Граф коммитов

114 Коммитов

Автор SHA1 Сообщение Дата
Vladimir Oltean ccb6ed426f net: mscc: ocelot: add port mirroring support using tc-matchall
Ocelot switches perform port-based ingress mirroring if
ANA:PORT:PORT_CFG field SRC_MIRROR_ENA is set, and egress mirroring if
the port is in ANA:ANA:EMIRRORPORTS.

Both ingress-mirrored and egress-mirrored frames are copied to the port
mask from ANA:ANA:MIRRORPORTS.

So the choice of limiting to a single mirror port via ocelot_mirror_get()
and ocelot_mirror_put() may seem bizarre, but the hardware model doesn't
map very well to the user space model. If the user wants to mirror the
ingress of swp1 towards swp2 and the ingress of swp3 towards swp4, we'd
have to program ANA:ANA:MIRRORPORTS with BIT(2) | BIT(4), and that would
make swp1 be mirrored towards swp4 too, and swp3 towards swp2. But there
are no tc-matchall rules to describe those actions.

Now, we could offload a matchall rule with multiple mirred actions, one
per desired mirror port, and force the user to stick to the multi-action
rule format for subsequent matchall filters. But both DSA and ocelot
have the flow_offload_has_one_action() check for the matchall offload,
plus the fact that it will get cumbersome to cross-check matchall
mirrors with flower mirrors (which will be added in the next patch).

As a result, we limit the configuration to a single mirror port, with
the possibility of lifting the restriction in the future.

Frames injected from the CPU don't get egress-mirrored, since they are
sent with the BYPASS bit in the injection frame header, and this
bypasses the analyzer module (effectively also the mirroring logic).
I don't know what to do/say about this.

Functionality was tested with:

tc qdisc add dev swp3 clsact
tc filter add dev swp3 ingress \
	matchall skip_sw \
	action mirred egress mirror dev swp1

and pinging through swp3, while seeing that the ICMP replies are
mirrored towards swp1.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-17 17:42:46 -07:00
Vladimir Oltean 978777d0fb net: dsa: felix: configure default-prio and dscp priorities
Follow the established programming model for this driver and provide
shims in the felix DSA driver which call the implementations from the
ocelot switch lib. The ocelot switchdev driver wasn't integrated with
dcbnl due to lack of hardware availability.

The switch doesn't have any fancy QoS classification enabled by default.
The provided getters will create a default-prio app table entry of 0,
and no dscp entry. However, the getters have been made to actually
retrieve the hardware configuration rather than static values, to be
future proof in case DSA will need this information from more call paths.

For default-prio, there is a single field per port, in ANA_PORT_QOS_CFG,
called QOS_DEFAULT_VAL.

DSCP classification is enabled per-port, again via ANA_PORT_QOS_CFG
(field QOS_DSCP_ENA), and individual DSCP values are configured as
trusted or not through register ANA_DSCP_CFG (replicated 64 times).
An untrusted DSCP value falls back to other QoS classification methods.
If trusted, the selected ANA_DSCP_CFG register also holds the QoS class
in the QOS_DSCP_VAL field.

The hardware also supports DSCP remapping (DSCP value X is translated to
DSCP value Y before the QoS class is determined based on the app table
entry for Y) and DSCP packet rewriting. The dcbnl framework, for being
so flexible in other useless areas, doesn't appear to support this.
So this functionality has been left out.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-14 10:36:15 +00:00
Vladimir Oltean 54c3198460 net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.

So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.

The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.

We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.

The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.

Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.

For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.

VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.

The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-27 11:06:14 +00:00
Vladimir Oltean 961d8b6990 net: dsa: felix: support FDB entries on offloaded LAG interfaces
This adds the logic in the Felix DSA driver and Ocelot switch library.
For Ocelot switches, the DEST_IDX that is the output of the MAC table
lookup is a logical port (equal to physical port, if no LAG is used, or
a dynamically allocated number otherwise). The allocation we have in
place for LAG IDs is different from DSA's, so we can't use that:
- DSA allocates a continuous range of LAG IDs starting from 1
- Ocelot appears to require that physical ports and LAG IDs are in the
  same space of [0, num_phys_ports), and additionally, ports that aren't
  in a LAG must have physical port id == logical port id

The implication is that an FDB entry towards a LAG might need to be
deleted and reinstalled when the LAG ID changes.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-24 21:31:44 -08:00
Vladimir Oltean e42bd4ed09 net: mscc: ocelot: keep traps in a list
When using the ocelot-8021q tagging protocol, the CPU port isn't
configured as an NPI port, but is a regular port. So a "trap to CPU"
operation is actually a "redirect" operation. So DSA needs to set up the
trapping action one way or another, depending on the tagging protocol in
use.

To ease DSA's work of modifying the action, keep all currently installed
traps in a list, so that DSA can live-patch them when the tagging
protocol changes.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-17 14:06:51 +00:00
Vladimir Oltean 36fac35b29 net: mscc: ocelot: delete OCELOT_MRP_CPUQ
MRP frames are configured to be trapped to the CPU queue 7, and this
number is reflected in the extraction header. However, the information
isn't used anywhere, so just leave MRP frames to go to CPU queue 0
unless needed otherwise.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-17 14:06:51 +00:00
Colin Foster d87b1c08f3 net: mscc: ocelot: use bulk reads for stats
Create and utilize bulk regmap reads instead of single access for gathering
stats. The background reading of statistics happens frequently, and over
a few contiguous memory regions.

High speed PCIe buses and MMIO access will probably see negligible
performance increase. Lower speed buses like SPI and I2C could see
significant performance increase, since the bus configuration and register
access times account for a large percentage of data transfer time.

Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-14 13:24:29 +00:00
Colin Foster 40f3a5c815 net: mscc: ocelot: add ability to perform bulk reads
Regmap supports bulk register reads. Ocelot does not. This patch adds
support for Ocelot to invoke bulk regmap reads. That will allow any driver
that performs consecutive reads over memory regions to optimize that
access.

Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-14 13:24:29 +00:00
Colin Foster 65c53595bc net: ocelot: align macros for consistency
In the ocelot.h file, several read / write macros were split across
multiple lines, while others weren't. Split all macros that exceed the 80
character column width and match the style of the rest of the file.

Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-14 13:24:29 +00:00
Vladimir Oltean 5cad43a52e net: dsa: felix: add port fast age support
Add support for flushing the MAC table on a given port in the ocelot
switch library, and use this functionality in the felix DSA driver.

This operation is needed when a port leaves a bridge to become
standalone, and when the learning is disabled, and when the STP state
changes to a state where no FDB entry should be present.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220107144229.244584-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-01-07 18:58:25 -08:00
Clément Léger 753a026cfe net: ocelot: add FDMA support
Ethernet frames can be extracted or injected autonomously to or from
the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list
data structures in memory are used for injecting or extracting Ethernet
frames. The FDMA generates interrupts when frame extraction or
injection is done and when the linked lists need updating.

The FDMA is shared between all the ethernet ports of the switch and
uses a linked list of descriptors (DCB) to inject and extract packets.
Before adding descriptors, the FDMA channels must be stopped. It would
be inefficient to do that each time a descriptor would be added so the
channels are restarted only once they stopped.

Both channels uses ring-like structure to feed the DCBs to the FDMA.
head and tail are never touched by hardware and are completely handled
by the driver. On top of that, page recycling has been added and is
mostly taken from gianfar driver.

Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Co-developed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-10 20:56:58 -08:00
Clément Léger b471a71e52 net: ocelot: add and export ocelot_ptp_rx_timestamp()
In order to support PTP in FDMA, PTP handling code is needed. Since
this is the same as for register-based extraction, export it with
a new ocelot_ptp_rx_timestamp() function.

Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-10 20:56:57 -08:00
Clément Léger e5150f0072 net: ocelot: export ocelot_ifh_port_set() to setup IFH
FDMA will need this code to prepare the injection frame header when
sending SKBs. Move this code into ocelot_ifh_port_set() and add
conditional IFH setting for vlan and rew op if they are not set.

Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-10 20:56:57 -08:00
Vladimir Oltean 8abe197038 net: dsa: felix: enable cut-through forwarding between ports by default
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).

The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.

There are two cases that need special attention.

The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.

The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.

Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.

Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-25 19:32:07 -08:00
Xiaoliang Yang a7e13edf37 net: dsa: felix: restrict psfp rules on ingress port
PSFP rules take effect on the streams from any port of VSC9959 switch.
This patch use ingress port to limit the rule only active on this port.

Each stream can only match two ingress source ports in VSC9959. Streams
from lowest port gets the configuration of SFID pointed by MAC Table
lookup and streams from highest port gets the configuration of (SFID+1)
pointed by MAC Table lookup. This patch defines the PSFP rule on highest
port as dummy rule, which means that it does not modify the MAC table.

Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-18 12:07:24 +00:00
Xiaoliang Yang 77043c3709 net: mscc: ocelot: use index to set vcap policer
Policer was previously automatically assigned from the highest index to
the lowest index from policer pool. But police action of tc flower now
uses index to set an police entry. This patch uses the police index to
set vcap policers, so that one policer can be shared by multiple rules.

Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-18 12:07:24 +00:00
Xiaoliang Yang 7d4b564d6a net: dsa: felix: support psfp filter on vsc9959
VSC9959 supports Per-Stream Filtering and Policing(PSFP) that complies
with the IEEE 802.1Qci standard. The stream is identified by Null stream
identification(DMAC and VLAN ID) defined in IEEE802.1CB.

For PSFP, four tables need to be set up: stream table, stream filter
table, stream gate table, and flow meter table. Identify the stream by
parsing the tc flower keys and add it to the stream table. The stream
filter table is automatically maintained, and its index is determined by
SGID(flow gate index) and FMID(flow meter index).

Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-18 12:07:24 +00:00
Xiaoliang Yang 23e2c506ad net: mscc: ocelot: add gate and police action offload to PSFP
PSFP support gate and police action. This patch add the gate and police
action to flower parse action, check chain ID to determine which block
to offload. Adding psfp callback functions to add, delete and update gate
and police in PSFP table if hardware supports it.

Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-18 12:07:23 +00:00
Xiaoliang Yang 0568c3bf3f net: mscc: ocelot: add MAC table stream learn and lookup operations
ocelot_mact_learn_streamdata() can be used in VSC9959 to overwrite an
FDB entry with stream data. The stream data includes SFID and SSID which
can be used for PSFP and FRER set.

ocelot_mact_lookup() can be used to check if the given {DMAC, VID} FDB
entry is exist, and also can retrieve the DEST_IDX and entry type for
the FDB entry.

Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-18 12:07:23 +00:00
Vladimir Oltean 2468346c56 net: mscc: ocelot: serialize access to the MAC table
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.

This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-25 12:59:41 +01:00
David S. Miller 2d7e73f09f Revert "Merge branch 'dsa-rtnl'"
This reverts commit 965e6b262f, reversing
changes made to 4d98bb0d7e.
2021-10-25 12:59:25 +01:00
Vladimir Oltean f2c4bdf62d net: mscc: ocelot: serialize access to the MAC table
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.

This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-24 13:47:44 +01:00
Vladimir Oltean d4004422f6 net: mscc: ocelot: track the port pvid using a pointer
Now that we have a list of struct ocelot_bridge_vlan entries, we can
rewrite the pvid logic to simply point to one of those structures,
instead of having a separate structure with a "bool valid".
The NULL pointer will represent the lack of a bridge pvid (not to be
confused with the lack of a hardware pvid on the port, that is present
at all times).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21 12:14:29 +01:00
Vladimir Oltean 0da1a1c489 net: mscc: ocelot: allow a config where all bridge VLANs are egress-untagged
At present, the ocelot driver accepts a single egress-untagged bridge
VLAN, meaning that this sequence of operations:

ip link add br0 type bridge vlan_filtering 1
ip link set swp0 master br0
bridge vlan add dev swp0 vid 2 pvid untagged

fails because the bridge automatically installs VID 1 as a pvid & untagged
VLAN, and vid 2 would be the second untagged VLAN on this port. It is
necessary to delete VID 1 before proceeding to add VID 2.

This limitation comes from the fact that we operate the port tag, when
it has an egress-untagged VID, in the OCELOT_PORT_TAG_NATIVE mode.
The ocelot switches do not have full flexibility and can either have one
single VID as egress-untagged, or all of them.

There are use cases for having all VLANs as egress-untagged as well, and
this patch adds support for that.

The change rewrites ocelot_port_set_native_vlan() into a more generic
ocelot_port_manage_port_tag() function. Because the software bridge's
state, transmitted to us via switchdev, can become very complex, we
don't attempt to track all possible state transitions, but instead take
a more declarative approach and just make ocelot_port_manage_port_tag()
figure out which more to operate in:

- port is VLAN-unaware: the classified VLAN (internal, unrelated to the
                        802.1Q header) is not inserted into packets on egress
- port is VLAN-aware:
  - port has tagged VLANs:
    -> port has no untagged VLAN: set up as pure trunk
    -> port has one untagged VLAN: set up as trunk port + native VLAN
    -> port has more than one untagged VLAN: this is an invalid config
       which is rejected by ocelot_vlan_prepare
  - port has no tagged VLANs
    -> set up as pure egress-untagged port

We don't keep the number of tagged and untagged VLANs, we just count the
structures we keep.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21 12:14:29 +01:00
Vladimir Oltean 90e0aa8d10 net: mscc: ocelot: convert the VLAN masks to a list
First and foremost, the driver currently allocates a constant sized
4K * u32 (16KB memory) array for the VLAN masks. However, a typical
application might not need so many VLANs, so if we dynamically allocate
the memory as needed, we might actually save some space.

Secondly, we'll need to keep more advanced bookkeeping of the VLANs we
have, notably we'll have to check how many untagged and how many tagged
VLANs we have. This will have to stay in a structure, and allocating
another 16 KB array for that is again a bit too much.

So refactor the bridge VLANs in a linked list of structures.

The hook points inside the driver are ocelot_vlan_member_add() and
ocelot_vlan_member_del(), which previously used to operate on the
ocelot->vlan_mask[vid] array element.

ocelot_vlan_member_add() and ocelot_vlan_member_del() used to call
ocelot_vlan_member_set() to commit to the ocelot->vlan_mask.
Additionally, we had two calls to ocelot_vlan_member_set() from outside
those callers, and those were directly from ocelot_vlan_init().
Those calls do not set up bridging service VLANs, instead they:

- clear the VLAN table on reset
- set the port pvid to the value used by this driver for VLAN-unaware
  standalone port operation (VID 0)

So now, when we have a structure which represents actual bridge VLANs,
VID 0 doesn't belong in that structure, since it is not part of the
bridging layer.

So delete the middle man, ocelot_vlan_member_set(), and let
ocelot_vlan_init() call directly ocelot_vlant_set_mask() which forgoes
any data structure and writes directly to hardware, which is all that we
need.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21 12:14:29 +01:00
Vladimir Oltean 62a22bcbd3 net: mscc: ocelot: add a type definition for REW_TAG_CFG_TAG_CFG
This is a cosmetic patch which clarifies what are the port tagging
options for Ocelot switches.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21 12:14:29 +01:00
Vladimir Oltean 49f885b2d9 net: dsa: tag_ocelot_8021q: break circular dependency with ocelot switch lib
Michael reported that when using the "ocelot-8021q" tagging protocol,
the switch driver module must be manually loaded before the tagging
protocol can be loaded/is available.

This appears to be the same problem described here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
where due to the fact that DSA tagging protocols make use of symbols
exported by the switch drivers, circular dependencies appear and this
breaks module autoloading.

The ocelot_8021q driver needs the ocelot_can_inject() and
ocelot_port_inject_frame() functions from the switch library. Previously
the wrong approach was taken to solve that dependency: shims were
provided for the case where the ocelot switch library was compiled out,
but that turns out to be insufficient, because the dependency when the
switch lib _is_ compiled is problematic too.

We cannot declare ocelot_can_inject() and ocelot_port_inject_frame() as
static inline functions, because these access I/O functions like
__ocelot_write_ix() which is called by ocelot_write_rix(). Making those
static inline basically means exposing the whole guts of the ocelot
switch library, not ideal...

We already have one tagging protocol driver which calls into the switch
driver during xmit but not using any exported symbol: sja1105_defer_xmit.
We can do the same thing here: create a kthread worker and one work item
per skb, and let the switch driver itself do the register accesses to
send the skb, and then consume it.

Fixes: 0a6f17c6ae ("net: dsa: tag_ocelot_8021q: add support for PTP timestamping")
Reported-by: Michael Walle <michael@walle.cc>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 17:35:18 -07:00
Vladimir Oltean deab6b1cd9 net: dsa: tag_ocelot: break circular dependency with ocelot switch lib driver
As explained here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
DSA tagging protocol drivers cannot depend on symbols exported by switch
drivers, because this creates a circular dependency that breaks module
autoloading.

The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function
exported by the common ocelot switch lib. This function looks at
OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the
DSA tag, for PTP timestamping (the command: one-step/two-step, and the
TX timestamp identifier).

None of that requires deep insight into the driver, it is quite
stateless, as it only depends upon the skb->cb. So let's make it a
static inline function and put it in include/linux/dsa/ocelot.h, a
file that despite its name is used by the ocelot switch driver for
populating the injection header too - since commit 40d3f295b5 ("net:
mscc: ocelot: use common tag parsing code with DSA").

With that function declared as static inline, its body is expanded
inside each call site, so the dependency is broken and the DSA tagger
can be built without the switch library, upon which the felix driver
depends.

Fixes: 39e5308b32 ("net: mscc: ocelot: support PTP Sync one-step timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 17:35:18 -07:00
Vladimir Oltean ebb4c6a990 net: mscc: ocelot: cross-check the sequence id from the timestamp FIFO with the skb PTP header
The sad reality is that when a PTP frame with a TX timestamping request
is transmitted, it isn't guaranteed that it will make it all the way to
the wire (due to congestion inside the switch), and that a timestamp
will be taken by the hardware and placed in the timestamp FIFO where an
IRQ will be raised for it.

The implication is that if enough PTP frames are silently dropped by the
hardware such that the timestamp ID has rolled over, it is possible to
match a timestamp to an old skb.

Furthermore, nobody will match on the real skb corresponding to this
timestamp, since we stupidly matched on a previous one that was stale in
the queue, and stopped there.

So PTP timestamping will be broken and there will be no way to recover.

It looks like the hardware parses the sequenceID from the PTP header,
and also provides that metadata for each timestamp. The driver currently
ignores this, but it shouldn't.

As an extra resiliency measure, do the following:

- check whether the PTP sequenceID also matches between the skb and the
  timestamp, treat the skb as stale otherwise and free it

- if we see a stale skb, don't stop there and try to match an skb one
  more time, chances are there's one more skb in the queue with the same
  timestamp ID, otherwise we wouldn't have ever found the stale one (it
  is by timestamp ID that we matched it).

While this does not prevent PTP packet drops, it at least prevents
the catastrophic consequences of incorrect timestamp matching.

Since we already call ptp_classify_raw in the TX path, save the result
in the skb->cb of the clone, and just use that result in the interrupt
code path.

Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 17:35:18 -07:00
Vladimir Oltean 52849bcf00 net: mscc: ocelot: avoid overflowing the PTP timestamp FIFO
PTP packets with 2-step TX timestamp requests are matched to packets
based on the egress port number and a 6-bit timestamp identifier.
All PTP timestamps are held in a common FIFO that is 128 entry deep.

This patch ensures that back-to-back timestamping requests cannot exceed
the hardware FIFO capacity. If that happens, simply send the packets
without requesting a TX timestamp to be taken (in the case of felix,
since the DSA API has a void return code in ds->ops->port_txtstamp) or
drop them (in the case of ocelot).

I've moved the ts_id_lock from a per-port basis to a per-switch basis,
because we need separate accounting for both numbers of PTP frames in
flight. And since we need locking to inc/dec the per-switch counter,
that also offers protection for the per-port counter and hence there is
no reason to have a per-port counter anymore.

Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 17:35:17 -07:00
Vladimir Oltean 3b95d1b293 net: mscc: ocelot: transmit the VLAN filtering restrictions via extack
We need to transmit more restrictions in future patches, convert this
one to netlink extack.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-20 14:39:52 +01:00
Vladimir Oltean 01af940e9b net: mscc: ocelot: transmit the "native VLAN" error via extack
We need to reject some more configurations in future patches, convert
the existing one to netlink extack.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-20 14:39:52 +01:00
Vladimir Oltean e6e12df625 net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.

This is a large patch and hard to break up, but it does the following:

The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.

The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
  write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
  changes actually break the link and must be avoided.

The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
  instantiations and placed in ocelot_net.c which is built only for the
  ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
  switchdev driver and the felix DSA driver (they are put in the common
  lib).

One by one, the registers written by ocelot_adjust_link are:

DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
                   register since its out-of-reset value was fine and
                   did not need changing. The write is moved to the
                   common ocelot_phylink_mac_link_up and on felix it is
                   guarded by a quirk bit that makes the written value
                   identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
                  touched this. felix_phylink_mac_link_{up,down} also
                  do. We go with what felix does and put it in
                  ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
                write this, but to different values. Move to the common
                ocelot_phylink_mac_link_up and make sure via the quirk
                that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
                  did not. Runtime invariant, speed does not matter since
                  PFC is disabled via the RX_PFC_ENA bits which are cleared.
                  Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
                                 felix_phylink_mac_link_{up,down} wrote
                                 this. Ocelot also wrote this register
                                 from ocelot_port_disable. Keep what
                                 felix did, move in ocelot_phylink_mac_link_{up,down}
                                 and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
                 ocelot always enabled RX and TX flow control, felix
                 listened to phylink (for the most part, at least - see
                 the 2500base-X comment).

The registers which only felix_phylink_mac_link_up wrote are:

SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
                          worked on ocelot. Not it should, since the
                          code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
                    should be the one touching them, deleted.

Other changes:

- The old phylib registration code was in mscc_ocelot_init_ports. It is
  hard to work with 2 levels of indentation already in, and with hard to
  follow teardown logic. The new phylink registration code was moved
  inside ocelot_probe_port(), right between alloc_etherdev() and
  register_netdev(). It could not be done before (=> outside of)
  ocelot_probe_port() because ocelot_probe_port() allocates the struct
  ocelot_port which we then use to assign ocelot_port->phy_mode to. It
  is more preferable to me to have all PHY handling logic inside the
  same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
  in ocelot_port_open to set the SERDES protocol to Ethernet. This is
  logically a runtime invariant and can be done just once, when the port
  registers with phylink. We therefore don't even need to keep the
  serdes reference inside struct ocelot_port_private, or to use the devm
  variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
  the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
  don't define one for the internal PHY ports. So we patch
  PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:

	switch (priv->phy_mode) {
	case PHY_INTERFACE_MODE_NA:
	        continue;

  which made the code skip the serdes initialization for the internal
  PHY ports. Frankly that is not all that obvious, so now we explicitly
  initialize the serdes under an "if" condition and not rely on code
  jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
  ports. Since that is in fact the default value for the register field
  DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
  the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
  of reset, which does match the comment. I don't even want to know why
  this code is placed there, but if there is indeed an issue that all
  ports that share a QSGMII lane must all be up, then this logic is
  already buggy, since mscc_ocelot_init_ports iterates using
  for_each_available_child_of_node, so nobody prevents the user from
  putting a 'status = "disabled";' for some QSGMII ports which would
  break the driver's assumption.
  In any case, in the eventuality that I'm right, we would have yet
  another issue if ocelot_phylink_mac_link_down would reset those ports
  and that would be forbidden, so since the ocelot_adjust_link logic did
  not do that (maybe for a reason), add another quirk to preserve the
  old logic.

The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.

Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-16 11:19:34 +01:00
Vladimir Oltean 46efe4efb9 net: dsa: felix: stop calling ocelot_port_{enable,disable}
ocelot_port_enable touches ANA_PORT_PORT_CFG, which has the following
fields:

- LOCKED_PORTMOVE_CPU, LEARNDROP, LEARNCPU, LEARNAUTO, RECV_ENA, all of
  which are written with their hardware default values, also runtime
  invariants. So it makes no sense to write these during every .ndo_open.

- PORTID_VAL: this field has an out-of-reset value of zero for all ports
  and must be initialized by software. Additionally, the
  ocelot_setup_logical_port_ids() code path sets up different logical
  port IDs for the ports in a hardware LAG, and we absolutely don't want
  .ndo_open to interfere there and reset those values.

So in fact the write from ocelot_port_enable can better be moved to
ocelot_init_port, and the .ndo_open hook deleted.

ocelot_port_disable touches DEV_MAC_ENA_CFG and QSYS_SWITCH_PORT_MODE_PORT_ENA,
in an attempt to undo what ocelot_adjust_link did. But since .ndo_stop
does not get called each time the link falls (i.e. this isn't a
substitute for .phylink_mac_link_down), felix already does better at
this by writing those registers already in felix_phylink_mac_link_down.

So keep ocelot_port_disable (for now, until ocelot is converted to
phylink too), and just delete the felix call to it, which is not
necessary.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-16 11:19:34 +01:00
Yangbo Lu 39e5308b32 net: mscc: ocelot: support PTP Sync one-step timestamping
Although HWTSTAMP_TX_ONESTEP_SYNC existed in ioctl for hardware timestamp
configuration, the PTP Sync one-step timestamping had never been supported.

This patch is to truely support it.

- ocelot_port_txtstamp_request()
  This function handles tx timestamp request by storing
  ptp_cmd(tx timestamp type) in OCELOT_SKB_CB(skb)->ptp_cmd,
  and additionally for two-step timestamp storing ts_id in
  OCELOT_SKB_CB(clone)->ptp_cmd.

- ocelot_ptp_rew_op()
  During xmit, this function is called to get rew_op (rewriter option) by
  checking skb->cb for tx timestamp request, and configure to transmitting.

Non-onestep-Sync packet with one-step timestamp request falls back to use
two-step timestamp.

Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-27 14:10:15 -07:00
Yangbo Lu 682eaad93e net: mscc: ocelot: convert to ocelot_port_txtstamp_request()
Convert to a common ocelot_port_txtstamp_request() for TX timestamp
request handling.

Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-27 14:10:15 -07:00
Yangbo Lu c4b364ce12 net: dsa: free skb->cb usage in core driver
Free skb->cb usage in core driver and let device drivers decide to
use or not. The reason having a DSA_SKB_CB(skb)->clone was because
dsa_skb_tx_timestamp() which may set the clone pointer was called
before p->xmit() which would use the clone if any, and the device
driver has no way to initialize the clone pointer.

This patch just put memset(skb->cb, 0, sizeof(skb->cb)) at beginning
of dsa_slave_xmit(). Some new features in the future, like one-step
timestamp may need more bytes of skb->cb to use in
dsa_skb_tx_timestamp(), and p->xmit().

Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-27 14:10:15 -07:00
Vladimir Oltean e4bd44e89d net: ocelot: replay switchdev events when joining bridge
The premise of this change is that the switchdev port attributes and
objects offloaded by ocelot might have been missed when we are joining
an already existing bridge port, such as a bonding interface.

The patch pulls these switchdev attributes and objects from the bridge,
on behalf of the 'bridge port' net device which might be either the
ocelot switch interface, or the bonding upper interface.

The ocelot_net.c belongs strictly to the switchdev ocelot driver, while
ocelot.c is part of a library shared with the DSA felix driver.
The ocelot_port_bridge_leave function (part of the common library) used
to call ocelot_port_vlan_filtering(false), something which is not
necessary for DSA, since the framework deals with that already there.
So we move this function to ocelot_switchdev_unsync, which is specific
to the switchdev driver.

The code movement described above makes ocelot_port_bridge_leave no
longer return an error code, so we change its type from int to void.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-23 14:49:06 -07:00
Vladimir Oltean df291e54cc net: ocelot: support multiple bridges
The ocelot switches are a bit odd in that they do not have an STP state
to put the ports into. Instead, the forwarding configuration is delayed
from the typical port_bridge_join into stp_state_set, when the port enters
the BR_STATE_FORWARDING state.

I can only guess that the implementation of this quirk is the reason that
led to the simplification of the driver such that only one bridge could
be offloaded at a time.

We can simplify the data structures somewhat, and introduce a per-port
bridge device pointer and STP state, similar to how the LAG offload
works now (there we have a per-port bonding device pointer and TX
enabled state). This allows offloading multiple bridges with relative
ease, while still keeping in place the quirk to delay the programming of
the PGIDs.

We actually need this change now because we need to remove the bogus
restriction from ocelot_bridge_stp_state_set that ocelot->bridge_mask
needs to contain BIT(port), otherwise that function is a no-op.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-18 19:13:42 -07:00
Horatiu Vultur 7c588c3e96 net: ocelot: Extend MRP
This patch extends MRP support for Ocelot. It allows to have multiple
rings and when the node has the MRC role it forwards MRP Test frames in
HW. For MRM there is no change.

Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-16 15:49:52 -07:00
Horatiu Vultur ebb1bb4013 net: ocelot: Add PGID_BLACKHOLE
Add a new PGID that is used not to forward frames anywhere. It is used
by MRP to make sure that MRP Test frames will not reach CPU port.

Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-16 15:49:52 -07:00
Horatiu Vultur d8ea7ff399 net: mscc: ocelot: Add support for MRP
Add basic support for MRP. The HW will just trap all MRP frames on the
ring ports to CPU and allow the SW to process them. In this way it is
possible to for this node to behave both as MRM and MRC.

Current limitations are:
- it doesn't support Interconnect roles.
- it supports only a single ring.
- the HW should be able to do forwarding of MRP Test frames so the SW
  will not need to do this. So it would be able to have the role MRC
  without SW support.

Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-16 14:47:46 -08:00
Vladimir Oltean 0a6f17c6ae net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.

felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.

Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.

On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).

This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.

The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.

There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 17:31:44 -08:00
Vladimir Oltean 924ee317f7 net: mscc: ocelot: refactor ocelot_xtr_irq_handler into ocelot_xtr_poll
Since the felix DSA driver will need to poll the CPU port module for
extracted frames as well, let's create some common functions that read
an Extraction Frame Header, and then an skb, from a CPU extraction
group.

We abuse the struct ocelot_ops :: port_to_netdev function a little bit,
in order to retrieve the DSA port net_device or the ocelot switchdev
net_device based on the source port information from the Extraction
Frame Header, but it's all in the benefit of code simplification -
netdev_alloc_skb needs it. Originally, the port_to_netdev method was
intended for parsing act->dev from tc flower offload code.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 17:31:44 -08:00
Vladimir Oltean 40d3f295b5 net: mscc: ocelot: use common tag parsing code with DSA
The Injection Frame Header and Extraction Frame Header that the switch
prepends to frames over the NPI port is also prepended to frames
delivered over the CPU port module's queues.

Let's unify the handling of the frame headers by making the ocelot
driver call some helpers exported by the DSA tagger. Among other things,
this allows us to get rid of the strange cpu_to_be32 when transmitting
the Injection Frame Header on ocelot, since the packing API uses
network byte order natively (when "quirks" is 0).

The comments above ocelot_gen_ifh talk about setting pop_cnt to 3, and
the cpu extraction queue mask to something, but the code doesn't do it,
so we don't do it either.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 17:31:44 -08:00
Vladimir Oltean 137ffbc4bb net: mscc: ocelot: refactor ocelot_port_inject_frame out of ocelot_port_xmit
The felix DSA driver will inject some frames through register MMIO, same
as ocelot switchdev currently does. So we need to be able to reuse the
common code.

Also create some shim definitions, since the DSA tagger can be compiled
without support for the switch driver.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 17:31:44 -08:00
Vladimir Oltean 421741ea56 net: mscc: ocelot: offload bridge port flags to device
We should not be unconditionally enabling address learning, since doing
that is actively detrimential when a port is standalone and not offloading
a bridge. Namely, if a port in the switch is standalone and others are
offloading the bridge, then we could enter a situation where we learn an
address towards the standalone port, but the bridged ports could not
forward the packet there, because the CPU is the only path between the
standalone and the bridged ports. The solution of course is to not
enable address learning unless the bridge asks for it.

We need to set up the initial port flags for no learning and flooding
everything, and also when the port joins and leaves the bridge.
The flood configuration was already configured ok for standalone mode
in ocelot_init, we just need to disable learning in ocelot_init_port.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-12 17:08:05 -08:00
Vladimir Oltean b360d94f1b net: mscc: ocelot: use separate flooding PGID for broadcast
In preparation of offloading the bridge port flags which have
independent settings for unknown multicast and for broadcast, we should
also start reserving one destination Port Group ID for the flooding of
broadcast packets, to allow configuring it individually.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-12 17:08:05 -08:00
David S. Miller dc9d87581d Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net 2021-02-10 13:30:12 -08:00
Vladimir Oltean eb4733d7cf net: dsa: felix: implement port flushing on .phylink_mac_link_down
There are several issues which may be seen when the link goes down while
forwarding traffic, all of which can be attributed to the fact that the
port flushing procedure from the reference manual was not closely
followed.

With flow control enabled on both the ingress port and the egress port,
it may happen when a link goes down that Ethernet packets are in flight.
In flow control mode, frames are held back and not dropped. When there
is enough traffic in flight (example: iperf3 TCP), then the ingress port
might enter congestion and never exit that state. This is a problem,
because it is the egress port's link that went down, and that has caused
the inability of the ingress port to send packets to any other port.
This is solved by flushing the egress port's queues when it goes down.

There is also a problem when performing stream splitting for
IEEE 802.1CB traffic (not yet upstream, but a sort of multicast,
basically). There, if one port from the destination ports mask goes
down, splitting the stream towards the other destinations will no longer
be performed. This can be traced down to this line:

	ocelot_port_writel(ocelot_port, 0, DEV_MAC_ENA_CFG);

which should have been instead, as per the reference manual:

	ocelot_port_rmwl(ocelot_port, 0, DEV_MAC_ENA_CFG_RX_ENA,
			 DEV_MAC_ENA_CFG);

Basically only DEV_MAC_ENA_CFG_RX_ENA should be disabled, but not
DEV_MAC_ENA_CFG_TX_ENA - I don't have further insight into why that is
the case, but apparently multicasting to several ports will cause issues
if at least one of them doesn't have DEV_MAC_ENA_CFG_TX_ENA set.

I am not sure what the state of the Ocelot VSC7514 driver is, but
probably not as bad as Felix/Seville, since VSC7514 uses phylib and has
the following in ocelot_adjust_link:

	if (!phydev->link)
		return;

therefore the port is not really put down when the link is lost, unlike
the DSA drivers which use .phylink_mac_link_down for that.

Nonetheless, I put ocelot_port_flush() in the common ocelot.c because it
needs to access some registers from drivers/net/ethernet/mscc/ocelot_rew.h
which are not exported in include/soc/mscc/ and a bugfix patch should
probably not move headers around.

Fixes: bdeced75b1 ("net: dsa: felix: Add PCS operations for PHYLINK")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-09 11:41:11 -08:00