A secure guest will share some of its pages with hypervisor (Eg. virtio
bounce buffers etc). Support sharing of pages between hypervisor and
ultravisor.
Shared page is reachable via both HV and UV side page tables. Once a
secure page is converted to shared page, the device page that represents
the secure page is unmapped from the HV side page tables.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A pseries guest can be run as secure guest on Ultravisor-enabled
POWER platforms. On such platforms, this driver will be used to manage
the movement of guest pages between the normal memory managed by
hypervisor (HV) and secure memory managed by Ultravisor (UV).
HV is informed about the guest's transition to secure mode via hcalls:
H_SVM_INIT_START: Initiate securing a VM
H_SVM_INIT_DONE: Conclude securing a VM
As part of H_SVM_INIT_START, register all existing memslots with
the UV. H_SVM_INIT_DONE call by UV informs HV that transition of
the guest to secure mode is complete.
These two states (transition to secure mode STARTED and transition
to secure mode COMPLETED) are recorded in kvm->arch.secure_guest.
Setting these states will cause the assembly code that enters the
guest to call the UV_RETURN ucall instead of trying to enter the
guest directly.
Migration of pages betwen normal and secure memory of secure
guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls.
H_SVM_PAGE_IN: Move the content of a normal page to secure page
H_SVM_PAGE_OUT: Move the content of a secure page to normal page
Private ZONE_DEVICE memory equal to the amount of secure memory
available in the platform for running secure guests is created.
Whenever a page belonging to the guest becomes secure, a page from
this private device memory is used to represent and track that secure
page on the HV side. The movement of pages between normal and secure
memory is done via migrate_vma_pages() using UV_PAGE_IN and
UV_PAGE_OUT ucalls.
In order to prevent the device private pages (that correspond to pages
of secure guest) from participating in KSM merging, H_SVM_PAGE_IN
calls ksm_madvise() under read version of mmap_sem. However
ksm_madvise() needs to be under write lock. Hence we call
kvmppc_svm_page_in with mmap_sem held for writing, and it then
downgrades to a read lock after calling ksm_madvise.
[paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write
mmap_sem when calling ksm_madvise"]
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Two fixes from Greg Kurz to fix memory leak bugs in the XIVE code.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEv0VLfXa2m9eKuaRpnZrqdyxjcZ8FAl3bJKwACgkQnZrqdyxj
cZ92xQgAhgnARWJwh+uazayNrwB12TJA7G25RO8CUEwWaAY/io5QeO7nQCmNZ3cf
TflQpI1dL5qFpzU7uNunHqdqyhlaD0wwkHfrN71molr5sA1uRlIyxwwkE6coZQEC
n/LiGayoxqt2Ra06H4L4SGSjb7fcCl8eYjC3xjTx9Zdf/iXVcwYprBch5kcrToLV
s0NvRvDgwcaqsxQyybTO0wRvME/qz9JFtNUgl6H4PNSt3l/yv+rM+BgjyNR3tyKu
B1G4937GqBIAV4jYmK0a/LDnNfxs9EmOjuJLKCHmVxlfbsg8wasNk3kj+mdrh2O3
ZjCdh782GyGwp/ysddOHmIhXFyQMhQ==
=9kV2
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
Second KVM PPC update for 5.5
- Two fixes from Greg Kurz to fix memory leak bugs in the XIVE code.
We need to check the host page size is big enough to accomodate the
EQ. Let's do this before taking a reference on the EQ page to avoid
a potential leak if the check fails.
Cc: stable@vger.kernel.org # v5.2
Fixes: 13ce3297c5 ("KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configuration")
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The EQ page is allocated by the guest and then passed to the hypervisor
with the H_INT_SET_QUEUE_CONFIG hcall. A reference is taken on the page
before handing it over to the HW. This reference is dropped either when
the guest issues the H_INT_RESET hcall or when the KVM device is released.
But, the guest can legitimately call H_INT_SET_QUEUE_CONFIG several times,
either to reset the EQ (vCPU hot unplug) or to set a new EQ (guest reboot).
In both cases the existing EQ page reference is leaked because we simply
overwrite it in the XIVE queue structure without calling put_page().
This is especially visible when the guest memory is backed with huge pages:
start a VM up to the guest userspace, either reboot it or unplug a vCPU,
quit QEMU. The leak is observed by comparing the value of HugePages_Free in
/proc/meminfo before and after the VM is run.
Ideally we'd want the XIVE code to handle the EQ page de-allocation at the
platform level. This isn't the case right now because the various XIVE
drivers have different allocation needs. It could maybe worth introducing
hooks for this purpose instead of exposing XIVE internals to the drivers,
but this is certainly a huge work to be done later.
In the meantime, for easier backport, fix both vCPU unplug and guest reboot
leaks by introducing a wrapper around xive_native_configure_queue() that
does the necessary cleanup.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # v5.2
Fixes: 13ce3297c5 ("KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configuration")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Tested-by: Lijun Pan <ljp@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* Add capability to tell userspace whether we can single-step the guest.
* Improve the allocation of XIVE virtual processor IDs, to reduce the
risk of running out of IDs when running many VMs on POWER9.
* Rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
* Minor cleanups and improvements.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJdur0ZAAoJEJ2a6ncsY3Gf/xoH/j4wIOKcSjXFxPBAPvvR01Ld
Yt3n+ly/388uMuB4egsM/H+50CK8mpsMA02mQ40nwD4XoTFbOwhKS5wbgd4rQCoX
KtYr1Ylz+D4egw5W0c8Bu7Qdipt8TvKtSFGqDbARWg9oNiN0ZNd0zbuuzA9VpFkL
e58iwUHj1umWqPzHloqtHTyP1jakd9MMLoY5k+BpRKWSwj9ljUNi6JTGv/j8h2f/
JgKEXQ5Ug7Q3eqkMA+jx5fR5OL39rgDwhczd8WxSPz75UD5D3ijuEcmfXsJcMNHL
APggspJI6CHkjYNFAsGoPX4/MQwo0EOJMlWIgGxIoKAiHZbzCxJkYFb8Ibg59GU=
=LodM
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
KVM PPC update for 5.5
* Add capability to tell userspace whether we can single-step the guest.
* Improve the allocation of XIVE virtual processor IDs, to reduce the
risk of running out of IDs when running many VMs on POWER9.
* Rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
* Minor cleanups and improvements.
Add a new helper, kvm_put_kvm_no_destroy(), to handle putting a borrowed
reference[*] to the VM when installing a new file descriptor fails. KVM
expects the refcount to remain valid in this case, as the in-progress
ioctl() has an explicit reference to the VM. The primary motiviation
for the helper is to document that the 'kvm' pointer is still valid
after putting the borrowed reference, e.g. to document that doing
mutex(&kvm->lock) immediately after putting a ref to kvm isn't broken.
[*] When exposing a new object to userspace via a file descriptor, e.g.
a new vcpu, KVM grabs a reference to itself (the VM) prior to making
the object visible to userspace to avoid prematurely freeing the VM
in the scenario where userspace immediately closes file descriptor.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AIL=2 mode has no known users, so is not well tested or supported.
Disallow guests from selecting this mode because it may become
deprecated in future versions of the architecture.
This policy decision is not left to QEMU because KVM support is
required for AIL=2 (when injecting interrupts).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmppc_inject_interrupt does not implement LPCR[AIL]!=0 modes, which
can result in the guest receiving interrupts as if LPCR[AIL]=0
contrary to the ISA.
In practice, Linux guests cope with this deviation, but it should be
fixed.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This consolidates the HV interrupt delivery logic into one place.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
reset_msr sets the MSR for interrupt injection, but it's cleaner and
more flexible to provide a single op to set both MSR and PC for the
interrupt.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add a new attribute to both XIVE and XICS-on-XIVE KVM devices so that
userspace can tell how many interrupt servers it needs. If a VM needs
less than the current default of KVM_MAX_VCPUS (2048), we can allocate
less VPs in OPAL. Combined with a core stride (VSMT) that matches the
number of guest threads per core, this may substantially increases the
number of VMs that can run concurrently with an in-kernel XIVE device.
Since the legacy XIVE KVM device is exposed to userspace through the
XICS KVM API, a new attribute group is added to it for this purpose.
While here, fix the syntax of the existing KVM_DEV_XICS_GRP_SOURCES
in the XICS documentation.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XIVE VP is an internal structure which allow the XIVE interrupt
controller to maintain the interrupt context state of vCPUs non
dispatched on HW threads.
When a guest is started, the XIVE KVM device allocates a block of
XIVE VPs in OPAL, enough to accommodate the highest possible vCPU
id KVM_MAX_VCPU_ID (16384) packed down to KVM_MAX_VCPUS (2048).
With a guest's core stride of 8 and a threading mode of 1 (QEMU's
default), a VM must run at least 256 vCPUs to actually need such a
range of VPs.
A POWER9 system has a limited XIVE VP space : 512k and KVM is
currently wasting this HW resource with large VP allocations,
especially since a typical VM likely runs with a lot less vCPUs.
Make the size of the VP block configurable. Add an nr_servers
field to the XIVE structure and a function to set it for this
purpose.
Split VP allocation out of the device create function. Since the
VP block isn't used before the first vCPU connects to the XIVE KVM
device, allocation is now performed by kvmppc_xive_connect_vcpu().
This gives the opportunity to set nr_servers in between:
kvmppc_xive_create() / kvmppc_xive_native_create()
.
.
kvmppc_xive_set_nr_servers()
.
.
kvmppc_xive_connect_vcpu() / kvmppc_xive_native_connect_vcpu()
The connect_vcpu() functions check that the vCPU id is below nr_servers
and if it is the first vCPU they allocate the VP block. This is protected
against a concurrent update of nr_servers by kvmppc_xive_set_nr_servers()
with the xive->lock mutex.
Also, the block is allocated once for the device lifetime: nr_servers
should stay constant otherwise connect_vcpu() could generate a boggus
VP id and likely crash OPAL. It is thus forbidden to update nr_servers
once the block is allocated.
If the VP allocation fail, return ENOSPC which seems more appropriate to
report the depletion of system wide HW resource than ENOMEM or ENXIO.
A VM using a stride of 8 and 1 thread per core with 32 vCPUs would hence
only need 256 VPs instead of 2048. If the stride is set to match the number
of threads per core, this goes further down to 32.
This will be exposed to userspace by a subsequent patch.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reduce code duplication by consolidating the checking of vCPU ids and VP
ids to a common helper used by both legacy and native XIVE KVM devices.
And explain the magic with a comment.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Print out the VP id of each connected vCPU, this allow to see:
- the VP block base in which OPAL encodes information that may be
useful when debugging
- the packed vCPU id which may differ from the raw vCPU id if the
latter is >= KVM_MAX_VCPUS (2048)
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If we cannot allocate the XIVE VPs in OPAL, the creation of a XIVE or
XICS-on-XIVE device is aborted as expected, but we leave kvm->arch.xive
set forever since the release method isn't called in this case. Any
subsequent tentative to create a XIVE or XICS-on-XIVE for this VM will
thus always fail (DoS). This is a problem for QEMU since it destroys
and re-creates these devices when the VM is reset: the VM would be
restricted to using the much slower emulated XIVE or XICS forever.
As an alternative to adding rollback, do not assign kvm->arch.xive before
making sure the XIVE VPs are allocated in OPAL.
Cc: stable@vger.kernel.org # v5.2
Fixes: 5422e95103 ("KVM: PPC: Book3S HV: XIVE: Replace the 'destroy' method by a 'release' method")
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Given that in kvm_create_vm() there is:
kvm->mm = current->mm;
And that on every kvm_*_ioctl we have:
if (kvm->mm != current->mm)
return -EIO;
I see no reason to keep using current->mm instead of kvm->mm.
By doing so, we would reduce the use of 'global' variables on code, relying
more in the contents of kvm struct.
Signed-off-by: Leonardo Bras <leonardo@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reduces the number of calls to get_current() in order to get the value of
current->mm by doing it once and storing the value, since it is not
supposed to change inside the same process).
Signed-off-by: Leonardo Bras <leonardo@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When calling the KVM_SET_GUEST_DEBUG ioctl, userspace might request
the next instruction to be single stepped via the
KVM_GUESTDBG_SINGLESTEP control bit of the kvm_guest_debug structure.
This patch adds the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability in order
to inform userspace about the state of single stepping support.
We currently don't have support for guest single stepping implemented
in Book3S HV so the capability is only present for Book3S PR and
BookE.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmhv_switch_to_host() in arch/powerpc/kvm/book3s_hv_rmhandlers.S
needs to set kvmppc_vcore->in_guest to 0 to signal secondary CPUs to
continue. This happens after resetting the PCR. Before commit
13c7bb3c57 ("powerpc/64s: Set reserved PCR bits"), r0 would always
be 0 before it was stored to kvmppc_vcore->in_guest. However because
of this change in the commit:
/* Reset PCR */
ld r0, VCORE_PCR(r5)
- cmpdi r0, 0
+ LOAD_REG_IMMEDIATE(r6, PCR_MASK)
+ cmpld r0, r6
beq 18f
- li r0, 0
- mtspr SPRN_PCR, r0
+ mtspr SPRN_PCR, r6
18:
/* Signal secondary CPUs to continue */
stb r0,VCORE_IN_GUEST(r5)
We are no longer comparing r0 against 0 and loading it with 0 if it
contains something else. Hence when we store r0 to
kvmppc_vcore->in_guest, it might not be 0. This means that secondary
CPUs will not be signalled to continue. Those CPUs get stuck and
errors like the following are logged:
KVM: CPU 1 seems to be stuck
KVM: CPU 2 seems to be stuck
KVM: CPU 3 seems to be stuck
KVM: CPU 4 seems to be stuck
KVM: CPU 5 seems to be stuck
KVM: CPU 6 seems to be stuck
KVM: CPU 7 seems to be stuck
This can be reproduced with:
$ for i in `seq 1 7` ; do chcpu -d $i ; done ;
$ taskset -c 0 qemu-system-ppc64 -smp 8,threads=8 \
-M pseries,accel=kvm,kvm-type=HV -m 1G -nographic -vga none \
-kernel vmlinux -initrd initrd.cpio.xz
Fix by making sure r0 is 0 before storing it to
kvmppc_vcore->in_guest.
Fixes: 13c7bb3c57 ("powerpc/64s: Set reserved PCR bits")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191004025317.19340-1-jniethe5@gmail.com
a nested hypervisor has always been busted on Broadwell and newer processors,
and that has finally been fixed.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdlzTRAAoJEL/70l94x66DElcH/Rvhn5VQE/n2J+tKEXAICxQu
FqcTBJ5x2mp04aFe7xD3kWoKRJmz2lmHdw2ahFd4sqqLfGEFF/KW24ADI33vzLx/
UmT78O0Je3PX77TRnEXy+napbJny0iT6ikTAQKPbyQ151JlqlbPvatpDXXLPWQHv
jj6nKHCvMBrhV3kgaXO3cTFl8swX1hvR9lo9PcA2gRNt+HMN0heUmpfKughPoOes
JH+UNjsEr7MYlXYlIIc9o71EYH+kgPObwlLejy0ture+dvvZEJUJjZJE8H/XG5f2
ryXG9favaCOTAvaGf0R5Es+47A3crqUr6gHS0N28QKPn7x4hehIkKpA9dXQnWIw=
=1/LN
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"ARM and x86 bugfixes of all kinds.
The most visible one is that migrating a nested hypervisor has always
been busted on Broadwell and newer processors, and that has finally
been fixed"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
KVM: x86: omit "impossible" pmu MSRs from MSR list
KVM: nVMX: Fix consistency check on injected exception error code
KVM: x86: omit absent pmu MSRs from MSR list
selftests: kvm: Fix libkvm build error
kvm: vmx: Limit guest PMCs to those supported on the host
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
KVM: selftests: x86: clarify what is reported on KVM_GET_MSRS failure
KVM: VMX: Set VMENTER_L1D_FLUSH_NOT_REQUIRED if !X86_BUG_L1TF
selftests: kvm: add test for dirty logging inside nested guests
KVM: x86: fix nested guest live migration with PML
KVM: x86: assign two bits to track SPTE kinds
KVM: x86: Expose XSAVEERPTR to the guest
kvm: x86: Enumerate support for CLZERO instruction
kvm: x86: Use AMD CPUID semantics for AMD vCPUs
kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH
KVM: X86: Fix userspace set invalid CR4
kvm: x86: Fix a spurious -E2BIG in __do_cpuid_func
KVM: LAPIC: Loosen filter for adaptive tuning of lapic_timer_advance_ns
KVM: arm/arm64: vgic: Use the appropriate TRACE_INCLUDE_PATH
arm64: KVM: Kill hyp_alternate_select()
...
The largepages debugfs entry is incremented/decremented as shadow
pages are created or destroyed. Clearing it will result in an
underflow, which is harmless to KVM but ugly (and could be
misinterpreted by tools that use debugfs information), so make
this particular statistic read-only.
Cc: kvm-ppc@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On POWER9, under some circumstances, a broadcast TLB invalidation will
fail to invalidate the ERAT cache on some threads when there are
parallel mtpidr/mtlpidr happening on other threads of the same core.
This can cause stores to continue to go to a page after it's unmapped.
The workaround is to force an ERAT flush using PID=0 or LPID=0 tlbie
flush. This additional TLB flush will cause the ERAT cache
invalidation. Since we are using PID=0 or LPID=0, we don't get
filtered out by the TLB snoop filtering logic.
We need to still follow this up with another tlbie to take care of
store vs tlbie ordering issue explained in commit:
a5d4b5891c ("powerpc/mm: Fixup tlbie vs store ordering issue on
POWER9"). The presence of ERAT cache implies we can still get new
stores and they may miss store queue marking flush.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190924035254.24612-3-aneesh.kumar@linux.ibm.com
Rename the #define to indicate this is related to store vs tlbie
ordering issue. In the next patch, we will be adding another feature
flag that is used to handles ERAT flush vs tlbie ordering issue.
Fixes: a5d4b5891c ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190924035254.24612-2-aneesh.kumar@linux.ibm.com
On a 2-socket Power9 system with 32 cores/128 threads (SMT4) and 1TB
of memory running the following guest configs:
guest A:
- 224GB of memory
- 56 VCPUs (sockets=1,cores=28,threads=2), where:
VCPUs 0-1 are pinned to CPUs 0-3,
VCPUs 2-3 are pinned to CPUs 4-7,
...
VCPUs 54-55 are pinned to CPUs 108-111
guest B:
- 4GB of memory
- 4 VCPUs (sockets=1,cores=4,threads=1)
with the following workloads (with KSM and THP enabled in all):
guest A:
stress --cpu 40 --io 20 --vm 20 --vm-bytes 512M
guest B:
stress --cpu 4 --io 4 --vm 4 --vm-bytes 512M
host:
stress --cpu 4 --io 4 --vm 2 --vm-bytes 256M
the below soft-lockup traces were observed after an hour or so and
persisted until the host was reset (this was found to be reliably
reproducible for this configuration, for kernels 4.15, 4.18, 5.0,
and 5.3-rc5):
[ 1253.183290] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1253.183319] rcu: 124-....: (5250 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=1941
[ 1256.287426] watchdog: BUG: soft lockup - CPU#105 stuck for 23s! [CPU 52/KVM:19709]
[ 1264.075773] watchdog: BUG: soft lockup - CPU#24 stuck for 23s! [worker:19913]
[ 1264.079769] watchdog: BUG: soft lockup - CPU#31 stuck for 23s! [worker:20331]
[ 1264.095770] watchdog: BUG: soft lockup - CPU#45 stuck for 23s! [worker:20338]
[ 1264.131773] watchdog: BUG: soft lockup - CPU#64 stuck for 23s! [avocado:19525]
[ 1280.408480] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1316.198012] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1316.198032] rcu: 124-....: (21003 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=8243
[ 1340.411024] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1379.212609] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1379.212629] rcu: 124-....: (36756 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=14714
[ 1404.413615] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1442.227095] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1442.227115] rcu: 124-....: (52509 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=21403
[ 1455.111787] INFO: task worker:19907 blocked for more than 120 seconds.
[ 1455.111822] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111833] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.111884] INFO: task worker:19908 blocked for more than 120 seconds.
[ 1455.111905] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111925] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.111966] INFO: task worker:20328 blocked for more than 120 seconds.
[ 1455.111986] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111998] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112048] INFO: task worker:20330 blocked for more than 120 seconds.
[ 1455.112068] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112097] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112138] INFO: task worker:20332 blocked for more than 120 seconds.
[ 1455.112159] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112179] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112210] INFO: task worker:20333 blocked for more than 120 seconds.
[ 1455.112231] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112242] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112282] INFO: task worker:20335 blocked for more than 120 seconds.
[ 1455.112303] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112332] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112372] INFO: task worker:20336 blocked for more than 120 seconds.
[ 1455.112392] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
CPUs 45, 24, and 124 are stuck on spin locks, likely held by
CPUs 105 and 31.
CPUs 105 and 31 are stuck in smp_call_function_many(), waiting on
target CPU 42. For instance:
# CPU 105 registers (via xmon)
R00 = c00000000020b20c R16 = 00007d1bcd800000
R01 = c00000363eaa7970 R17 = 0000000000000001
R02 = c0000000019b3a00 R18 = 000000000000006b
R03 = 000000000000002a R19 = 00007d537d7aecf0
R04 = 000000000000002a R20 = 60000000000000e0
R05 = 000000000000002a R21 = 0801000000000080
R06 = c0002073fb0caa08 R22 = 0000000000000d60
R07 = c0000000019ddd78 R23 = 0000000000000001
R08 = 000000000000002a R24 = c00000000147a700
R09 = 0000000000000001 R25 = c0002073fb0ca908
R10 = c000008ffeb4e660 R26 = 0000000000000000
R11 = c0002073fb0ca900 R27 = c0000000019e2464
R12 = c000000000050790 R28 = c0000000000812b0
R13 = c000207fff623e00 R29 = c0002073fb0ca808
R14 = 00007d1bbee00000 R30 = c0002073fb0ca800
R15 = 00007d1bcd600000 R31 = 0000000000000800
pc = c00000000020b260 smp_call_function_many+0x3d0/0x460
cfar= c00000000020b270 smp_call_function_many+0x3e0/0x460
lr = c00000000020b20c smp_call_function_many+0x37c/0x460
msr = 900000010288b033 cr = 44024824
ctr = c000000000050790 xer = 0000000000000000 trap = 100
CPU 42 is running normally, doing VCPU work:
# CPU 42 stack trace (via xmon)
[link register ] c00800001be17188 kvmppc_book3s_radix_page_fault+0x90/0x2b0 [kvm_hv]
[c000008ed3343820] c000008ed3343850 (unreliable)
[c000008ed33438d0] c00800001be11b6c kvmppc_book3s_hv_page_fault+0x264/0xe30 [kvm_hv]
[c000008ed33439d0] c00800001be0d7b4 kvmppc_vcpu_run_hv+0x8dc/0xb50 [kvm_hv]
[c000008ed3343ae0] c00800001c10891c kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000008ed3343b00] c00800001c10475c kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm]
[c000008ed3343b90] c00800001c0f5a78 kvm_vcpu_ioctl+0x470/0x7c8 [kvm]
[c000008ed3343d00] c000000000475450 do_vfs_ioctl+0xe0/0xc70
[c000008ed3343db0] c0000000004760e4 ksys_ioctl+0x104/0x120
[c000008ed3343e00] c000000000476128 sys_ioctl+0x28/0x80
[c000008ed3343e20] c00000000000b388 system_call+0x5c/0x70
--- Exception: c00 (System Call) at 00007d545cfd7694
SP (7d53ff7edf50) is in userspace
It was subsequently found that ipi_message[PPC_MSG_CALL_FUNCTION]
was set for CPU 42 by at least 1 of the CPUs waiting in
smp_call_function_many(), but somehow the corresponding
call_single_queue entries were never processed by CPU 42, causing the
callers to spin in csd_lock_wait() indefinitely.
Nick Piggin suggested something similar to the following sequence as
a possible explanation (interleaving of CALL_FUNCTION/RESCHEDULE
IPI messages seems to be most common, but any mix of CALL_FUNCTION and
!CALL_FUNCTION messages could trigger it):
CPU
X: smp_muxed_ipi_set_message():
X: smp_mb()
X: message[RESCHEDULE] = 1
X: doorbell_global_ipi(42):
X: kvmppc_set_host_ipi(42, 1)
X: ppc_msgsnd_sync()/smp_mb()
X: ppc_msgsnd() -> 42
42: doorbell_exception(): // from CPU X
42: ppc_msgsync()
105: smp_muxed_ipi_set_message():
105: smb_mb()
// STORE DEFERRED DUE TO RE-ORDERING
--105: message[CALL_FUNCTION] = 1
| 105: doorbell_global_ipi(42):
| 105: kvmppc_set_host_ipi(42, 1)
| 42: kvmppc_set_host_ipi(42, 0)
| 42: smp_ipi_demux_relaxed()
| 42: // returns to executing guest
| // RE-ORDERED STORE COMPLETES
->105: message[CALL_FUNCTION] = 1
105: ppc_msgsnd_sync()/smp_mb()
105: ppc_msgsnd() -> 42
42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored
105: // hangs waiting on 42 to process messages/call_single_queue
This can be prevented with an smp_mb() at the beginning of
kvmppc_set_host_ipi(), such that stores to message[<type>] (or other
state indicated by the host_ipi flag) are ordered vs. the store to
to host_ipi.
However, doing so might still allow for the following scenario (not
yet observed):
CPU
X: smp_muxed_ipi_set_message():
X: smp_mb()
X: message[RESCHEDULE] = 1
X: doorbell_global_ipi(42):
X: kvmppc_set_host_ipi(42, 1)
X: ppc_msgsnd_sync()/smp_mb()
X: ppc_msgsnd() -> 42
42: doorbell_exception(): // from CPU X
42: ppc_msgsync()
// STORE DEFERRED DUE TO RE-ORDERING
-- 42: kvmppc_set_host_ipi(42, 0)
| 42: smp_ipi_demux_relaxed()
| 105: smp_muxed_ipi_set_message():
| 105: smb_mb()
| 105: message[CALL_FUNCTION] = 1
| 105: doorbell_global_ipi(42):
| 105: kvmppc_set_host_ipi(42, 1)
| // RE-ORDERED STORE COMPLETES
-> 42: kvmppc_set_host_ipi(42, 0)
42: // returns to executing guest
105: ppc_msgsnd_sync()/smp_mb()
105: ppc_msgsnd() -> 42
42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored
105: // hangs waiting on 42 to process messages/call_single_queue
Fixing this scenario would require an smp_mb() *after* clearing
host_ipi flag in kvmppc_set_host_ipi() to order the store vs.
subsequent processing of IPI messages.
To handle both cases, this patch splits kvmppc_set_host_ipi() into
separate set/clear functions, where we execute smp_mb() prior to
setting host_ipi flag, and after clearing host_ipi flag. These
functions pair with each other to synchronize the sender and receiver
sides.
With that change in place the above workload ran for 20 hours without
triggering any lock-ups.
Fixes: 755563bc79 ("powerpc/powernv: Fixes for hypervisor doorbell handling") # v4.0
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190911223155.16045-1-mdroth@linux.vnet.ibm.com
Currently the reserved bits of the Processor Compatibility
Register (PCR) are cleared as per the Programming Note in Section
1.3.3 of version 3.0B of the Power ISA. This causes all new
architecture features to be made available when running on newer
processors with new architecture features added to the PCR as bits
must be set to disable a given feature.
For example to disable new features added as part of Version 2.07 of
the ISA the corresponding bit in the PCR needs to be set.
As new processor features generally require explicit kernel support
they should be disabled until such support is implemented. Therefore
kernels should set all unknown/reserved bits in the PCR such that any
new architecture features which the kernel does not currently know
about get disabled.
An update is planned to the ISA to clarify that the PCR is an
exception to the Programming Note on reserved bits in Section 1.3.3.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Tested-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190917004605.22471-2-alistair@popple.id.au
- Initial support for running on a system with an Ultravisor, which is software
that runs below the hypervisor and protects guests against some attacks by
the hypervisor.
- Support for building the kernel to run as a "Secure Virtual Machine", ie. as
a guest capable of running on a system with an Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with medium
sized DMA masks (> 32 && < 59 bits) to use more than 2GB of DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas macros, both
to make it more readable and also enable some future optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to:
Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh
Kumar K.V, Anju T Sudhakar, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Cédric Le Goater, Christophe JAILLET, Christophe Leroy,
Christopher M. Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens,
David Gibson, David Hildenbrand, Desnes A. Nunes do Rosario, Ganesh Goudar,
Gautham R. Shenoy, Greg Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari
Bathini, Joakim Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras,
Lianbo Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan Chancellor,
Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Qian Cai, Ram
Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm, Sam Bobroff, Santosh Sivaraj,
Segher Boessenkool, Sukadev Bhattiprolu, Thiago Bauermann, Thiago Jung
Bauermann, Thomas Gleixner, Tom Lendacky, Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2EtEcTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPfsD/9uXyBXn3anI/H08+mk74k5gCsmMQpn
D442CD/ByogZcccp23yBTlhawtCE03hcHnCLygn0Xgd8a4YvHts/RGHUe3fPHqlG
bEyZ7jsLVz5ebNZQP7r4eGs2pSzCajwJy2N9HJ/C1ojf15rrfRxoVJtnyhE2wXpm
DL+6o2K+nUCB3gTQ1Inr3DnWzoGOOUfNTOea2u+J+yfHwGRqOBYpevwqiwy5eelK
aRjUJCqMTvrzra49MeFwjo0Nt3/Y8UNcwA+JlGdeR8bRuWhFrYmyBRiZEKPaujNO
5EAfghBBlB0KQCqvF/tRM/c0OftHqK59AMobP9T7u9oOaBXeF/FpZX/iXjzNDPsN
j9Oo2tKLTu/YVEXqBFuREGP+znANr1Wo4CFyOG8SbvYz0HFjR6XbtRJsS+0e8GWl
kqX5/ZhYz3lBnKSNe9jgWOrh/J0KCSFigBTEWJT3xsn4YE8x8kK2l9KPqAIldWEP
sKb2UjGS7v0NKq+NvShH88Q9AeQUEIjTcg/9aDDQDe6FaRQ7KiF8bUxSdwSPi+Fn
j0lnF6i+1ATWZKuCr85veVi7C5qoe/+MqalnmP7MxULyzgXLLxUgN0SzEYO6QofK
LQK/VaH2XVr5+M5YAb7K4/NX5gbM3s1bKrCiUy4EyHNvgG7gricYdbz6HgAjKpR7
oP0rHfgmVYvF1g==
=WlW+
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This is a bit late, partly due to me travelling, and partly due to a
power outage knocking out some of my test systems *while* I was
travelling.
- Initial support for running on a system with an Ultravisor, which
is software that runs below the hypervisor and protects guests
against some attacks by the hypervisor.
- Support for building the kernel to run as a "Secure Virtual
Machine", ie. as a guest capable of running on a system with an
Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with
medium sized DMA masks (> 32 && < 59 bits) to use more than 2GB of
DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas
macros, both to make it more readable and also enable some future
optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to: Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Cédric Le Goater, Christophe
JAILLET, Christophe Leroy, Christopher M. Riedl, Christoph Hellwig,
Claudio Carvalho, Daniel Axtens, David Gibson, David Hildenbrand,
Desnes A. Nunes do Rosario, Ganesh Goudar, Gautham R. Shenoy, Greg
Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari Bathini, Joakim
Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras, Lianbo
Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Qian Cai, Ram Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm,
Sam Bobroff, Santosh Sivaraj, Segher Boessenkool, Sukadev Bhattiprolu,
Thiago Bauermann, Thiago Jung Bauermann, Thomas Gleixner, Tom
Lendacky, Vasant Hegde"
* tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (264 commits)
powerpc/mm/mce: Keep irqs disabled during lockless page table walk
powerpc: Use ftrace_graph_ret_addr() when unwinding
powerpc/ftrace: Enable HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
ftrace: Look up the address of return_to_handler() using helpers
powerpc: dump kernel log before carrying out fadump or kdump
docs: powerpc: Add missing documentation reference
powerpc/xmon: Fix output of XIVE IPI
powerpc/xmon: Improve output of XIVE interrupts
powerpc/mm/radix: remove useless kernel messages
powerpc/fadump: support holes in kernel boot memory area
powerpc/fadump: remove RMA_START and RMA_END macros
powerpc/fadump: update documentation about option to release opalcore
powerpc/fadump: consider f/w load area
powerpc/opalcore: provide an option to invalidate /sys/firmware/opal/core file
powerpc/opalcore: export /sys/firmware/opal/core for analysing opal crashes
powerpc/fadump: update documentation about CONFIG_PRESERVE_FA_DUMP
powerpc/fadump: add support to preserve crash data on FADUMP disabled kernel
powerpc/fadump: improve how crashed kernel's memory is reserved
powerpc/fadump: consider reserved ranges while releasing memory
powerpc/fadump: make crash memory ranges array allocation generic
...
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
- Some prep for extending the uses of the rmap array
- Various minor fixes
- Commits from the powerpc topic/ppc-kvm branch, which fix a problem
with interrupts arriving after free_irq, causing host hangs and crashes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJdZwd7AAoJEJ2a6ncsY3GffDQH/2q+c2z56ZO2lzfk4Hy9piWn
Z9PR9n72Z6TiMyVCl7CtLCyI+lRy3QVZnol14ugQNX4aFJiiwDGRHJF0wNxjeok4
4DAIqBc60qD2dkp1LwtUM1YsLsr/n3tdrGU1b0VrHGoGTVhJDpbjhJsblXZ1ujGr
KxQ1Uf4XsW5T7kovHuzj+FFlbB5nbEX5cBIU68maBGZSCl355wCOW35rKVITTIIv
+VKkO2aNbk6bRmZmOi2v1D65eQa2+TKe/o48TneJv1WhL4h4hDyHdmVeWRNoAI6C
ve8mwCAVs7IITjCJ1qcGnI8NzVxMlXgwVir7sQ1aslRLZfeRAm5FOIPNEz1ADXs=
=3oLd
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
PPC KVM update for 5.4
- Some prep for extending the uses of the rmap array
- Various minor fixes
- Commits from the powerpc topic/ppc-kvm branch, which fix a problem
with interrupts arriving after free_irq, causing host hangs and crashes.
Introduce two options to control the use of the tlbie instruction. A
boot time option which completely disables the kernel using the
instruction, this is currently incompatible with HASH MMU, KVM, and
coherent accelerators.
And a debugfs option can be switched at runtime and avoids using tlbie
for invalidating CPU TLBs for normal process and kernel address
mappings. Coherent accelerators are still managed with tlbie, as will
KVM partition scope translations.
Cross-CPU TLB flushing is implemented with IPIs and tlbiel. This is a
basic implementation which does not attempt to make any optimisation
beyond the tlbie implementation.
This is useful for performance testing among other things. For example
in certain situations on large systems, using IPIs may be faster than
tlbie as they can be directed rather than broadcast. Later we may also
take advantage of the IPIs to do more interesting things such as trim
the mm cpumask more aggressively.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-7-npiggin@gmail.com
There should be no functional changes.
- Use calls to existing radix_tlb.c functions in flush_partition.
- Rename radix__flush_tlb_lpid to radix__flush_all_lpid and similar,
because they flush everything, matching flush_all_mm rather than
flush_tlb_mm for the lpid.
- Remove some unused radix_tlb.c flush primitives.
Signed-off: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-3-npiggin@gmail.com
When an SVM makes an hypercall or incurs some other exception, the
Ultravisor usually forwards (a.k.a. reflects) the exceptions to the
Hypervisor. After processing the exception, Hypervisor uses the
UV_RETURN ultracall to return control back to the SVM.
The expected register state on entry to this ultracall is:
* Non-volatile registers are restored to their original values.
* If returning from an hypercall, register R0 contains the return value
(unlike other ultracalls) and, registers R4 through R12 contain any
output values of the hypercall.
* R3 contains the ultracall number, i.e UV_RETURN.
* If returning with a synthesized interrupt, R2 contains the
synthesized interrupt number.
Thanks to input from Paul Mackerras, Ram Pai and Mike Anderson.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190822034838.27876-8-cclaudio@linux.ibm.com
Invalidating a TCE cache entry for each updated TCE is quite expensive.
This makes use of the new iommu_table_ops::xchg_no_kill()/tce_kill()
callbacks to bring down the time spent in mapping a huge guest DMA window;
roughly 20s to 10s for each guest's 100GB of DMA space.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-3-aik@ozlabs.ru
H_PUT_TCE_INDIRECT handlers receive a page with up to 512 TCEs from
a guest. Although we verify correctness of TCEs before we do anything
with the existing tables, there is a small window when a check in
kvmppc_tce_validate might pass and right after that the guest alters
the page with TCEs which can cause early exit from the handler and
leave srcu_read_lock(&vcpu->kvm->srcu) (virtual mode) or lock_rmap(rmap)
(real mode) locked.
This fixes the bug by jumping to the common exit code with an appropriate
unlock.
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190826045520.92153-1-aik@ozlabs.ru
On POWER9, when userspace reads the value of the DPDES register on a
vCPU, it is possible for 0 to be returned although there is a doorbell
interrupt pending for the vCPU. This can lead to a doorbell interrupt
being lost across migration. If the guest kernel uses doorbell
interrupts for IPIs, then it could malfunction because of the lost
interrupt.
This happens because a newly-generated doorbell interrupt is signalled
by setting vcpu->arch.doorbell_request to 1; the DPDES value in
vcpu->arch.vcore->dpdes is not updated, because it can only be updated
when holding the vcpu mutex, in order to avoid races.
To fix this, we OR in vcpu->arch.doorbell_request when reading the
DPDES value.
Cc: stable@vger.kernel.org # v4.13+
Fixes: 579006944e ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
When we are running multiple vcores on the same physical core, they
could be from different VMs and so it is possible that one of the
VMs could have its arch.mmu_ready flag cleared (for example by a
concurrent HPT resize) when we go to run it on a physical core.
We currently check the arch.mmu_ready flag for the primary vcore
but not the flags for the other vcores that will be run alongside
it. This adds that check, and also a check when we select the
secondary vcores from the preempted vcores list.
Cc: stable@vger.kernel.org # v4.14+
Fixes: 38c53af853 ("KVM: PPC: Book3S HV: Fix exclusion between HPT resizing and other HPT updates")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There are some POWER9 machines where the OPAL firmware does not support
the OPAL_XIVE_GET_QUEUE_STATE and OPAL_XIVE_SET_QUEUE_STATE calls.
The impact of this is that a guest using XIVE natively will not be able
to be migrated successfully. On the source side, the get_attr operation
on the KVM native device for the KVM_DEV_XIVE_GRP_EQ_CONFIG attribute
will fail; on the destination side, the set_attr operation for the same
attribute will fail.
This adds tests for the existence of the OPAL get/set queue state
functions, and if they are not supported, the XIVE-native KVM device
is not created and the KVM_CAP_PPC_IRQ_XIVE capability returns false.
Userspace can then either provide a software emulation of XIVE, or
else tell the guest that it does not have a XIVE controller available
to it.
Cc: stable@vger.kernel.org # v5.2+
Fixes: 3fab2d1058 ("KVM: PPC: Book3S HV: XIVE: Activate XIVE exploitation mode")
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
H_PUT_TCE_INDIRECT handlers receive a page with up to 512 TCEs from
a guest. Although we verify correctness of TCEs before we do anything
with the existing tables, there is a small window when a check in
kvmppc_tce_validate might pass and right after that the guest alters
the page of TCEs, causing an early exit from the handler and leaving
srcu_read_lock(&vcpu->kvm->srcu) (virtual mode) or lock_rmap(rmap)
(real mode) locked.
This fixes the bug by jumping to the common exit code with an appropriate
unlock.
Cc: stable@vger.kernel.org # v4.11+
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The rmap array in the guest memslot is an array of size number of guest
pages, allocated at memslot creation time. Each rmap entry in this array
is used to store information about the guest page to which it
corresponds. For example for a hpt guest it is used to store a lock bit,
rc bits, a present bit and the index of a hpt entry in the guest hpt
which maps this page. For a radix guest which is running nested guests
it is used to store a pointer to a linked list of nested rmap entries
which store the nested guest physical address which maps this guest
address and for which there is a pte in the shadow page table.
As there are currently two uses for the rmap array, and the potential
for this to expand to more in the future, define a type field (being the
top 8 bits of the rmap entry) to be used to define the type of the rmap
entry which is currently present and define two values for this field
for the two current uses of the rmap array.
Since the nested case uses the rmap entry to store a pointer, define
this type as having the two high bits set as is expected for a pointer.
Define the hpt entry type as having bit 56 set (bit 7 IBM bit ordering).
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Fix the error below triggered by `-Wimplicit-fallthrough`, by tagging
it as an expected fall-through.
arch/powerpc/kvm/book3s_32_mmu.c: In function ‘kvmppc_mmu_book3s_32_xlate_pte’:
arch/powerpc/kvm/book3s_32_mmu.c:241:21: error: this statement may fall through [-Werror=implicit-fallthrough=]
pte->may_write = true;
~~~~~~~~~~~~~~~^~~~~~
arch/powerpc/kvm/book3s_32_mmu.c:242:5: note: here
case 3:
^~~~
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in fixes for the XIVE interrupt controller which touch both
generic powerpc and PPC KVM code. To avoid merge conflicts, these
commits will go upstream via the powerpc tree as well as the KVM tree.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
KVM implementations that wrap struct kvm_vcpu with a vendor specific
struct, e.g. struct vcpu_vmx, must place the vcpu member at offset 0,
otherwise the usercopy region intended to encompass struct kvm_vcpu_arch
will instead overlap random chunks of the vendor specific struct.
E.g. padding a large number of bytes before struct kvm_vcpu triggers
a usercopy warn when running with CONFIG_HARDENED_USERCOPY=y.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Testing has revealed the existence of a race condition where a XIVE
interrupt being shut down can be in one of the XIVE interrupt queues
(of which there are up to 8 per CPU, one for each priority) at the
point where free_irq() is called. If this happens, can return an
interrupt number which has been shut down. This can lead to various
symptoms:
- irq_to_desc(irq) can be NULL. In this case, no end-of-interrupt
function gets called, resulting in the CPU's elevated interrupt
priority (numerically lowered CPPR) never gets reset. That then
means that the CPU stops processing interrupts, causing device
timeouts and other errors in various device drivers.
- The irq descriptor or related data structures can be in the process
of being freed as the interrupt code is using them. This typically
leads to crashes due to bad pointer dereferences.
This race is basically what commit 62e0468650 ("genirq: Add optional
hardware synchronization for shutdown", 2019-06-28) is intended to
fix, given a get_irqchip_state() method for the interrupt controller
being used. It works by polling the interrupt controller when an
interrupt is being freed until the controller says it is not pending.
With XIVE, the PQ bits of the interrupt source indicate the state of
the interrupt source, and in particular the P bit goes from 0 to 1 at
the point where the hardware writes an entry into the interrupt queue
that this interrupt is directed towards. Normally, the code will then
process the interrupt and do an end-of-interrupt (EOI) operation which
will reset PQ to 00 (assuming another interrupt hasn't been generated
in the meantime). However, there are situations where the code resets
P even though a queue entry exists (for example, by setting PQ to 01,
which disables the interrupt source), and also situations where the
code leaves P at 1 after removing the queue entry (for example, this
is done for escalation interrupts so they cannot fire again until
they are explicitly re-enabled).
The code already has a 'saved_p' flag for the interrupt source which
indicates that a queue entry exists, although it isn't maintained
consistently. This patch adds a 'stale_p' flag to indicate that
P has been left at 1 after processing a queue entry, and adds code
to set and clear saved_p and stale_p as necessary to maintain a
consistent indication of whether a queue entry may or may not exist.
With this, we can implement xive_get_irqchip_state() by looking at
stale_p, saved_p and the ESB PQ bits for the interrupt.
There is some additional code to handle escalation interrupts
properly; because they are enabled and disabled in KVM assembly code,
which does not have access to the xive_irq_data struct for the
escalation interrupt. Hence, stale_p may be incorrect when the
escalation interrupt is freed in kvmppc_xive_{,native_}cleanup_vcpu().
Fortunately, we can fix it up by looking at vcpu->arch.xive_esc_on,
with some careful attention to barriers in order to ensure the correct
result if xive_esc_irq() races with kvmppc_xive_cleanup_vcpu().
Finally, this adds code to make noise on the console (pr_crit and
WARN_ON(1)) if we find an interrupt queue entry for an interrupt
which does not have a descriptor. While this won't catch the race
reliably, if it does get triggered it will be an indication that
the race is occurring and needs to be debugged.
Fixes: 243e25112d ("powerpc/xive: Native exploitation of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813100648.GE9567@blackberry
At present, when running a guest on POWER9 using HV KVM but not using
an in-kernel interrupt controller (XICS or XIVE), for example if QEMU
is run with the kernel_irqchip=off option, the guest entry code goes
ahead and tries to load the guest context into the XIVE hardware, even
though no context has been set up.
To fix this, we check that the "CAM word" is non-zero before pushing
it to the hardware. The CAM word is initialized to a non-zero value
in kvmppc_xive_connect_vcpu() and kvmppc_xive_native_connect_vcpu(),
and is now cleared in kvmppc_xive_{,native_}cleanup_vcpu.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.12+
Reported-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190813100100.GC9567@blackberry