Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently when there are buffered writes that were not yet flushed and
they fall within allocated ranges of the file (that is, not in holes or
beyond eof assuming there are no prealloc extents beyond eof), btrfs
simply reports an incorrect number of used blocks through the stat(2)
system call (or any of its variants), regardless of mount options or
inode flags (compress, compress-force, nodatacow). This is because the
number of blocks used that is reported is based on the current number
of bytes in the vfs inode plus the number of dealloc bytes in the btrfs
inode. The later covers bytes that both fall within allocated regions
of the file and holes.
Example scenarios where the number of reported blocks is wrong while the
buffered writes are not flushed:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (259.336 MiB/sec and 66390.0415 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (192.308 MiB/sec and 49230.7692 ops/sec)
# The following should have reported 64K...
$ du -h /mnt/sdc/foo1
128K /mnt/sdc/foo1
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo1
64K /mnt/sdc/foo1
$ xfs_io -f -c "falloc -k 0 128K" -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (520.833 MiB/sec and 133333.3333 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 64K 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 65536
64 KiB, 16 ops; 0.0000 sec (260.417 MiB/sec and 66666.6667 ops/sec)
# The following should have reported 128K...
$ du -h /mnt/sdc/foo2
192K /mnt/sdc/foo2
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo2
128K /mnt/sdc/foo2
So the number of used file blocks is simply incorrect, unlike in other
filesystems such as ext4 and xfs for example, but only while the buffered
writes are not flushed.
Fix this by tracking the number of delalloc bytes that fall within holes
and beyond eof of a file, and use instead this new counter when reporting
the number of used blocks for an inode.
Another different problem that exists is that the delalloc bytes counter
is reset when writeback starts (by clearing the EXTENT_DEALLOC flag from
the respective range in the inode's iotree) and the vfs inode's bytes
counter is only incremented when writeback finishes (through
insert_reserved_file_extent()). Therefore while writeback is ongoing we
simply report a wrong number of blocks used by an inode if the write
operation covers a range previously unallocated. While this change does
not fix this problem, it does minimizes it a lot by shortening that time
window, as the new dealloc bytes counter (new_delalloc_bytes) is only
decremented when writeback finishes right before updating the vfs inode's
bytes counter. Fully fixing this second problem is not trivial and will
be addressed later by a different patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make extent_io_ops::readpage_io_failed_hook callback mandatory and
define a dummy function for btrfs_extent_io_ops. As the failed IO
callback is not performance critical, the branch vs extra trade off does
not hurt.
Signed-off-by: David Sterba <dsterba@suse.com>
Some of the callbacks defined in btree_extent_io_ops and
btrfs_extent_io_ops do always exist so we don't need to check the
existence before each call. This patch just reorders the definition and
documents which are mandatory/optional.
Signed-off-by: David Sterba <dsterba@suse.com>
There's no error path in any of the instances, always return 0.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In addition to changing the signature, this patch also switches
all the functions which are used as an argument to also take btrfs_inode.
Namely those are: btrfs_get_extent and btrfs_get_extent_filemap.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can embed range_changed to the extent changeset to address following
problems:
- no need to allocate ulist dynamically, we also get rid of the GFP_NOFS
for free
- fix lack of allocation failure checking in btrfs_qgroup_reserve_data
The stack consuption where extent_changeset is used slightly increases:
before: 16
after: 16 - 8 (for pointer) + 32 (sizeof ulist) = 40
Which is bearable.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changes to the helper separated from the following patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using copy_extent_buffer is suitable for copying betwenn buffers from an
arbitrary offset and deals with page boundaries. This is not necessary
when doing a full extent_buffer-to-extent_buffer copy. We can utilize
the copy_page helper as well.
Signed-off-by: David Sterba <dsterba@suse.com>
The only memset we do is to 0, so sink the parameter to the function and
simplify all calls. Rename the function to reflect the behaviour.
Signed-off-by: David Sterba <dsterba@suse.com>
The fsid and chunk tree uuid are always located in the first page,
we don't need the to use write_extent_buffer.
Signed-off-by: David Sterba <dsterba@suse.com>
In convert_free_space_to_{bitmaps,extents}(), we buffer the free space
bitmaps in memory and copy them directly to/from the extent buffers with
{read,write}_extent_buffer(). The extent buffer bitmap helpers use byte
granularity, which is equivalent to a little-endian bitmap. This means
that on big-endian systems, the in-memory bitmaps will be written to
disk byte-swapped. To fix this, use byte-granularity for the bitmaps in
memory.
Fixes: a5ed918285 ("Btrfs: implement the free space B-tree")
Cc: stable@vger.kernel.org # 4.5+
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nobody uses this, it makes no sense to do partial reads of extent buffers.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extend btrfs_set_extent_delalloc() and extent_clear_unlock_delalloc()
parameters for both in-band dedupe and subpage sector size patchset.
This should reduce conflict of both patchset and the effort to rebase
them.
Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"We've queued up a few different fixes in here. These range from
enospc corners to fsync and quota fixes, and a few targeted at error
handling for corrupt metadata/fuzzing"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix lockdep warning on deadlock against an inode's log mutex
Btrfs: detect corruption when non-root leaf has zero item
Btrfs: check btree node's nritems
btrfs: don't create or leak aliased root while cleaning up orphans
Btrfs: fix em leak in find_first_block_group
btrfs: do not background blkdev_put()
Btrfs: clarify do_chunk_alloc()'s return value
btrfs: fix fsfreeze hang caused by delayed iputs deal
btrfs: update btrfs_space_info's bytes_may_use timely
btrfs: divide btrfs_update_reserved_bytes() into two functions
btrfs: use correct offset for reloc_inode in prealloc_file_extent_cluster()
btrfs: qgroup: Fix qgroup incorrectness caused by log replay
btrfs: relocation: Fix leaking qgroups numbers on data extents
btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent()
btrfs: waiting on qgroup rescan should not always be interruptible
btrfs: properly track when rescan worker is running
btrfs: flush_space: treat return value of do_chunk_alloc properly
Btrfs: add ASSERT for block group's memory leak
btrfs: backref: Fix soft lockup in __merge_refs function
Btrfs: fix memory leak of reloc_root
This patch can fix some false ENOSPC errors, below test script can
reproduce one false ENOSPC error:
#!/bin/bash
dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
dev=$(losetup --show -f fs.img)
mkfs.btrfs -f -M $dev
mkdir /tmp/mntpoint
mount $dev /tmp/mntpoint
cd /tmp/mntpoint
xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
Above script will fail for ENOSPC reason, but indeed fs still has free
space to satisfy this request. Please see call graph:
btrfs_fallocate()
|-> btrfs_alloc_data_chunk_ondemand()
| bytes_may_use += 64M
|-> btrfs_prealloc_file_range()
|-> btrfs_reserve_extent()
|-> btrfs_add_reserved_bytes()
| alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
| change bytes_may_use, and bytes_reserved += 64M. Now
| bytes_may_use + bytes_reserved == 128M, which is greater
| than btrfs_space_info's total_bytes, false enospc occurs.
| Note, the bytes_may_use decrease operation will be done in
| end of btrfs_fallocate(), which is too late.
Here is another simple case for buffered write:
CPU 1 | CPU 2
|
|-> cow_file_range() |-> __btrfs_buffered_write()
|-> btrfs_reserve_extent() | |
| | |
| | |
| ..... | |-> btrfs_check_data_free_space()
| |
| |
|-> extent_clear_unlock_delalloc() |
In CPU 1, btrfs_reserve_extent()->find_free_extent()->
btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
operation will be delayed to be done in extent_clear_unlock_delalloc().
Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
btrfs_check_data_free_space() tries to reserve 100MB data space.
If
100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
btrfs_check_data_free_space() will try to allcate new data chunk or call
btrfs_start_delalloc_roots(), or commit current transaction in order to
reserve some free space, obviously a lot of work. But indeed it's not
necessary as long as decreasing bytes_may_use timely, we still have
free space, decreasing 128M from bytes_may_use.
To fix this issue, this patch chooses to update bytes_may_use for both
data and metadata in btrfs_add_reserved_bytes(). For compress path, real
extent length may not be equal to file content length, so introduce a
ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
file content length. Then compress path can update bytes_may_use
correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
and RESERVE_FREE.
As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
PREALLOC, we also need to update bytes_may_use, but can not pass
EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
to update btrfs_space_info's bytes_may_use.
Meanwhile __btrfs_prealloc_file_range() will call
btrfs_free_reserved_data_space() internally for both sucessful and failed
path, btrfs_prealloc_file_range()'s callers does not need to call
btrfs_free_reserved_data_space() any more.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull core block updates from Jens Axboe:
- the big change is the cleanup from Mike Christie, cleaning up our
uses of command types and modified flags. This is what will throw
some merge conflicts
- regression fix for the above for btrfs, from Vincent
- following up to the above, better packing of struct request from
Christoph
- a 2038 fix for blktrace from Arnd
- a few trivial/spelling fixes from Bart Van Assche
- a front merge check fix from Damien, which could cause issues on
SMR drives
- Atari partition fix from Gabriel
- convert cfq to highres timers, since jiffies isn't granular enough
for some devices these days. From Jan and Jeff
- CFQ priority boost fix idle classes, from me
- cleanup series from Ming, improving our bio/bvec iteration
- a direct issue fix for blk-mq from Omar
- fix for plug merging not involving the IO scheduler, like we do for
other types of merges. From Tahsin
- expose DAX type internally and through sysfs. From Toshi and Yigal
* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
block: Fix front merge check
block: do not merge requests without consulting with io scheduler
block: Fix spelling in a source code comment
block: expose QUEUE_FLAG_DAX in sysfs
block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
Btrfs: fix comparison in __btrfs_map_block()
block: atari: Return early for unsupported sector size
Doc: block: Fix a typo in queue-sysfs.txt
cfq-iosched: Charge at least 1 jiffie instead of 1 ns
cfq-iosched: Fix regression in bonnie++ rewrite performance
cfq-iosched: Convert slice_resid from u64 to s64
block: Convert fifo_time from ulong to u64
blktrace: avoid using timespec
block/blk-cgroup.c: Declare local symbols static
block/bio-integrity.c: Add #include "blk.h"
block/partition-generic.c: Remove a set-but-not-used variable
block: bio: kill BIO_MAX_SIZE
cfq-iosched: temporarily boost queue priority for idle classes
block: drbd: avoid to use BIO_MAX_SIZE
block: bio: remove BIO_MAX_SECTORS
...
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
self-tests code assumes 4k as the sectorsize and nodesize. This commit
fix hardcoded 4K. Enables the self-tests code to be executed on non-4k
page sized systems (e.g. ppc64).
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It seems to be long time unused, since 2008 and
6885f308b5 ("Btrfs: Misc 2.6.25 updates").
Propagating the removal touches some code but has no functional effect.
Signed-off-by: David Sterba <dsterba@suse.com>
Single caller passes GFP_NOFS. We can get rid of the
gfpflags_allow_blocking checks as NOFS can block but does not recurse to
filesystem through reclaim.
Signed-off-by: David Sterba <dsterba@suse.com>
Callers pass GFP_NOFS and tests pass GFP_KERNEL, but using NOFS there
does not hurt. No need to pass the flags around.
Signed-off-by: David Sterba <dsterba@suse.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not needed after the previous patch named
"Btrfs: fix page reading in extent_same ioctl leading to csum errors".
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Sanity test the extent buffer bitmap operations (test, set, and clear)
against the equivalent standard kernel operations.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Does not return any errors, nor anything from the callgraph. There's a
BUG_ON but it's a sanity check and not an error condition we could
recover from.
Signed-off-by: David Sterba <dsterba@suse.com>
Does not return any errors, nor anything from the callgraph. There's a
BUG_ON but it's a sanity check and not an error condition we could
recover from.
Signed-off-by: David Sterba <dsterba@suse.com>
Does not return any errors, nor anything from the callgraph. The branch
in end_bio_extent_writepage has been skipped since
5fd0204355 ("Btrfs: finish ordered extents in their own thread").
Signed-off-by: David Sterba <dsterba@suse.com>
The funcions just wrap the clear_extent_bit API and generate function
calls. This increases stack consumption and may negatively affect
performance due to icache misses. We can simply make the helpers static
inline and keep the type checking and API untouched. The code slightly
decreases:
text data bss dec hex filename
938667 43670 23144 1005481 f57a9 fs/btrfs/btrfs.ko.before
939651 43670 23144 1006465 f5b81 fs/btrfs/btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.com>
The funcions just wrap the set_extent_bit API and generate function
calls. This increases stack consumption and may negatively affect
performance due to icache misses. We can simply make the helpers static
inline and keep the type checking and API untouched. The code slightly
increases:
text data bss dec hex filename
938427 43670 23144 1005241 f56b9 fs/btrfs/btrfs.ko.before
938667 43670 23144 1005481 f57a9 fs/btrfs/btrfs.ko
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new function, btrfs_qgroup_reserve_data(), which will use
io_tree to accurate qgroup reserve, to avoid reserved space leaking.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Introduce new function clear_record_extent_bits(), which will clear bits
for given range and record the details about which ranges are cleared
and how many bytes in total it changes.
This provides the basis for later qgroup reserve codes.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Introduce new function set_record_extent_bits(), which will not only set
given bits, but also record how many bytes are changed, and detailed
range info.
This is quite important for later qgroup reserve framework.
The number of bytes will be used to do qgroup reserve, and detailed
range info will be used to cleanup for EQUOT case.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add a new structure, extent_change_set, to record how many bytes are
changed in one set/clear_extent_bits() operation, with detailed changed
ranges info.
This provides the needed facilities for later qgroup reserve framework.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are some op tables that can be easily made const, similarly the
sysfs feature and raid tables. This is motivated by PaX CONSTIFY plugin.
Signed-off-by: David Sterba <dsterba@suse.cz>
Currently there's a 4B hole in the structure between refs and state and there
are only 16 bits used so we can make it unsigned. This will get a better
packing and may save some stack space for local variables.
The size of extent_state gets reduced by 8B and there are usually a lot
of slab objects.
struct extent_state {
u64 start; /* 0 8 */
u64 end; /* 8 8 */
struct rb_node rb_node; /* 16 24 */
wait_queue_head_t wq; /* 40 24 */
/* --- cacheline 1 boundary (64 bytes) --- */
atomic_t refs; /* 64 4 */
/* XXX 4 bytes hole, try to pack */
long unsigned int state; /* 72 8 */
u64 private; /* 80 8 */
/* size: 88, cachelines: 2, members: 7 */
/* sum members: 84, holes: 1, sum holes: 4 */
/* last cacheline: 24 bytes */
};
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Make the extent buffer allocation interface consistent. Cloned eb will
set a valid fs_info. For dummy eb, we can drop the length parameter and
set it from fs_info.
The built-in sanity checks may pass a NULL fs_info that's queried for
nodesize, but we know it's 4096.
Signed-off-by: David Sterba <dsterba@suse.cz>
If we fail in submit_compressed_extents() before calling btrfs_submit_compressed_write(),
we start and end the writeback for the pages (clear their dirty flag, unlock them, etc)
but we don't tag the pages, nor the inode's mapping, with an error. This makes it
impossible for a caller of filemap_fdatawait_range() (fsync, or transaction commit
for e.g.) know that there was an error.
Note that the return value of submit_compressed_extents() is useless, as that function
is executed by a workqueue task and not directly by the fill_delalloc callback. This
means the writepage/s callbacks of the inode's address space operations don't get that
return value.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit fccb84c94 moved added some helpers to cleanup our sanity tests,
but it looks like both Dave and I always compile with the tests enabled.
This fixes things to work when they are turned off too.
Signed-off-by: Chris Mason <clm@fb.com>
While we have a transaction ongoing, the VM might decide at any time
to call btree_inode->i_mapping->a_ops->writepages(), which will start
writeback of dirty pages belonging to btree nodes/leafs. This call
might return an error or the writeback might finish with an error
before we attempt to commit the running transaction. If this happens,
we might have no way of knowing that such error happened when we are
committing the transaction - because the pages might no longer be
marked dirty nor tagged for writeback (if a subsequent modification
to the extent buffer didn't happen before the transaction commit) which
makes filemap_fdata[write|wait]_range unable to find such pages (even
if they're marked with SetPageError).
So if this happens we must abort the transaction, otherwise we commit
a super block with btree roots that point to btree nodes/leafs whose
content on disk is invalid - either garbage or the content of some
node/leaf from a past generation that got cowed or deleted and is no
longer valid (for this later case we end up getting error messages like
"parent transid verify failed on 10826481664 wanted 25748 found 29562"
when reading btree nodes/leafs from disk).
Note that setting and checking AS_EIO/AS_ENOSPC in the btree inode's
i_mapping would not be enough because we need to distinguish between
log tree extents (not fatal) vs non-log tree extents (fatal) and
because the next call to filemap_fdatawait_range() will catch and clear
such errors in the mapping - and that call might be from a log sync and
not from a transaction commit, which means we would not know about the
error at transaction commit time. Also, checking for the eb flag
EXTENT_BUFFER_IOERR at transaction commit time isn't done and would
not be completely reliable, as the eb might be removed from memory and
read back when trying to get it, which clears that flag right before
reading the eb's pages from disk, making us not know about the previous
write error.
Using the new 3 flags for the btree inode also makes us achieve the
goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
writeback for all dirty pages and before filemap_fdatawait_range() is
called, the writeback for all dirty pages had already finished with
errors - because we were not using AS_EIO/AS_ENOSPC,
filemap_fdatawait_range() would return success, as it could not know
that writeback errors happened (the pages were no longer tagged for
writeback).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the data is written successfully, we should cleanup the read failure record
in that range because
- If we set data COW for the file, the range that the failure record pointed to is
mapped to a new place, so it is invalid.
- If we set no data COW for the file, and if there is no error during writting,
the corrupted data is corrected, so the failure record can be removed. And if
some errors happen on the mirrors, we also needn't worry about it because the
failure record will be recreated if we read the same place again.
Sometimes, we may fail to correct the data, so the failure records will be left
in the tree, we need free them when we free the inode or the memory leak happens.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch implement data repair function when direct read fails.
The detail of the implementation is:
- When we find the data is not right, we try to read the data from the other
mirror.
- When the io on the mirror ends, we will insert the endio work into the
dedicated btrfs workqueue, not common read endio workqueue, because the
original endio work is still blocked in the btrfs endio workqueue, if we
insert the endio work of the io on the mirror into that workqueue, deadlock
would happen.
- After we get right data, we write it back to the corrupted mirror.
- And if the data on the new mirror is still corrupted, we will try next
mirror until we read right data or all the mirrors are traversed.
- After the above work, we set the uptodate flag according to the result.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We could not use clean_io_failure in the direct IO path because it got the
filesystem information from the page structure, but the page in the direct
IO bio didn't have the filesystem information in its structure. So we need
modify it and pass all the information it need by parameters.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The original code of repair_io_failure was just used for buffered read,
because it got some filesystem data from page structure, it is safe for
the page in the page cache. But when we do a direct read, the pages in bio
are not in the page cache, that is there is no filesystem data in the page
structure. In order to implement direct read data repair, we need modify
repair_io_failure and pass all filesystem data it need by function
parameters.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The data repair function of direct read will be implemented later, and some code
in bio_readpage_error will be reused, so split bio_readpage_error into
several functions which will be used in direct read repair later.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The map_start and map_len fields aren't used anywhere, so just remove
them. On a x86_64 system, this reduced sizeof(struct extent_buffer)
from 296 bytes to 280 bytes, and therefore 14 extent_buffer structs can
now fit into a page instead of 13.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The tree field of struct extent_state was only used to figure out if
an extent state was connected to an inode's io tree or not. For this
we can just use the rb_node field itself.
On a x86_64 system with this change the sizeof(struct extent_state) is
reduced from 96 bytes down to 88 bytes, meaning that with a page size
of 4096 bytes we can now store 46 extent states per page instead of 42.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The lock_wq wait queue is not used anywhere, therefore just remove it.
On a x86_64 system, this reduced sizeof(struct extent_buffer) from 320
bytes down to 296 bytes, which means a 4Kb page can now be used for
13 extent buffers instead of 12.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
This new function reads the content of an extent directly to user memory.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
This exercises the various parts of the new qgroup accounting code. We do some
basic stuff and do some things with the shared refs to make sure all that code
works. I had to add a bunch of infrastructure because I needed to be able to
insert items into a fake tree without having to do all the hard work myself,
hopefully this will be usefull in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
So I have an awful exercise script that will run snapshot, balance and
send/receive in parallel. This sometimes would crash spectacularly and when it
came back up the fs would be completely hosed. Turns out this is because of a
bad interaction of balance and send/receive. Send will hold onto its entire
path for the whole send, but its blocks could get relocated out from underneath
it, and because it doesn't old tree locks theres nothing to keep this from
happening. So it will go to read in a slot with an old transid, and we could
have re-allocated this block for something else and it could have a completely
different transid. But because we think it is invalid we clear uptodate and
re-read in the block. If we do this before we actually write out the new block
we could write back stale data to the fs, and boom we're screwed.
Now we definitely need to fix this disconnect between send and balance, but we
really really need to not allow ourselves to accidently read in stale data over
new data. So make sure we check if the extent buffer is not under io before
clearing uptodate, this will kick back EIO to the caller instead of reading in
stale data and keep us from corrupting the fs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I need to create a fake tree to test qgroups and I don't want to have to setup a
fake btree_inode. The fact is we only use the radix tree for the fs_info, so
everybody else who allocates an extent_io_tree is just wasting the space anyway.
This patch moves the radix tree and its lock into btrfs_fs_info so there is less
stuff I have to fake to do qgroup sanity tests. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
For creating a dummy in-memory btree I need to be able to use the radix tree to
keep track of the buffers like normal extent buffers. With dummy buffers we
skip the radix tree step, and we still want to do that for the tree mod log
dummy buffers but for my test buffers we need to be able to remove them from the
radix tree like normal. This will give me a way to do that. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
alloc_extent_buffer() uses radix_tree_lookup() when radix_tree_insert()
fails with EEXIST. That part of the code is very similar to the code in
find_extent_buffer(). This patch replaces radix_tree_lookup() and
surrounding code in alloc_extent_buffer() with find_extent_buffer().
Note that radix_tree_lookup() does not need to be protected by
tree->buffer_lock. It is protected by eb->refs.
While at it, this patch
- changes the other usage of radix_tree_lookup() in alloc_extent_buffer()
with find_extent_buffer() to reduce redundancy.
- removes the unused argument 'len' to find_extent_buffer().
Signed-Off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
So both Liu and I made huge messes of find_lock_delalloc_range trying to fix
stuff, me first by fixing extent size, then him by fixing something I broke and
then me again telling him to fix it a different way. So this is obviously a
candidate for some testing. This patch adds a pseudo fs so we can allocate fake
inodes for tests that need an inode or pages. Then it addes a bunch of tests to
make sure find_lock_delalloc_range is acting the way it is supposed to. With
this patch and all of our previous patches to find_lock_delalloc_range I am sure
it is working as expected now. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Chris Mason <chris.mason@fusionio.com>
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We want this for btrfs_extent_same. Basically readpage and friends do their
own extent locking but for the purposes of dedupe, we want to have both
files locked down across a set of readpage operations (so that we can
compare data). Introduce this variant and a flag which can be set for
extent_read_full_page() to indicate that we are already locked.
Partial credit for this patch goes to Gabriel de Perthuis <g2p.code@gmail.com>
as I have included a fix from him to the original patch which avoids a
deadlock on compressed extents.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch removes the io_tree argument for extent_clear_unlock_delalloc since
we always use &BTRFS_I(inode)->io_tree, and it separates out the extent tree
operations from the page operations. This way we just pass in the extent bits
we want to clear and then pass in the operations we want done to the pages.
This is because I'm going to fix what extent bits we clear in some cases and
rather than add a bunch of new flags we'll just use the actual extent bits we
want to clear. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Before applying this patch, we cached the csum value into the extent state
tree when reading some data from the disk, this operation increased the lock
contention of the state tree.
Now, we just store the csum value into the bio structure or other unshared
structure, so we can reduce the lock contention.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Btrfs has been pointer tagging bi_private and using bi_bdev
to store the stripe index and mirror number of failed IOs.
As bios bubble back up through the call chain, we use these
to decide if and how to retry our IOs. They are also used
to count IO failures on a per device basis.
Recently a bio tracepoint was added lead to crashes because
we were abusing bi_bdev.
This commit adds a btrfs bioset, and creates explicit fields
for the mirror number and stripe index. The plan is to
extend this structure for all of the fields currently in
struct btrfs_bio, which will mean one less kmalloc in
our IO path.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Tejun Heo <tj@kernel.org>
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Clean up the leak debugging in extent_io.c by moving
the debug code into functions. This also removes the
list_heads used for debugging from the extent_buffer
and extent_state structures when debug is not enabled.
Since we need a global debug config to do that last
part, implement CONFIG_BTRFS_DEBUG to accommodate.
Thanks to Dave Sterba for the Kconfig bit.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We can just look up the extent_buffers for the range and free stuff that way.
This makes the cleanup a bit cleaner and we can make sure to evict the
extent_buffers pretty quickly by marking them as stale. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
It is very likely that there are several blocks in bio, it is very
inefficient if we get their csums one by one. This patch improves
this problem by getting the csums in batch.
According to the result of the following test, the execute time of
__btrfs_lookup_bio_sums() is down by ~28%(300us -> 217us).
# dd if=<mnt>/file of=/dev/null bs=1M count=1024
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Btrfs uses page_mkwrite to ensure stable pages during
crc calculations and mmap workloads. We call clear_page_dirty_for_io
before we do any crcs, and this forces any application with the file
mapped to wait for the crc to finish before it is allowed to change
the file.
With compression on, the clear_page_dirty_for_io step is happening after
we've compressed the pages. This means the applications might be
changing the pages while we are compressing them, and some of those
modifications might not hit the disk.
This commit adds the clear_page_dirty_for_io before compression starts
and makes sure to redirty the page if we have to fallback to
uncompressed IO as well.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Alexandre Oliva <oliva@gnu.org>
cc: stable@vger.kernel.org
The nodesize is capped at 64k and there are enough pages preallocated in
extent_buffer::inline_pages. The fallback to kmalloc never happened
because even on the smallest page size considered (4k) inline_pages
covered the needs.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We'll want to merge writes so they can fill a full RAID[56] stripe, but
not necessarily reads.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Two calling functions also had to be changed to have the fs_info
pointer: repair_io_failure() and scrub_setup_recheck_block().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When building btrfs from kernel code, it will report:
fs/btrfs/extent_io.h:281: warning: 'extent_buffer_page' declared inline after being called
fs/btrfs/extent_io.h:281: warning: previous declaration of 'extent_buffer_page' was here
fs/btrfs/extent_io.h:280: warning: 'num_extent_pages' declared inline after being called
fs/btrfs/extent_io.h:280: warning: previous declaration of 'num_extent_pages' was here
because of the wrong declaration of inline functions.
Signed-off-by: Robin Dong <sanbai@taobao.com>
Everytime we write out dirty pages we search for an offset in the tree,
convert the bits in the state, and then when we wait we search for the
offset again and clear the bits. So for every dirty range in the io tree we
are doing 4 rb searches, which is suboptimal. With this patch we are only
doing 2 searches for every cycle (modulo weird things happening). Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
There are a coule scenarios where farming metadata csumming off to an async
thread doesn't help. The first is if our processor supports crc32c, in
which case the csumming will be fast and so the overhead of the async model
is not worth the cost. The other case is for our tree log. We will be
making that stuff dirty and writing it out and waiting for it immediately.
Even with software crc32c this gives me a ~15% increase in speed with O_SYNC
workloads. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We're going to use this flag EXTENT_DEFRAG to indicate which range
belongs to defragment so that we can implement snapshow-aware defrag:
We set the EXTENT_DEFRAG flag when dirtying the extents that need
defragmented, so later on writeback thread can differentiate between
normal writeback and writeback started by defragmentation.
Original-Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
We noticed that the ordered extent completion doesn't really rely on having
a page and that it could be done independantly of ending the writeback on a
page. This patch makes us not do the threaded endio stuff for normal
buffered writes and direct writes so we can end page writeback as soon as
possible (in irq context) and only start threads to do the ordered work when
it is actually done. Compression needs to be reworked some to take
advantage of this as well, but atm it has to do a find_get_page in its endio
handler so it must be done in its own thread. This makes direct writes
quite a bit faster. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The tree modification log needs two ways to create dummy extent buffers,
once by allocating a fresh one (to rebuild an old root) and once by
cloning an existing one (to make private rewind modifications) to it.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
A user reported a panic where we were trying to fix a bad mirror but the
mirror number we were giving was 0, which is invalid. This is because we
don't do the transid verification until after the read, so as far as the
read code is concerned the read was a success. So instead store the mirror
we read from so that if there is some failure post read we know which mirror
to try next and which mirror needs to be fixed if we find a good copy of the
block. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Since we need to read and write extent buffers in their entirety we can't use
the normal bio_readpage_error stuff since it only works on a per page basis. So
instead make it so that if we see an io error in endio we just mark the eb as
having an IO error and then in btree_read_extent_buffer_pages we will manually
try other mirrors and then overwrite the bad mirror if we find a good copy.
This works with larger than page size blocks. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch simplifies how we track our extent buffers. Previously we could exit
writepages with only having written half of an extent buffer, which meant we had
to track the state of the pages and the state of the extent buffers differently.
Now we only read in entire extent buffers and write out entire extent buffers,
this allows us to simply set bits in our bflags to indicate the state of the eb
and we no longer have to do things like track uptodate with our iotree. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Because btrfs cow's we can end up with extent buffers that are no longer
necessary just sitting around in memory. So instead of evicting these pages, we
could end up evicting things we actually care about. Thus we have
free_extent_buffer_stale for use when we are freeing tree blocks. This will
make it so that the ref for the eb being in the radix tree is dropped as soon as
possible and then is freed when the refcount hits 0 instead of waiting to be
released by releasepage. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We spend a lot of time looking up extent buffers from pages when we could just
store the pointer to the eb the page is associated with in page->private. This
patch does just that, and it makes things a little simpler and reduces a bit of
CPU overhead involved with doing metadata IO. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
A few years ago the btrfs code to support blocks lager than
the page size was disabled to fix a few corner cases in the
page cache handling. This fixes the code to properly support
large metadata blocks again.
Since current kernels will crash early and often with larger
metadata blocks, this adds an incompat bit so that older kernels
can't mount it.
This also does away with different blocksizes for nodes and leaves.
You get a single block size for all tree blocks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
set_extent_bit can do exclusive locking but only when called by lock_extent*,
Drop the exclusive bits argument except when called by lock_extent.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
lock_extent and unlock_extent are always called with GFP_NOFS, drop the
argument and use GFP_NOFS consistently.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
We encountered an issue that was easily observable on s/390 systems but
could really happen anywhere. The timing just seemed to hit reliably
on s/390 with limited memory.
The gist is that when an unexpected set_page_dirty() happened, we'd
run into the BUG() in btrfs_writepage_fixup_worker since it wasn't
properly set up for delalloc.
This patch does the following:
- Performs the missing delalloc in the fixup worker
- Allow the start hook to return -EBUSY which informs __extent_writepage
that it should mark the page skipped and not to redirty it. This is
required since the fixup worker can fail with -ENOSPC and the page
will have already been redirtied. That causes an Oops in
drop_outstanding_extents later. Retrying the fixup worker could
lead to an infinite loop. Deferring the page redirty also saves us
some cycles since the page would be stuck in a resubmit-redirty loop
until the fixup worker completes. It's not harmful, just wasteful.
- If the fixup worker fails, we mark the page and mapping as errored,
and end the writeback, similar to what we would do had the page
actually been submitted to writeback.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
This patch adds the possibilty to read-lock an extent even if it is already
write-locked from the same thread. btrfs_find_all_roots() needs this
capability.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
My previous patch introduced some u64 for failed_mirror variables, this one
makes it consistent again.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
write_cache_pages tries to build up a large bio to stuff down the pipe.
But if it needs to wait for a page lock, it needs to make sure and send
down any pending writes so we don't deadlock with anyone who has the
page lock and is waiting for writeback of things inside the bio.
Dave Sterba triggered this as a deadlock between the autodefrag code and
the extent write_cache_pages
Signed-off-by: Chris Mason <chris.mason@oracle.com>
While looking for a performance regression a user was complaining about, I
noticed that we had a regression with the varmail test of filebench. This was
introduced by
0d10ee2e6d
which keeps us from calling writepages in writepage. This is a correct change,
however it happens to help the varmail test because we write out in larger
chunks. This is largly to do with how we write out dirty pages for each
transaction. If you run filebench with
load varmail
set $dir=/mnt/btrfs-test
run 60
prior to this patch you would get ~1420 ops/second, but with the patch you get
~1200 ops/second. This is a 16% decrease. So since we know the range of dirty
pages we want to write out, don't write out in one page chunks, write out in
ranges. So to do this we call filemap_fdatawrite_range() on the range of bytes.
Then we convert the DIRTY extents to NEED_WAIT extents. When we then call
btrfs_wait_marked_extents() we only have to filemap_fdatawait_range() on that
range and clear the NEED_WAIT extents. This doesn't get us back to our original
speeds, but I've been seeing ~1380 ops/second, which is a <5% regression as
opposed to a >15% regression. That is acceptable given that the original commit
greatly reduces our latency to begin with. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
If I have a range where I know a certain bit is and I want to set it to another
bit the only option I have is to call set and then clear bit, which will result
in 2 tree searches. This is inefficient, so introduce convert_extent_bit which
will go through and set the bit I want and clear the old bit I don't want.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Add a READAHEAD extent buffer flag.
Add a function to trigger a read with this flag set.
Changes v2:
- use extent buffer flags instead of extent state flags
Changes v5:
- adapt to changed read_extent_buffer_pages interface
- don't return eb from reada_tree_block_flagged if it has CORRUPT flag set
Signed-off-by: Arne Jansen <sensille@gmx.net>
read_extent_buffer_pages currently has two modes, either trigger a read
without waiting for anything, or wait for the I/O to finish. The former
also bails when it's unable to lock the page. This patch now adds an
additional parameter to allow it to block on page lock, but don't wait
for completion.
Changes v5:
- merge the 2 wait parameters into one and define WAIT_NONE, WAIT_COMPLETE and
WAIT_PAGE_LOCK
Change v6:
- fix bug introduced in v5
Signed-off-by: Arne Jansen <sensille@gmx.net>
The raid-retry code in inode.c can be generalized so that it works for
metadata as well. Thus, this patch moves it to extent_io.c and makes the
raid-retry code a raid-repair code.
Repair works that way: Whenever a read error occurs and we have more
mirrors to try, note the failed mirror, and retry another. If we find a
good one, check if we did note a failure earlier and if so, do not allow
the read to complete until after the bad sector was written with the good
data we just fetched. As we have the extent locked while reading, no one
can change the data in between.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This removes a FIXME comment and introduces the first part of nodatasum
fixup: It gets the corresponding inode for a logical address and triggers a
regular readpage for the corrupted sector.
Once we have on-the-fly error correction our error will be automatically
corrected. The correction code is expected to clear the newly introduced
EXTENT_DAMAGED flag, making scrub report that error as "corrected" instead
of "uncorrectable" eventually.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Currently, extent_read_full_page always assumes we are trying to read mirror
0, which generally is the best we can do. To add flexibility, pass it as a
parameter. This will be needed by scrub fixup code.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
These members are not used at all.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The set/clear bit and the extent split/merge hooks only ever return 0.
Changing them to return void simplifies the error handling cases later.
This patch changes the hook prototypes, the single implementation of each,
and the functions that call them to return void instead.
Since all four of these hooks execute under a spinlock, they're necessarily
simple.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs metadata btree is the source of significant
lock contention, especially in the root node. This
commit changes our locking to use a reader/writer
lock.
The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking. Atomics
count the number of blocking readers or writers at any
given time.
It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.
In read heavy workloads this is dramatically faster. In write
heavy workloads we're still faster because of less contention
on the root node lock.
We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The extent_buffers have a very complex interface where
we use HIGHMEM for metadata and try to cache a kmap mapping
to access the memory.
The next commit adds reader/writer locks, and concurrent use
of this kmap cache would make it even more complex.
This commit drops the ability to use HIGHMEM with extent buffers,
and rips out all of the related code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reorder extent_buffer to remove 8 bytes of alignment padding on 64 bit
builds. This shrinks its size to 128 bytes allowing it to fit into one
fewer cache lines and allows more objects per slab in its kmem_cache.
slabinfo extent_buffer reports :-
before:-
Sizes (bytes) Slabs
----------------------------------
Object : 136 Total : 123
SlabObj: 136 Full : 121
SlabSiz: 4096 Partial: 0
Loss : 0 CpuSlab: 2
Align : 8 Objects: 30
after :-
Object : 128 Total : 4
SlabObj: 128 Full : 2
SlabSiz: 4096 Partial: 0
Loss : 0 CpuSlab: 2
Align : 8 Objects: 32
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Remove static and global declarations and/or definitions. Reduces size
of btrfs.ko by ~3.4kB.
text data bss dec hex filename
402081 7464 200 409745 64091 btrfs.ko.base
398620 7144 200 405964 631cc btrfs.ko.remove-all
Signed-off-by: David Sterba <dsterba@suse.cz>
all callers pass GFP_NOFS, but the GFP mask argument is not used in the
function; GFP_ATOMIC is passed to radix tree initialization and it's the
only correct one, since we're using the preload/insert mechanism of
radix tree.
Let's drop the gfp mask from btrfs function, this will not change
behaviour.
Signed-off-by: David Sterba <dsterba@suse.cz>
In several places the sequence (set_extent_uptodate, unlock_extent) is used.
This leads to a duplicate lookup of the extent state. This patch lets
set_extent_uptodate return a cached extent_state which can be passed to
unlock_extent_cached.
The occurences of the above sequences are updated to use the cache. Only
end_bio_extent_readpage is updated that it first gets a cached state to
pass it to the readpage_end_io_hook as the prototype requested and is later
on being used for set/unlock.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Currently if we have corrupted items things will blow up in spectacular ways.
So as we read in blocks and they are leaves, check the entire leaf to make sure
all of the items are correct and point to valid parts in the leaf for the item
data the are responsible for. If the item is corrupt we will kick back EIO and
not read any of the copies since they are likely to not be correct either. This
will catch generic corruptions, it will be up to the individual callers of
btrfs_search_slot to make sure their items are right. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>