We don't actually need this and it causes problems for internal use of
this functionality. Currently there is a single use of the FILE * pointer.
That is the serial core which uses it to check tty_hung_up_p. However if
that is true then IO_ERROR is also already set so the check may be removed.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
OPN2001 expects write operations to arrive as a vendor-specific command
through the control pipe (instead of using a separate bulk-out pipe).
Signed-off-by: Alon Ziv <alon-git@nolaviz.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The bulk-read callback had two bugs:
a) The bulk-in packet's leading two zeros were returned (and the two last
bytes truncated)
b) The wrong URB was transmitted for the second (and later) read requests,
causing further reads to return the entire packet (including leading
zeros)
Signed-off-by: Alon Ziv <alon-git@nolaviz.org>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
We have lots of callers that do not need to do this in the first place.
Remove the calls as they both cost CPU and for big buffers can mess up the
multi-page allocation avoidance.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The id_table field of the struct usb_device_id is constant in <linux/usb.h>
so it is worth to make the initialization data also constant.
The semantic match that finds this kind of pattern is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r@
disable decl_init,const_decl_init;
identifier I1, I2, x;
@@
struct I1 {
...
const struct I2 *x;
...
};
@s@
identifier r.I1, y;
identifier r.x, E;
@@
struct I1 y = {
.x = E,
};
@c@
identifier r.I2;
identifier s.E;
@@
const struct I2 E[] = ... ;
@depends on !c@
identifier r.I2;
identifier s.E;
@@
+ const
struct I2 E[] = ...;
// </smpl>
Signed-off-by: Németh Márton <nm127@freemail.hu>
Cc: Julia Lawall <julia@diku.dk>
Cc: cocci@diku.dk
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Opticon now takes the right mutex to check the port status but the status
check is done wrongly for the modern serial code, so fix it.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The tty port has a port mutex used for all the port related locking so we
don't need the one in the USB serial layer any more.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
usb:usbserial:opticon: fix race between unthrottle and completion handler
opticon_unthrottle() mustn't resubmit the URB unconditionally
as the URB may still be running.
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
And indeed none of them use it. Clean this up as it will make moving to a
standard open method rather easier.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1254) splits up the shutdown method of usb_serial_driver
into a disconnect and a release method.
The problem is that the usb-serial core was calling shutdown during
disconnect handling, but drivers didn't expect it to be called until
after all the open file references had been closed. The result was an
oops when the close method tried to use memory that had been
deallocated by shutdown.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This allows us to clean stuff up, but is probably also going to cause
some app breakage with buggy apps as we now implement proper POSIX behaviour
for USB ports matching all the other ports. This does also mean other apps
that break on USB will now work properly.
Signed-off-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes tty->low_latency from all USB serial drivers that push
data into the tty layer at hard interrupt context. It's no longer needed
and actually harmful.
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This lets userspace determine what the state of the RTS line is, which
is what is needed to properly handle data flow for this device (it
raises RTS when there is data to be sent from it.)
Cc: Kees Stoop <kees.stoop@opticon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
this does the standard support for suspend/resume for the opticon
driver.
Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>