Currently, user who is adding an action expects HW to report stats,
however it does not have exact expectations about the stats types.
That is aligned with TCA_ACT_HW_STATS_TYPE_ANY.
Allow user to specify the type of HW stats for an action and require it.
Pass the information down to flow_offload layer.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce new type for disabled HW stats and allow the value in
mlxsw offload.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce new type for delayed HW stats and allow the value in
mlx5 offload.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce new type for immediate HW stats and allow the value in
mlxsw offload.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce flow_action_basic_hw_stats_types_check() helper and use it
in drivers. That sanitizes the drivers which do not have support
for action HW stats types.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initially, pass "ANY" (struct is zeroed) to the drivers as that is the
current implicit value coming down to flow_offload. Add a bool
indicating that entries have mixed HW stats type.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Invoke ndo_setup_tc() as appropriate to signal init / replacement,
destroying and dumping of pFIFO / bFIFO Qdisc.
A lot of the FIFO logic is used for pFIFO_head_drop as well, but that's a
semantically very different Qdisc that isn't really in the same boat as
pFIFO / bFIFO. Split some of the functions to keep the Qdisc intact.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Realign a comment after the change introduced by the
previous patch.
Signed-off-by: Leslie Monis <lesliemonis@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The variable pie_vars->accu_prob is used as an accumulator for
probability values. Since probabilty values are scaled using the
MAX_PROB macro denoting (2^64 - 1), pie_vars->accu_prob is
likely to overflow as it is of type u64.
The variable pie_vars->accu_prob_overflows counts the number of
times the variable pie_vars->accu_prob overflows.
The MAX_PROB macro needs to be equal to at least (2^39 - 1) in
order to do precise calculations without any underflow. Thus
MAX_PROB can be reduced to (2^56 - 1) without affecting the
precision in calculations drastically. Doing so will eliminate
the need for the variable pie_vars->accu_prob_overflows as the
variable pie_vars->accu_prob will never overflow.
Removing the variable pie_vars->accu_prob_overflows also reduces
the size of the structure pie_vars to exactly 64 bytes.
Signed-off-by: Mohit P. Tahiliani <tahiliani@nitk.edu.in>
Signed-off-by: Gautam Ramakrishnan <gautamramk@gmail.com>
Signed-off-by: Leslie Monis <lesliemonis@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove ambiguity by using the term backlog instead of qlen when
representing the queue length in bytes.
Signed-off-by: Mohit P. Tahiliani <tahiliani@nitk.edu.in>
Signed-off-by: Gautam Ramakrishnan <gautamramk@gmail.com>
Signed-off-by: Leslie Monis <lesliemonis@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to the immense variety of classification keys and actions available
for tc-flower, as well as due to potentially very different DSA switch
capabilities, it doesn't make a lot of sense for the DSA mid layer to
even attempt to interpret these. So just pass them on to the underlying
switch driver.
DSA implements just the standard boilerplate for binding and unbinding
flow blocks to ports, since nobody wants to deal with that.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the NF flow tables infrastructure for CT offload.
Create a nf flow table per zone.
Next patches will add FT entries to this table, and do
the software offload.
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Reviewed-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-02-28
The following pull-request contains BPF updates for your *net-next* tree.
We've added 41 non-merge commits during the last 7 day(s) which contain
a total of 49 files changed, 1383 insertions(+), 499 deletions(-).
The main changes are:
1) BPF and Real-Time nicely co-exist.
2) bpftool feature improvements.
3) retrieve bpf_sk_storage via INET_DIAG.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
So the scm_stat_{add,del} helper can be invoked with no
additional lock held.
This clean-up the code a bit and will make the next
patch easier.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds INET_DIAG support to bpf_sk_storage.
1. Although this series adds bpf_sk_storage diag capability to inet sk,
bpf_sk_storage is in general applicable to all fullsock. Hence, the
bpf_sk_storage logic will operate on SK_DIAG_* nlattr. The caller
will pass in its specific nesting nlattr (e.g. INET_DIAG_*) as
the argument.
2. The request will be like:
INET_DIAG_REQ_SK_BPF_STORAGES (nla_nest) (defined in latter patch)
SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
......
Considering there could have multiple bpf_sk_storages in a sk,
instead of reusing INET_DIAG_INFO ("ss -i"), the user can select
some specific bpf_sk_storage to dump by specifying an array of
SK_DIAG_BPF_STORAGE_REQ_MAP_FD.
If no SK_DIAG_BPF_STORAGE_REQ_MAP_FD is specified (i.e. an empty
INET_DIAG_REQ_SK_BPF_STORAGES), it will dump all bpf_sk_storages
of a sk.
3. The reply will be like:
INET_DIAG_BPF_SK_STORAGES (nla_nest) (defined in latter patch)
SK_DIAG_BPF_STORAGE (nla_nest)
SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
SK_DIAG_BPF_STORAGE (nla_nest)
SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
......
4. Unlike other INET_DIAG info of a sk which is pretty static, the size
required to dump the bpf_sk_storage(s) of a sk is dynamic as the
system adding more bpf_sk_storage_map. It is hard to set a static
min_dump_alloc size.
Hence, this series learns it at the runtime and adjust the
cb->min_dump_alloc as it iterates all sk(s) of a system. The
"unsigned int *res_diag_size" in bpf_sk_storage_diag_put()
is for this purpose.
The next patch will update the cb->min_dump_alloc as it
iterates the sk(s).
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230421.1975729-1-kafai@fb.com
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Propagate the resolved link configuration down via DSA's
phylink_mac_link_up() operation to allow split PCS/MAC to work.
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add cookie argument to devlink_trap_report() allowing driver to pass in
the user cookie. Pass on the cookie down to drop monitor code.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
If driver passed along the cookie, push it through Netlink.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow driver to indicate cookie metadata for registered traps.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend struct flow_action_entry in order to hold TC action cookie
specified by user inserting the action.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
* lots of small documentation fixes, from Jérôme Pouiller
* beacon protection (BIGTK) support from Jouni Malinen
* some initial code for TID configuration, from Tamizh chelvam
* I reverted some new API before it's actually used, because
it's wrong to mix controlled port and preauth
* a few other cleanups/fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEH1e1rEeCd0AIMq6MB8qZga/fl8QFAl5UFlsACgkQB8qZga/f
l8SwNQ//Y/dELGODumDxY03l/Bj/+XL7HYl3Yn+J8mt2mYPC3zjTjvcRJBApiAog
1Oyd75fd+EqjxDUT+ngN8uJLQ/yCVsdwfpZhwV7VanAOuLI9aYkIXnai/Qs96rj3
yDIlrBVsmfsaxf/2e9UmsLmeUSm7C5s1EzaAIwoRGvcUH0pbH9WYAXF1QV+8fmXa
yoXuHV5Bv+wOW2xWqWJsFpoV109AW24pwJm0vlILcpFP/jno2GsRvwEpnC/GJhEA
4+jfEj0KlFkOewp0/HcqrUJp4yDEBhnhTTYgDL3hSWgKRVorKqY4/QmpKQCmpVQk
Qrb6k+TrnLmKBQKdqfd+PKAEC9U/9Wjg0KLPyc9btBGFNSUG3QoDigzxxIvSlW6w
2vyanDW6780FTIi8sA7sq1cBLosIyoFG44YYwbMidVtxhBk1LMRvetNAOnAJeycp
Abbp/A2EdvzM+ZMNMRwWlsgig6WkGY7jy/zpcmQUdALM+yT2o7D5ZwxE5pa2ggds
jf0eER1vVCEpOL70swNSZbAnDNCzBzTN64GX9gQIjdVT+nMUYQXwuOgEmho1FshD
bgZz4PcaOCCSTice9GYCC3C9OqXBsE2DyBwytYYzahyDiQH13Iz6wEq/+tIIjzCN
KKRdD12TXaPobLwv5zI3kogJ1I4P1fa6RZYpkngLpMbQrQ7qiDI=
=x0rf
-----END PGP SIGNATURE-----
Merge tag 'mac80211-next-for-net-next-2020-02-24' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211-next
Johannes Berg says:
====================
A new set of changes:
* lots of small documentation fixes, from Jérôme Pouiller
* beacon protection (BIGTK) support from Jouni Malinen
* some initial code for TID configuration, from Tamizh chelvam
* I reverted some new API before it's actually used, because
it's wrong to mix controlled port and preauth
* a few other cleanups/fixes
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Special handling is needed in bareudp module for IP & MPLS as they
support more than one ethertypes.
MPLS has 2 ethertypes. 0x8847 for MPLS unicast and 0x8848 for MPLS multicast.
While decapsulating MPLS packet from UDP packet the tunnel destination IP
address is checked to determine the ethertype. The ethertype of the packet
will be set to 0x8848 if the tunnel destination IP address is a multicast
IP address. The ethertype of the packet will be set to 0x8847 if the
tunnel destination IP address is a unicast IP address.
IP has 2 ethertypes.0x0800 for IPV4 and 0x86dd for IPv6. The version
field of the IP header tunnelled will be checked to determine the ethertype.
This special handling to tunnel additional ethertypes will be disabled
by default and can be enabled using a flag called multiproto. This flag can
be used only with ethertypes 0x8847 and 0x0800.
Signed-off-by: Martin Varghese <martin.varghese@nokia.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Bareudp tunnel module provides a generic L3 encapsulation
tunnelling module for tunnelling different protocols like MPLS,
IP,NSH etc inside a UDP tunnel.
Signed-off-by: Martin Varghese <martin.varghese@nokia.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add packet traps that can report packets that were dropped during ACL
processing.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement drv_set_tid_config api to allow TID specific
configuration and drv_reset_tid_config api to reset peer
specific TID configuration. This per-TID onfiguration
will be applied for all the connected stations when MAC is NULL.
Signed-off-by: Tamizh chelvam <tamizhr@codeaurora.org>
Link: https://lore.kernel.org/r/1579506687-18296-7-git-send-email-tamizhr@codeaurora.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This patch adds support to configure per TID RTSCTS control
configuration to enable/disable through the
NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL attribute.
Signed-off-by: Tamizh chelvam <tamizhr@codeaurora.org>
Link: https://lore.kernel.org/r/1579506687-18296-5-git-send-email-tamizhr@codeaurora.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This patch adds support to configure per TID AMPDU control
configuration to enable/disable aggregation through the
NL80211_TID_CONFIG_ATTR_AMPDU_CTRL attribute.
Signed-off-by: Tamizh chelvam <tamizhr@codeaurora.org>
Link: https://lore.kernel.org/r/1579506687-18296-4-git-send-email-tamizhr@codeaurora.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This patch adds support to configure per TID retry configuration
through the NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes. This TID specific
retry configuration will have more precedence than phy level
configuration.
Signed-off-by: Tamizh chelvam <tamizhr@codeaurora.org>
Link: https://lore.kernel.org/r/1579506687-18296-3-git-send-email-tamizhr@codeaurora.org
[rebase completely on top of my previous API changes]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Make some changes to the TID-config API:
* use u16 in nl80211 (only, and restrict to using 8 bits for now),
to avoid issues in the future if we ever want to use higher TIDs.
* reject empty TIDs mask (via netlink policy)
* change feature advertising to not use extended feature flags but
have own mechanism for this, which simplifies the code
* fix all variable names from 'tid' to 'tids' since it's a mask
* change to cfg80211_ name prefixes, not ieee80211_
* fix some minor docs/spelling things.
Change-Id: Ia234d464b3f914cdeab82f540e018855be580dce
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Add the new NL80211_CMD_SET_TID_CONFIG command to support
data TID specific configuration. Per TID configuration is
passed in the nested NL80211_ATTR_TID_CONFIG attribute.
This patch adds support to configure per TID noack policy
through the NL80211_TID_CONFIG_ATTR_NOACK attribute.
Signed-off-by: Tamizh chelvam <tamizhr@codeaurora.org>
Link: https://lore.kernel.org/r/1579506687-18296-2-git-send-email-tamizhr@codeaurora.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
IEEE P802.11-REVmd/D3.0 adds support for protecting Beacon frames using
a new set of keys (BIGTK; key index 6..7) similarly to the way
group-addressed Robust Management frames are protected (IGTK; key index
4..5). Extend cfg80211 and nl80211 to allow the new BIGTK to be
configured. Add an extended feature flag to indicate driver support for
the new key index values to avoid array overflows in driver
implementations and also to indicate to user space when this
functionality is available.
Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
Link: https://lore.kernel.org/r/20200222132548.20835-2-jouni@codeaurora.org
Signed-off-by: Johannes Berg <johannes.berg@intel.com>