_reaper to
implement child_reaper() since tsk->nsproxy can be NULL during exit.
2.6.21-rc6-mm1:
- Rename task_pid_ns() to task_active_pid_ns() to reflect that a
process can have multiple pid namespaces.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Herbert Poetzel <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add kmem_cache to pid_namespace to allocate pids from.
Since both implementations expand the struct pid to carry more numerical
values each namespace should have separate cache to store pids of different
sizes.
Each kmem cache is name "pid_<NR>", where <NR> is the number of numerical ids
on the pid. Different namespaces with same level of nesting will have same
caches.
This patch has two FIXMEs that are to be fixed after we reach the consensus
about the struct pid itself.
The first one is that the namespace to free the pid from in free_pid() must be
taken from pid. Now the init_pid_ns is used.
The second FIXME is about the cache allocation. When we do know how long the
object will be then we'll have to calculate this size in create_pid_cachep.
Right now the sizeof(struct pid) value is used.
[akpm@linux-foundation.org: coding-style repair]
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Acked-by: Cedric Le Goater <clg@fr.ibm.com>
Acked-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make get_pid_ns() return the namespace itself to look like the other getters
and make the code using it look nicer.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Acked-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While working on unshare support for the network namespace I noticed we
were putting clone flags in an int. Which is weird because the syscall
uses unsigned long and we at least need an unsigned to properly hold all of
the unshare flags.
So to make the code consistent, this patch updates the code to use
unsigned long instead of int for the clone flags in those places
where we get it wrong today.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_clone() and sys_unshare() both makes copies of nsproxy and its associated
namespaces. But they have different code paths.
This patch merges all the nsproxy and its associated namespace copy/clone
handling (as much as possible). Posted on container list earlier for
feedback.
- Create a new nsproxy and its associated namespaces and pass it back to
caller to attach it to right process.
- Changed all copy_*_ns() routines to return a new copy of namespace
instead of attaching it to task->nsproxy.
- Moved the CAP_SYS_ADMIN checks out of copy_*_ns() routines.
- Removed unnessary !ns checks from copy_*_ns() and added BUG_ON()
just incase.
- Get rid of all individual unshare_*_ns() routines and make use of
copy_*_ns() instead.
[akpm@osdl.org: cleanups, warning fix]
[clg@fr.ibm.com: remove dup_namespaces() declaration]
[serue@us.ibm.com: fix CONFIG_IPC_NS=n, clone(CLONE_NEWIPC) retval]
[akpm@linux-foundation.org: fix build with CONFIG_SYSVIPC=n]
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <containers@lists.osdl.org>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is based on a patch by Eric W. Biederman, who pointed out that pid
namespaces are still fake, and we only have one ever active.
So for the time being, we can modify any code which could access
tsk->nsproxy->pid_ns during task exit to just use &init_pid_ns instead,
and move the exit_task_namespaces call in do_exit() back above
exit_notify(), so that an exiting nfs server has a valid tsk->sighand to
work with.
Long term, pulling pid_ns out of nsproxy might be the cleanest solution.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
[ Eric's patch fixed to take care of free_pid() too ]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a per pid_namespace child-reaper. This is needed so processes are reaped
within the same pid space and do not spill over to the parent pid space. Its
also needed so containers preserve existing semantic that pid == 1 would reap
orphaned children.
This is based on Eric Biederman's patch: http://lkml.org/lkml/2006/2/6/285
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add the pid namespace framework to the nsproxy object. The copy of the pid
namespace only increases the refcount on the global pid namespace,
init_pid_ns, and unshare is not implemented.
There is no configuration option to activate or deactivate this feature
because this not relevant for the moment.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rename struct pspace to struct pid_namespace for consistency with other
namespaces (uts_namespace and ipc_namespace). Also rename
include/linux/pspace.h to include/linux/pid_namespace.h and variables from
pspace to pid_ns.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>