Граф коммитов

3519 Коммитов

Автор SHA1 Сообщение Дата
Linus Torvalds 20621d2f27 A set of x86 fixes:
- Prevent a infinite loop in the MCE recovery on return to user space,
     which was caused by a second MCE queueing work for the same page and
     thereby creating a circular work list.
 
   - Make kern_addr_valid() handle existing PMD entries, which are marked not
     present in the higher level page table, correctly instead of blindly
     dereferencing them.
 
   - Pass a valid address to sanitize_phys(). This was caused by the mixture
     of inclusive and exclusive ranges. memtype_reserve() expect 'end' being
     exclusive, but sanitize_phys() wants it inclusive. This worked so far,
     but with end being the end of the physical address space the fail is
     exposed.
 
  - Increase the maximum supported GPIO numbers for 64bit. Newer SoCs exceed
    the previous maximum.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmFHhPIACgkQEsHwGGHe
 VUqqQA/+MHQ2HxVOPxnJ0i/D1nK8ccNqTEkSN08z23RGnjqKQun/VaNIIceJY25f
 Abeb2tI+0qRrdWVPVd5YqcTHuBLmnPs6Je3MfOrG47eQNW4/SmkXYuOexK80Bew3
 YDgEV73d40rHcolXZCaonVajx+FmjoNvkDt5LpLvLcCxIyv0GClFBcZrFAm70AxI
 Feax30koh3/MIFxHoXyADN8D+MJu1GxA6QWuoTK40s3G/gTTAwimkDgnNU1JXbcj
 VvVVZaNnnAxjxrCa81blr9nDpHJCDinG9bdvDT3UDLous52hGMZTsHoHogxwfogT
 EhIgPvL8hf+wm1WXA4NyvSNKZxsGfdkvIXaUq9XYHpLRD6Ao6x7jQDL039imucqb
 9YtaH52GhG0SgJlYjkm/zrKezIjKLDen0ZYr/2iNTDM1p2GqQEFo07wC/ME8TkQ6
 /BvtbkIvOuUz3nJeV4/AO+O4kaNvto9O2eHq9oodIN9nrwmlO5fMg8XO9nrhWB11
 ChXEz6kPqta1nyZXy0mwOrlXlqzcusiroG4G9F7IBBz+t/gNwlu3uZuIgkQCXyYw
 DgKz9cnQ3RdgCFknbmEwV5oCjewm7UdcgwaDAaelHIDuWMcshZFvMf1uSjnyg4Z/
 39WI8W7W2aZnIoKWpvu8s7Gr8f1krE7C3xrkvl2WmbKPkxNAin8=
 =7cq3
 -----END PGP SIGNATURE-----

Merge tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Borislav Petkov:

 - Prevent a infinite loop in the MCE recovery on return to user space,
   which was caused by a second MCE queueing work for the same page and
   thereby creating a circular work list.

 - Make kern_addr_valid() handle existing PMD entries, which are marked
   not present in the higher level page table, correctly instead of
   blindly dereferencing them.

 - Pass a valid address to sanitize_phys(). This was caused by the
   mixture of inclusive and exclusive ranges. memtype_reserve() expect
   'end' being exclusive, but sanitize_phys() wants it inclusive. This
   worked so far, but with end being the end of the physical address
   space the fail is exposed.

 - Increase the maximum supported GPIO numbers for 64bit. Newer SoCs
   exceed the previous maximum.

* tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce: Avoid infinite loop for copy from user recovery
  x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
  x86/platform: Increase maximum GPIO number for X86_64
  x86/pat: Pass valid address to sanitize_phys()
2021-09-19 13:29:36 -07:00
Linus Torvalds 77e02cf57b memblock: introduce saner 'memblock_free_ptr()' interface
The boot-time allocation interface for memblock is a mess, with
'memblock_alloc()' returning a virtual pointer, but then you are
supposed to free it with 'memblock_free()' that takes a _physical_
address.

Not only is that all kinds of strange and illogical, but it actually
causes bugs, when people then use it like a normal allocation function,
and it fails spectacularly on a NULL pointer:

   https://lore.kernel.org/all/20210912140820.GD25450@xsang-OptiPlex-9020/

or just random memory corruption if the debug checks don't catch it:

   https://lore.kernel.org/all/61ab2d0c-3313-aaab-514c-e15b7aa054a0@suse.cz/

I really don't want to apply patches that treat the symptoms, when the
fundamental cause is this horribly confusing interface.

I started out looking at just automating a sane replacement sequence,
but because of this mix or virtual and physical addresses, and because
people have used the "__pa()" macro that can take either a regular
kernel pointer, or just the raw "unsigned long" address, it's all quite
messy.

So this just introduces a new saner interface for freeing a virtual
address that was allocated using 'memblock_alloc()', and that was kept
as a regular kernel pointer.  And then it converts a couple of users
that are obvious and easy to test, including the 'xbc_nodes' case in
lib/bootconfig.c that caused problems.

Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 40caa127f3 ("init: bootconfig: Remove all bootconfig data when the init memory is removed")
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-14 13:23:22 -07:00
Thomas Gleixner 2cadf5248b x86/extable: Provide EX_TYPE_DEFAULT_MCE_SAFE and EX_TYPE_FAULT_MCE_SAFE
Provide exception fixup types which can be used to identify fixups which
allow in kernel #MC recovery and make them invoke the existing handlers.

These will be used at places where #MC recovery is handled correctly by the
caller.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.269689153@linutronix.de
2021-09-13 17:56:56 +02:00
Thomas Gleixner 46d28947d9 x86/extable: Rework the exception table mechanics
The exception table entries contain the instruction address, the fixup
address and the handler address. All addresses are relative. Storing the
handler address has a few downsides:

 1) Most handlers need to be exported

 2) Handlers can be defined everywhere and there is no overview about the
    handler types

 3) MCE needs to check the handler type to decide whether an in kernel #MC
    can be recovered. The functionality of the handler itself is not in any
    way special, but for these checks there need to be separate functions
    which in the worst case have to be exported.

    Some of these 'recoverable' exception fixups are pretty obscure and
    just reuse some other handler to spare code. That obfuscates e.g. the
    #MC safe copy functions. Cleaning that up would require more handlers
    and exports

Rework the exception fixup mechanics by storing a fixup type number instead
of the handler address and invoke the proper handler for each fixup
type. Also teach the extable sort to leave the type field alone.

This makes most handlers static except for special cases like the MCE
MSR fixup and the BPF fixup. This allows to add more types for cleaning up
the obscure places without adding more handler code and exports.

There is a marginal code size reduction for a production config and it
removes _eight_ exported symbols.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lkml.kernel.org/r/20210908132525.211958725@linutronix.de
2021-09-13 17:51:47 +02:00
Thomas Gleixner 326b567f82 x86/extable: Tidy up redundant handler functions
No need to have the same code all over the place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132524.963232825@linutronix.de
2021-09-13 12:33:06 +02:00
Linus Torvalds 2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
Mike Rapoport 34b1999da9 x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
Jiri Olsa reported a fault when running:

  # cat /proc/kallsyms | grep ksys_read
  ffffffff8136d580 T ksys_read
  # objdump -d --start-address=0xffffffff8136d580 --stop-address=0xffffffff8136d590 /proc/kcore

  /proc/kcore:     file format elf64-x86-64

  Segmentation fault

  general protection fault, probably for non-canonical address 0xf887ffcbff000: 0000 [#1] SMP PTI
  CPU: 12 PID: 1079 Comm: objdump Not tainted 5.14.0-rc5qemu+ #508
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-4.fc34 04/01/2014
  RIP: 0010:kern_addr_valid
  Call Trace:
   read_kcore
   ? rcu_read_lock_sched_held
   ? rcu_read_lock_sched_held
   ? rcu_read_lock_sched_held
   ? trace_hardirqs_on
   ? rcu_read_lock_sched_held
   ? lock_acquire
   ? lock_acquire
   ? rcu_read_lock_sched_held
   ? lock_acquire
   ? rcu_read_lock_sched_held
   ? rcu_read_lock_sched_held
   ? rcu_read_lock_sched_held
   ? lock_release
   ? _raw_spin_unlock
   ? __handle_mm_fault
   ? rcu_read_lock_sched_held
   ? lock_acquire
   ? rcu_read_lock_sched_held
   ? lock_release
   proc_reg_read
   ? vfs_read
   vfs_read
   ksys_read
   do_syscall_64
   entry_SYSCALL_64_after_hwframe

The fault happens because kern_addr_valid() dereferences existent but not
present PMD in the high kernel mappings.

Such PMDs are created when free_kernel_image_pages() frees regions larger
than 2Mb. In this case, a part of the freed memory is mapped with PMDs and
the set_memory_np_noalias() -> ... -> __change_page_attr() sequence will
mark the PMD as not present rather than wipe it completely.

Have kern_addr_valid() check whether higher level page table entries are
present before trying to dereference them to fix this issue and to avoid
similar issues in the future.

Stable backporting note:
------------------------

Note that the stable marking is for all active stable branches because
there could be cases where pagetable entries exist but are not valid -
see 9a14aefc1d ("x86: cpa, fix lookup_address"), for example. So make
sure to be on the safe side here and use pXY_present() accessors rather
than pXY_none() which could #GP when accessing pages in the direct map.

Also see:

  c40a56a781 ("x86/mm/init: Remove freed kernel image areas from alias mapping")

for more info.

Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: <stable@vger.kernel.org>	# 4.4+
Link: https://lkml.kernel.org/r/20210819132717.19358-1-rppt@kernel.org
2021-09-08 20:50:32 +02:00
David Hildenbrand 65a2aa5f48 mm/memory_hotplug: remove nid parameter from arch_remove_memory()
The parameter is unused, let's remove it.

Link: https://lkml.kernel.org/r/20210712124052.26491-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Heiko Carstens <hca@linux.ibm.com>	[s390]
Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: Jia He <justin.he@arm.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Linus Torvalds 14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Mike Rapoport a7259df767 memblock: make memblock_find_in_range method private
There are a lot of uses of memblock_find_in_range() along with
memblock_reserve() from the times memblock allocation APIs did not exist.

memblock_find_in_range() is the very core of memblock allocations, so any
future changes to its internal behaviour would mandate updates of all the
users outside memblock.

Replace the calls to memblock_find_in_range() with an equivalent calls to
memblock_phys_alloc() and memblock_phys_alloc_range() and make
memblock_find_in_range() private method of memblock.

This simplifies the callers, ensures that (unlikely) errors in
memblock_reserve() are handled and improves maintainability of
memblock_find_in_range().

Link: https://lkml.kernel.org/r/20210816122622.30279-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>		[arm64]
Acked-by: Kirill A. Shutemov <kirill.shtuemov@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>	[ACPI]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Nick Kossifidis <mick@ics.forth.gr>			[riscv]
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:17 -07:00
Jeff Moyer aeef8b5089 x86/pat: Pass valid address to sanitize_phys()
The end address passed to memtype_reserve() is handed directly to
sanitize_phys().  However, end is exclusive and sanitize_phys() expects
an inclusive address.  If end falls at the end of the physical address
space, sanitize_phys() will return 0.  This can result in drivers
failing to load, and the following warning:

 WARNING: CPU: 26 PID: 749 at arch/x86/mm/pat.c:354 reserve_memtype+0x262/0x450
 reserve_memtype failed: [mem 0x3ffffff00000-0xffffffffffffffff], req uncached-minus
 Call Trace:
  [<ffffffffa427b1f2>] reserve_memtype+0x262/0x450
  [<ffffffffa42764aa>] ioremap_nocache+0x1a/0x20
  [<ffffffffc04620a1>] mpt3sas_base_map_resources+0x151/0xa60 [mpt3sas]
  [<ffffffffc0465555>] mpt3sas_base_attach+0xf5/0xa50 [mpt3sas]
 ---[ end trace 6d6eea4438db89ef ]---
 ioremap reserve_memtype failed -22
 mpt3sas_cm0: unable to map adapter memory! or resource not found
 mpt3sas_cm0: failure at drivers/scsi/mpt3sas/mpt3sas_scsih.c:10597/_scsih_probe()!

Fix this by passing the inclusive end address to sanitize_phys().

Fixes: 510ee090ab ("x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses")
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/x49o8a3pu5i.fsf@segfault.boston.devel.redhat.com
2021-09-02 21:53:18 +02:00
Linus Torvalds 0a096f240a A reworked version of the opt-in L1D flush mechanism:
A stop gap for potential future speculation related hardware
   vulnerabilities and a mechanism for truly security paranoid
   applications.
 
   It allows a task to request that the L1D cache is flushed when the kernel
   switches to a different mm. This can be requested via prctl().
 
   Changes vs. the previous versions:
 
     - Get rid of the software flush fallback
 
     - Make the handling consistent with other mitigations
 
     - Kill the task when it ends up on a SMT enabled core which defeats the
       purpose of L1D flushing obviously
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsn0oTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoa5fD/47vHGtjAtDr/DaXR1C6F9AvVbKEl8p
 oNHn8IukE6ts6G4dFH9wUvo/Ut0K3kxX54I+BATew0LTy6tsQeUYh/xjwXMupgNV
 oKOc9waoqdFvju3ayLFWJmuACLdXpyrGC1j35Aji61zSbR/GdtZ4oDxbuN2YJDAT
 BTcgKrBM5nQm94JNa083RQSCU5LJxbC7ETkIh6NR73RSPCjUC1Wpxy1sAQAa2MPD
 8EzcJ/DjVGaHCI7adX10sz3xdUcyOz7qYz16HpoMGx+oSiq7pGEBtUiK97EYMcrB
 s+ADFUjYmx/pbEWv2r4c9zxNh7ZV3aLBsWwi7bScHIsv8GjrsA/mYLWskuwOV6BB
 22qZjfd0c4raiJwd+nmSx+D2Szv6lZ20gP+krtP2VNC6hUv7ft0VPLySiaFMmUHj
 quooDZis/W5n+4C9Q8Rk9uUtKzzJOngqW+duftiixHiNQ/ECP/QCAHhZYck/NOkL
 tZkNj6lJj9+2iR7mhbYROZ+wrYQzRvqNb2pJJQoi/wA0q7wPSKBi3m+51lPsht5W
 tn94CpaDDZ4IB7Fe1NtcA0UpYJSWpDQGlau4qp92HMCCIcRFfQEm+m9x8axwcj7m
 ECblHJYBPHuNcCHvPA8kHvr1nd6UUXrGPIo8TK8YhUUbK6pO0OjdNzZX496ia/2g
 pLzaW2ENTPLbXg==
 =27wH
 -----END PGP SIGNATURE-----

Merge tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cache flush updates from Thomas Gleixner:
 "A reworked version of the opt-in L1D flush mechanism.

  This is a stop gap for potential future speculation related hardware
  vulnerabilities and a mechanism for truly security paranoid
  applications.

  It allows a task to request that the L1D cache is flushed when the
  kernel switches to a different mm. This can be requested via prctl().

  Changes vs the previous versions:

   - Get rid of the software flush fallback

   - Make the handling consistent with other mitigations

   - Kill the task when it ends up on a SMT enabled core which defeats
     the purpose of L1D flushing obviously"

* tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation: Add L1D flushing Documentation
  x86, prctl: Hook L1D flushing in via prctl
  x86/mm: Prepare for opt-in based L1D flush in switch_mm()
  x86/process: Make room for TIF_SPEC_L1D_FLUSH
  sched: Add task_work callback for paranoid L1D flush
  x86/mm: Refactor cond_ibpb() to support other use cases
  x86/smp: Add a per-cpu view of SMT state
2021-08-30 15:00:33 -07:00
Sebastian Andrzej Siewior 77ad320cfb x86/mmiotrace: Replace deprecated CPU-hotplug functions.
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().

Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20210803141621.780504-7-bigeasy@linutronix.de
2021-08-10 14:46:27 +02:00
Balbir Singh b5f06f64e2 x86/mm: Prepare for opt-in based L1D flush in switch_mm()
The goal of this is to allow tasks that want to protect sensitive
information, against e.g. the recently found snoop assisted data sampling
vulnerabilites, to flush their L1D on being switched out.  This protects
their data from being snooped or leaked via side channels after the task
has context switched out.

This could also be used to wipe L1D when an untrusted task is switched in,
but that's not a really well defined scenario while the opt-in variant is
clearly defined.

The mechanism is default disabled and can be enabled on the kernel command
line.

Prepare for the actual prctl based opt-in:

  1) Provide the necessary setup functionality similar to the other
     mitigations and enable the static branch when the command line option
     is set and the CPU provides support for hardware assisted L1D
     flushing. Software based L1D flush is not supported because it's CPU
     model specific and not really well defined.

     This does not come with a sysfs file like the other mitigations
     because it is not bound to any specific vulnerability.

     Support has to be queried via the prctl(2) interface.

  2) Add TIF_SPEC_L1D_FLUSH next to L1D_SPEC_IB so the two bits can be
     mangled into the mm pointer in one go which allows to reuse the
     existing mechanism in switch_mm() for the conditional IBPB speculation
     barrier efficiently.

  3) Add the L1D flush specific functionality which flushes L1D when the
     outgoing task opted in.

     Also check whether the incoming task has requested L1D flush and if so
     validate that it is not accidentaly running on an SMT sibling as this
     makes the whole excercise moot because SMT siblings share L1D which
     opens tons of other attack vectors. If that happens schedule task work
     which signals the incoming task on return to user/guest with SIGBUS as
     this is part of the paranoid L1D flush contract.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-1-sblbir@amazon.com
2021-07-28 11:42:24 +02:00
Balbir Singh 371b09c6fd x86/mm: Refactor cond_ibpb() to support other use cases
cond_ibpb() has the necessary bits required to track the previous mm in
switch_mm_irqs_off(). This can be reused for other use cases like L1D
flushing on context switch.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-3-sblbir@amazon.com
2021-07-28 11:42:24 +02:00
Jonathan Marek d8a719059b Revert "mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge"
This reverts commit c742199a01.

c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
breaks arm64 in at least two ways for configurations where PUD or PMD
folding occur:

  1. We no longer install huge-vmap mappings and silently fall back to
     page-granular entries, despite being able to install block entries
     at what is effectively the PGD level.

  2. If the linear map is backed with block mappings, these will now
     silently fail to be created in alloc_init_pud(), causing a panic
     early during boot.

The pgtable selftests caught this, although a fix has not been
forthcoming and Christophe is AWOL at the moment, so just revert the
change for now to get a working -rc3 on which we can queue patches for
5.15.

A simple revert breaks the build for 32-bit PowerPC 8xx machines, which
rely on the default function definitions when the corresponding
page-table levels are folded, since commit a6a8f7c4aa ("powerpc/8xx:
add support for huge pages on VMAP and VMALLOC"), eg:

  powerpc64-linux-ld: mm/vmalloc.o: in function `vunmap_pud_range':
  linux/mm/vmalloc.c:362: undefined reference to `pud_clear_huge'

To avoid that, add stubs for pud_clear_huge() and pmd_clear_huge() in
arch/powerpc/mm/nohash/8xx.c as suggested by Christophe.

Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Fixes: c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
Signed-off-by: Jonathan Marek <jonathan@marek.ca>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
[mpe: Fold in 8xx.c changes from Christophe and mention in change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/linux-arm-kernel/CAMuHMdXShORDox-xxaeUfDW3wx2PeggFSqhVSHVZNKCGK-y_vQ@mail.gmail.com/
Link: https://lore.kernel.org/r/20210717160118.9855-1-jonathan@marek.ca
Link: https://lore.kernel.org/r/87r1fs1762.fsf@mpe.ellerman.id.au
Signed-off-by: Will Deacon <will@kernel.org>
2021-07-21 11:28:09 +01:00
Aneesh Kumar K.V dc4875f0e7 mm: rename p4d_page_vaddr to p4d_pgtable and make it return pud_t *
No functional change in this patch.

[aneesh.kumar@linux.ibm.com: m68k build error reported by kernel robot]
  Link: https://lkml.kernel.org/r/87tulxnb2v.fsf@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-2-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:22 -07:00
Aneesh Kumar K.V 9cf6fa2458 mm: rename pud_page_vaddr to pud_pgtable and make it return pmd_t *
No functional change in this patch.

[aneesh.kumar@linux.ibm.com: fix]
  Link: https://lkml.kernel.org/r/87wnqtnb60.fsf@linux.ibm.com
[sfr@canb.auug.org.au: another fix]
  Link: https://lkml.kernel.org/r/20210619134410.89559-1-aneesh.kumar@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-1-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:22 -07:00
Linus Torvalds 1423e2660c Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
     writes the FPU state to the alternate stack without checking whether
     the stack is large enough to accomodate it.
 
     Check the alternate stack size before doing so and in case it's too
     small force a SIGSEGV instead of silently corrupting user space data.
 
   - MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
     updated despite the fact that the FPU state which is stored on the
     signal stack has grown over time which causes trouble in the field
     when AVX512 is available on a CPU. The kernel does not expose the
     minimum requirements for the alternate stack size depending on the
     available and enabled CPU features.
 
     ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
     Add it to x86 as well
 
   - A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
     related issues unearthed quite some inconsistencies, duplicated code
     and other issues.
 
     The fine granular overhaul addresses this, makes the code more robust
     and maintainable, which allows to integrate upcoming XSTATE related
     features in sane ways.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
 y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
 KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
 wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
 gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
 f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
 GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
 XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
 M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
 SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
 0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
 /TbbRZu7nXDN2w==
 =Mq1m
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:
 "Fixes and improvements for FPU handling on x86:

   - Prevent sigaltstack out of bounds writes.

     The kernel unconditionally writes the FPU state to the alternate
     stack without checking whether the stack is large enough to
     accomodate it.

     Check the alternate stack size before doing so and in case it's too
     small force a SIGSEGV instead of silently corrupting user space
     data.

   - MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
     been updated despite the fact that the FPU state which is stored on
     the signal stack has grown over time which causes trouble in the
     field when AVX512 is available on a CPU. The kernel does not expose
     the minimum requirements for the alternate stack size depending on
     the available and enabled CPU features.

     ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
     Add it to x86 as well.

   - A major cleanup of the x86 FPU code. The recent discoveries of
     XSTATE related issues unearthed quite some inconsistencies,
     duplicated code and other issues.

     The fine granular overhaul addresses this, makes the code more
     robust and maintainable, which allows to integrate upcoming XSTATE
     related features in sane ways"

* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
  x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
  x86/fpu/signal: Let xrstor handle the features to init
  x86/fpu/signal: Handle #PF in the direct restore path
  x86/fpu: Return proper error codes from user access functions
  x86/fpu/signal: Split out the direct restore code
  x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
  x86/fpu/signal: Sanitize the xstate check on sigframe
  x86/fpu/signal: Remove the legacy alignment check
  x86/fpu/signal: Move initial checks into fpu__restore_sig()
  x86/fpu: Mark init_fpstate __ro_after_init
  x86/pkru: Remove xstate fiddling from write_pkru()
  x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
  x86/fpu: Remove PKRU handling from switch_fpu_finish()
  x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
  x86/fpu: Hook up PKRU into ptrace()
  x86/fpu: Add PKRU storage outside of task XSAVE buffer
  x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
  x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
  x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
  x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
  ...
2021-07-07 11:12:01 -07:00
Linus Torvalds 71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
Muchun Song 2d7a21715f mm: sparsemem: use huge PMD mapping for vmemmap pages
The preparation of splitting huge PMD mapping of vmemmap pages is ready,
so switch the mapping from PTE to PMD.

Link: https://lkml.kernel.org/r/20210616094915.34432-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Christophe Leroy c742199a01 mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge
For architectures with no PMD and/or no PUD, add stubs similar to what we
have for architectures without P4D.

[christophe.leroy@csgroup.eu: arm64: define only {pud/pmd}_{set/clear}_huge when useful]
  Link: https://lkml.kernel.org/r/73ec95f40cafbbb69bdfb43a7f53876fd845b0ce.1620990479.git.christophe.leroy@csgroup.eu
[christophe.leroy@csgroup.eu: x86: define only {pud/pmd}_{set/clear}_huge when useful]
  Link: https://lkml.kernel.org/r/7fbf1b6bc3e15c07c24fa45278d57064f14c896b.1620930415.git.christophe.leroy@csgroup.eu

Link: https://lkml.kernel.org/r/5ac5976419350e8e048d463a64cae449eb3ba4b0.1620795204.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Muchun Song e9fdff87e8 mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap
Add a kernel parameter hugetlb_free_vmemmap to enable the feature of
freeing unused vmemmap pages associated with each hugetlb page on boot.

We disable PMD mapping of vmemmap pages for x86-64 arch when this feature
is enabled.  Because vmemmap_remap_free() depends on vmemmap being base
page mapped.

Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Muchun Song 6be24bed9d mm: hugetlb: introduce a new config HUGETLB_PAGE_FREE_VMEMMAP
The option HUGETLB_PAGE_FREE_VMEMMAP allows for the freeing of some
vmemmap pages associated with pre-allocated HugeTLB pages.  For example,
on X86_64 6 vmemmap pages of size 4KB each can be saved for each 2MB
HugeTLB page.  4094 vmemmap pages of size 4KB each can be saved for each
1GB HugeTLB page.

When a HugeTLB page is allocated or freed, the vmemmap array representing
the range associated with the page will need to be remapped.  When a page
is allocated, vmemmap pages are freed after remapping.  When a page is
freed, previously discarded vmemmap pages must be allocated before
remapping.

The config option is introduced early so that supporting code can be
written to depend on the option.  The initial version of the code only
provides support for x86-64.

If config HAVE_BOOTMEM_INFO_NODE is enabled, the freeing vmemmap page code
denpend on it to free vmemmap pages.  Otherwise, just use
free_reserved_page() to free vmemmmap pages.  The routine
register_page_bootmem_info() is used to register bootmem info.  Therefore,
make sure register_page_bootmem_info is enabled if
HUGETLB_PAGE_FREE_VMEMMAP is defined.

Link: https://lkml.kernel.org/r/20210510030027.56044-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Muchun Song 426e5c429d mm: memory_hotplug: factor out bootmem core functions to bootmem_info.c
Patch series "Free some vmemmap pages of HugeTLB page", v23.

This patch series will free some vmemmap pages(struct page structures)
associated with each HugeTLB page when preallocated to save memory.

In order to reduce the difficulty of the first version of code review.  In
this version, we disable PMD/huge page mapping of vmemmap if this feature
was enabled.  This acutely eliminates a bunch of the complex code doing
page table manipulation.  When this patch series is solid, we cam add the
code of vmemmap page table manipulation in the future.

The struct page structures (page structs) are used to describe a physical
page frame.  By default, there is an one-to-one mapping from a page frame
to it's corresponding page struct.

The HugeTLB pages consist of multiple base page size pages and is
supported by many architectures.  See hugetlbpage.rst in the Documentation
directory for more details.  On the x86 architecture, HugeTLB pages of
size 2MB and 1GB are currently supported.  Since the base page size on x86
is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB
page consists of 4096 base pages.  For each base page, there is a
corresponding page struct.

Within the HugeTLB subsystem, only the first 4 page structs are used to
contain unique information about a HugeTLB page.  HUGETLB_CGROUP_MIN_ORDER
provides this upper limit.  The only 'useful' information in the remaining
page structs is the compound_head field, and this field is the same for
all tail pages.

By removing redundant page structs for HugeTLB pages, memory can returned
to the buddy allocator for other uses.

When the system boot up, every 2M HugeTLB has 512 struct page structs which
size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE).

    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | -------------> |     1     |
 |           |                     +-----------+                +-----------+
 |           |                     |     2     | -------------> |     2     |
 |           |                     +-----------+                +-----------+
 |           |                     |     3     | -------------> |     3     |
 |           |                     +-----------+                +-----------+
 |           |                     |     4     | -------------> |     4     |
 |    2MB    |                     +-----------+                +-----------+
 |           |                     |     5     | -------------> |     5     |
 |           |                     +-----------+                +-----------+
 |           |                     |     6     | -------------> |     6     |
 |           |                     +-----------+                +-----------+
 |           |                     |     7     | -------------> |     7     |
 |           |                     +-----------+                +-----------+
 |           |
 |           |
 |           |
 +-----------+

The value of page->compound_head is the same for all tail pages.  The
first page of page structs (page 0) associated with the HugeTLB page
contains the 4 page structs necessary to describe the HugeTLB.  The only
use of the remaining pages of page structs (page 1 to page 7) is to point
to page->compound_head.  Therefore, we can remap pages 2 to 7 to page 1.
Only 2 pages of page structs will be used for each HugeTLB page.  This
will allow us to free the remaining 6 pages to the buddy allocator.

Here is how things look after remapping.

    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 |           |                     |     0     | -------------> |     0     |
 |           |                     +-----------+                +-----------+
 |           |                     |     1     | -------------> |     1     |
 |           |                     +-----------+                +-----------+
 |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
 |           |                     +-----------+                   | | | | |
 |           |                     |     3     | ------------------+ | | | |
 |           |                     +-----------+                     | | | |
 |           |                     |     4     | --------------------+ | | |
 |    2MB    |                     +-----------+                       | | |
 |           |                     |     5     | ----------------------+ | |
 |           |                     +-----------+                         | |
 |           |                     |     6     | ------------------------+ |
 |           |                     +-----------+                           |
 |           |                     |     7     | --------------------------+
 |           |                     +-----------+
 |           |
 |           |
 |           |
 +-----------+

When a HugeTLB is freed to the buddy system, we should allocate 6 pages
for vmemmap pages and restore the previous mapping relationship.

Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page.  It is similar
to the 2MB HugeTLB page.  We also can use this approach to free the
vmemmap pages.

In this case, for the 1GB HugeTLB page, we can save 4094 pages.  This is a
very substantial gain.  On our server, run some SPDK/QEMU applications
which will use 1024GB HugeTLB page.  With this feature enabled, we can
save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory.

Because there are vmemmap page tables reconstruction on the
freeing/allocating path, it increases some overhead.  Here are some
overhead analysis.

1) Allocating 10240 2MB HugeTLB pages.

   a) With this patch series applied:
   # time echo 10240 > /proc/sys/vm/nr_hugepages

   real     0m0.166s
   user     0m0.000s
   sys      0m0.166s

   # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
     kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [8K, 16K)           5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [16K, 32K)          4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |
   [32K, 64K)             4 |                                                    |

   b) Without this patch series:
   # time echo 10240 > /proc/sys/vm/nr_hugepages

   real     0m0.067s
   user     0m0.000s
   sys      0m0.067s

   # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
     kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [4K, 8K)           10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [8K, 16K)             93 |                                                    |

   Summarize: this feature is about ~2x slower than before.

2) Freeing 10240 2MB HugeTLB pages.

   a) With this patch series applied:
   # time echo 0 > /proc/sys/vm/nr_hugepages

   real     0m0.213s
   user     0m0.000s
   sys      0m0.213s

   # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
     kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [8K, 16K)              6 |                                                    |
   [16K, 32K)         10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [32K, 64K)             7 |                                                    |

   b) Without this patch series:
   # time echo 0 > /proc/sys/vm/nr_hugepages

   real     0m0.081s
   user     0m0.000s
   sys      0m0.081s

   # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
     kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
     @start[tid]); delete(@start[tid]); }'
   Attaching 2 probes...

   @latency:
   [4K, 8K)            6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
   [8K, 16K)           3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |
   [16K, 32K)             8 |                                                    |

   Summary: The overhead of __free_hugepage is about ~2-3x slower than before.

Although the overhead has increased, the overhead is not significant.
Like Mike said, "However, remember that the majority of use cases create
HugeTLB pages at or shortly after boot time and add them to the pool.  So,
additional overhead is at pool creation time.  There is no change to
'normal run time' operations of getting a page from or returning a page to
the pool (think page fault/unmap)".

Despite the overhead and in addition to the memory gains from this series.
The following data is obtained by Joao Martins.  Very thanks to his
effort.

There's an additional benefit which is page (un)pinners will see an improvement
and Joao presumes because there are fewer memmap pages and thus the tail/head
pages are staying in cache more often.

Out of the box Joao saw (when comparing linux-next against linux-next +
this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages):

	get_user_pages(): ~32k -> ~9k
	unpin_user_pages(): ~75k -> ~70k

Usually any tight loop fetching compound_head(), or reading tail pages
data (e.g.  compound_head) benefit a lot.  There's some unpinning
inefficiencies Joao was fixing[2], but with that in added it shows even
more:

	unpin_user_pages(): ~27k -> ~3.8k

[1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/

This patch (of 9):

Move bootmem info registration common API to individual bootmem_info.c.
And we will use {get,put}_page_bootmem() to initialize the page for the
vmemmap pages or free the vmemmap pages to buddy in the later patch.  So
move them out of CONFIG_MEMORY_HOTPLUG_SPARSE.  This is just code movement
without any functional change.

Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:25 -07:00
Linus Torvalds 65090f30ab Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "191 patches.

  Subsystems affected by this patch series: kthread, ia64, scripts,
  ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
  slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
  mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
  pagealloc, and memory-failure)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
  mm,hwpoison: make get_hwpoison_page() call get_any_page()
  mm,hwpoison: send SIGBUS with error virutal address
  mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
  mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
  mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
  mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
  docs: remove description of DISCONTIGMEM
  arch, mm: remove stale mentions of DISCONIGMEM
  mm: remove CONFIG_DISCONTIGMEM
  m68k: remove support for DISCONTIGMEM
  arc: remove support for DISCONTIGMEM
  arc: update comment about HIGHMEM implementation
  alpha: remove DISCONTIGMEM and NUMA
  mm/page_alloc: move free_the_page
  mm/page_alloc: fix counting of managed_pages
  mm/page_alloc: improve memmap_pages dbg msg
  mm: drop SECTION_SHIFT in code comments
  mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
  mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
  mm/page_alloc: scale the number of pages that are batch freed
  ...
2021-06-29 17:29:11 -07:00
Mike Rapoport a9ee6cf5c6 mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA
configuration options are equivalent.

Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead.

Done with

	$ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \
		$(git grep -wl CONFIG_NEED_MULTIPLE_NODES)
	$ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \
		$(git grep -wl NEED_MULTIPLE_NODES)

with manual tweaks afterwards.

[rppt@linux.ibm.com: fix arm boot crash]
  Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com

Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Linus Torvalds 5f498328a9 Do not create the x86/init_pkru debugfs file if the CPU doesn't support PKRU.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZe2gRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iE/A/7BogdpwtZJmhfEALc4MPnRoEV5gD8x7Gl
 oD8U/nlQa44q5qNO9Dxvfq9DnJHWAvt1eVTYw+fQ51NcPLhdtingqr/xmss20oLS
 NWucku+sIcIUsSDMlcV4TiCwCzeAYUIH0QMDBuX4IXoChjwTEv2AVFtfaXfEheUu
 ewl9VOMOP0pWEOfcfQVhjUBpPPZcXSX7QCKQv1iq5TLESfq5jCBEMee1NCB0GKOD
 StAja4dFZ5KNsHi5koZ6ScyJwKISanRfs5fHizKxbfgUJa/D7h2TS1yHKTwBx4Uc
 vlox5lMKh24RH8cNyhuNXJ/mIkka7S+X9PUcrc9bHk8r/nsyQ3ZH6pTAnt1KFBsR
 SJwVQ9HwFfjM1fJWh5lXz/BLSP3RnmubjEMZkkSdEP5knxGOjp9gjlI/SwrcEF2/
 JyiUtQgpeMKs2eEWKymg7NXSQYCVrlFqfIRXh0gytIUe3wUmxKcO4mY+4b4TVFAe
 Xz45oRBWNO38Q6fyTcCPbOIa/GvHDiLgSiL0ddjiPki4ZybvonHhB2hEZtS5AD2/
 2ozZa74Jq9cpdqLYJi+VOl/Zprc0c5XTdV5p9L5pfk9Q+rQb8SbTKHsVmV2s7d6R
 9NvX0EwVFYnqsB5QHiN3LoQJhXRYTTbCTWbxanvq3/I8Km98NLBKX0bw4cM/wEuG
 AJ0aiUQIyK8=
 =A9h/
 -----END PGP SIGNATURE-----

Merge tag 'x86-mm-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm update from Ingo Molnar:
 "Do not create the x86/init_pkru debugfs file if the CPU doesn't
  support PKRU"

* tag 'x86-mm-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/pkeys: Skip 'init_pkru' debugfs file creation when pkeys not supported
2021-06-28 13:27:46 -07:00
Linus Torvalds 28a27cbd86 Perf events updates for this cycle:
- Platform PMU driver updates:
 
      - x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
      - Fix RDPMC support
      - Fix [extended-]PEBS-via-PT support
      - Fix Sapphire Rapids event constraints
      - Fix :ppp support on Sapphire Rapids
      - Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
      - Other heterogenous-PMU fixes
 
  - Kprobes:
 
      - Remove the unused and misguided kprobe::fault_handler callbacks.
      - Warn about kprobes taking a page fault.
      - Fix the 'nmissed' stat counter.
 
  - Misc cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
 dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
 k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
 ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
 iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
 TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
 4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
 Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
 IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
 YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
 6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
 e+fQrGh4noI=
 =20Vc
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf events updates from Ingo Molnar:

 - Platform PMU driver updates:

     - x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
     - Fix RDPMC support
     - Fix [extended-]PEBS-via-PT support
     - Fix Sapphire Rapids event constraints
     - Fix :ppp support on Sapphire Rapids
     - Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
     - Other heterogenous-PMU fixes

 - Kprobes:

     - Remove the unused and misguided kprobe::fault_handler callbacks.
     - Warn about kprobes taking a page fault.
     - Fix the 'nmissed' stat counter.

 - Misc cleanups and fixes.

* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Fix task context PMU for Hetero
  perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
  perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
  perf/x86/intel: Fix fixed counter check warning for some Alder Lake
  perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
  perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
  kprobes: Do not increment probe miss count in the fault handler
  x86,kprobes: WARN if kprobes tries to handle a fault
  kprobes: Remove kprobe::fault_handler
  uprobes: Update uprobe_write_opcode() kernel-doc comment
  perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
  perf/core: Fix DocBook warnings
  perf/core: Make local function perf_pmu_snapshot_aux() static
  perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
  perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
  perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
  perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
2021-06-28 12:03:20 -07:00
Thomas Gleixner 30a304a138 x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
As the PKRU state is managed separately restoring it from the xstate
buffer would be counterproductive as it might either restore a stale
value or reinit the PKRU state to 0.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.606745195@linutronix.de
2021-06-23 19:47:35 +02:00
Thomas Gleixner 371071131c x86/fpu: Use pkru_write_default() in copy_init_fpstate_to_fpregs()
There is no point in using copy_init_pkru_to_fpregs() which in turn calls
write_pkru(). write_pkru() tries to fiddle with the task's xstate buffer
for nothing because the XRSTOR[S](init_fpstate) just cleared the xfeature
flag in the xstate header which makes get_xsave_addr() fail.

It's a useless exercise anyway because the reinitialization activates the
FPU so before the task's xstate buffer can be used again a XRSTOR[S] must
happen which in turn dumps the PKRU value.

Get rid of the now unused copy_init_pkru_to_fpregs().

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.732508792@linutronix.de
2021-06-23 19:15:16 +02:00
Thomas Gleixner 8a1dc55a3f x86/cpu: Sanitize X86_FEATURE_OSPKE
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.

Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
2021-06-23 18:59:44 +02:00
Dave Hansen 784a46618f x86/pkeys: Move read_pkru() and write_pkru()
write_pkru() was originally used just to write to the PKRU register.  It
was mercifully short and sweet and was not out of place in pgtable.h with
some other pkey-related code.

But, later work included a requirement to also modify the task XSAVE
buffer when updating the register.  This really is more related to the
XSAVE architecture than to paging.

Move the read/write_pkru() to asm/pkru.h.  pgtable.h won't miss them.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de
2021-06-23 18:52:57 +02:00
Thomas Gleixner 1c61fada30 x86/fpu: Rename copy_kernel_to_fpregs() to restore_fpregs_from_fpstate()
This is not a copy functionality. It restores the register state from the
supplied kernel buffer.

No functional changes.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121454.716058365@linutronix.de
2021-06-23 18:36:42 +02:00
Thomas Gleixner b3607269ff x86/pkeys: Revert a5eff72597 ("x86/pkeys: Add PKRU value to init_fpstate")
This cannot work and it's unclear how that ever made a difference.

init_fpstate.xsave.header.xfeatures is always 0 so get_xsave_addr() will
always return a NULL pointer, which will prevent storing the default PKRU
value in init_fpstate.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121451.451391598@linutronix.de
2021-06-23 17:49:45 +02:00
Fan Du 28e5e44aa3 x86/mm: Avoid truncating memblocks for SGX memory
tl;dr:

Several SGX users reported seeing the following message on NUMA systems:

  sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.

This turned out to be the memblock code mistakenly throwing away SGX
memory.

=== Full Changelog ===

The 'max_pfn' variable represents the highest known RAM address.  It can
be used, for instance, to quickly determine for which physical addresses
there is mem_map[] space allocated.  The numa_meminfo code makes an
effort to throw out ("trim") all memory blocks which are above 'max_pfn'.

SGX memory is not considered RAM (it is marked as "Reserved" in the
e820) and is not taken into account by max_pfn. Despite this, SGX memory
areas have NUMA affinity and are enumerated in the ACPI SRAT table. The
existing SGX code uses the numa_meminfo mechanism to look up the NUMA
affinity for its memory areas.

In cases where SGX memory was above max_pfn (usually just the one EPC
section in the last highest NUMA node), the numa_memblock is truncated
at 'max_pfn', which is below the SGX memory.  When the SGX code tries to
look up the affinity of this memory, it fails and produces an error message:

  sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.

and assigns the memory to NUMA node 0.

Instead of silently truncating the memory block at 'max_pfn' and
dropping the SGX memory, add the truncated portion to
'numa_reserved_meminfo'.  This allows the SGX code to later determine
the NUMA affinity of its 'Reserved' area.

Before, numa_meminfo looked like this (from 'crash'):

  blk = { start =          0x0, end = 0x2080000000, nid = 0x0 }
        { start = 0x2080000000, end = 0x4000000000, nid = 0x1 }

numa_reserved_meminfo is empty.

With this, numa_meminfo looks like this:

  blk = { start =          0x0, end = 0x2080000000, nid = 0x0 }
        { start = 0x2080000000, end = 0x4000000000, nid = 0x1 }

and numa_reserved_meminfo has an entry for node 1's SGX memory:

  blk =  { start = 0x4000000000, end = 0x4080000000, nid = 0x1 }

 [ daveh: completely rewrote/reworked changelog ]

Fixes: 5d30f92e76 ("x86/NUMA: Provide a range-to-target_node lookup facility")
Reported-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fan Du <fan.du@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20210617194657.0A99CB22@viggo.jf.intel.com
2021-06-18 19:37:01 +02:00
Kan Liang 5471eea5d3 perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.

    perf stat -e 'branches,cycles' -- taskset -c 0 ./workload

In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)

    $./rdpmc_read_all_counters
    index 0x0 value 0x8001e5970f99
    index 0x1 value 0x8005d750edb6
    index 0x2 value 0x0
    index 0x3 value 0x0

    index 0x0 value 0x8002358e48a5
    index 0x1 value 0x8006bd1e3bc9
    index 0x2 value 0x0
    index 0x3 value 0x0

It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.

The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.

Three methods were considered to address the issue.

 - Unconditionally reset the counter in x86_pmu_del(). It can bring extra
   overhead even when there is no RDPMC task running.

 - Only reset the un-assigned dirty counters when the RDPMC task is
   scheduled in via sched_task(). It fails for the below case.

	Thread A			Thread B

	clone(CLONE_THREAD) --->
	set_affine(0)
					set_affine(1)
					while (!event-enabled)
						;
	event = perf_event_open()
	mmap(event)
	ioctl(event, IOC_ENABLE); --->
					RDPMC

   Counters are still leaked to the thread B.

 - Only reset the un-assigned dirty counters before updating the CR4.PCE
   bit. The method is implemented here.

The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.

The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.

After applying the patch,

        $ ./rdpmc_read_all_counters
        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

Performance

The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.

The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.

Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).

    lat_ctx -s 128K -N 1000 processes 2

Without the patch:
  The context switch time is 4.97 us

With the patch:
  The context switch time is 5.16 us

There is ~4% performance drop for the context switching time in the
worst-case.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
2021-06-17 14:11:47 +02:00
Tom Lendacky 8d651ee9c7 x86/ioremap: Map EFI-reserved memory as encrypted for SEV
Some drivers require memory that is marked as EFI boot services
data. In order for this memory to not be re-used by the kernel
after ExitBootServices(), efi_mem_reserve() is used to preserve it
by inserting a new EFI memory descriptor and marking it with the
EFI_MEMORY_RUNTIME attribute.

Under SEV, memory marked with the EFI_MEMORY_RUNTIME attribute needs to
be mapped encrypted by Linux, otherwise the kernel might crash at boot
like below:

  EFI Variables Facility v0.08 2004-May-17
  general protection fault, probably for non-canonical address 0x3597688770a868b2: 0000 [#1] SMP NOPTI
  CPU: 13 PID: 1 Comm: swapper/0 Not tainted 5.12.4-2-default #1 openSUSE Tumbleweed
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:efi_mokvar_entry_next
  [...]
  Call Trace:
   efi_mokvar_sysfs_init
   ? efi_mokvar_table_init
   do_one_initcall
   ? __kmalloc
   kernel_init_freeable
   ? rest_init
   kernel_init
   ret_from_fork

Expand the __ioremap_check_other() function to additionally check for
this other type of boot data reserved at runtime and indicate that it
should be mapped encrypted for an SEV guest.

 [ bp: Massage commit message. ]

Fixes: 58c909022a ("efi: Support for MOK variable config table")
Reported-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Cc: <stable@vger.kernel.org> # 5.10+
Link: https://lkml.kernel.org/r/20210608095439.12668-2-joro@8bytes.org
2021-06-08 16:26:55 +02:00
Pu Wen 009767dbf4 x86/sev: Check SME/SEV support in CPUID first
The first two bits of the CPUID leaf 0x8000001F EAX indicate whether SEV
or SME is supported, respectively. It's better to check whether SEV or
SME is actually supported before accessing the MSR_AMD64_SEV to check
whether SEV or SME is enabled.

This is both a bare-metal issue and a guest/VM issue. Since the first
generation Hygon Dhyana CPU doesn't support the MSR_AMD64_SEV, reading that
MSR results in a #GP - either directly from hardware in the bare-metal
case or via the hypervisor (because the RDMSR is actually intercepted)
in the guest/VM case, resulting in a failed boot. And since this is very
early in the boot phase, rdmsrl_safe()/native_read_msr_safe() can't be
used.

So check the CPUID bits first, before accessing the MSR.

 [ tlendacky: Expand and improve commit message. ]
 [ bp: Massage commit message. ]

Fixes: eab696d8e8 ("x86/sev: Do not require Hypervisor CPUID bit for SEV guests")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@vger.kernel.org> # v5.10+
Link: https://lkml.kernel.org/r/20210602070207.2480-1-puwen@hygon.cn
2021-06-04 18:39:09 +02:00
Dave Hansen 314a1e1eab x86/pkeys: Skip 'init_pkru' debugfs file creation when pkeys not supported
The PKRU hardware is permissive by default: all reads and writes are
allowed.  The in-kernel policy is restrictive by default: deny all
unnecessary access until explicitly requested.

That policy can be modified with a debugfs file: "x86/init_pkru".
This file is created unconditionally, regardless of PKRU support in
the hardware, which is a little silly.

Avoid creating the file when pkeys are not available.  This also
removes the need to check for pkey support at runtime, which would be
required once the new pkey modification infrastructure is put in place
later in this series.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210603230810.113FF3F2@viggo.jf.intel.com
2021-06-04 17:01:03 +02:00
Jiashuo Liang 5405b42c2f x86/fault: Don't send SIGSEGV twice on SEGV_PKUERR
__bad_area_nosemaphore() calls both force_sig_pkuerr() and
force_sig_fault() when handling SEGV_PKUERR. This does not cause
problems because the second signal is filtered by the legacy_queue()
check in __send_signal() because in both cases, the signal is SIGSEGV,
the second one seeing that the first one is already pending.

This causes the kernel to do unnecessary work so send the signal only
once for SEGV_PKUERR.

 [ bp: Massage commit message. ]

Fixes: 9db812dbb2 ("signal/x86: Call force_sig_pkuerr from __bad_area_nosemaphore")
Suggested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Jiashuo Liang <liangjs@pku.edu.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lkml.kernel.org/r/20210601085203.40214-1-liangjs@pku.edu.cn
2021-06-04 15:23:28 +02:00
Peter Zijlstra 00afe83098 x86,kprobes: WARN if kprobes tries to handle a fault
With the removal of kprobe::handle_fault there is no reason left that
kprobe_page_fault() would ever return true on x86, make sure it
doesn't happen by accident.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210525073213.660594073@infradead.org
2021-06-01 16:00:09 +02:00
Brijesh Singh 059e5c321a x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.

Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
2021-05-10 07:51:38 +02:00
Brijesh Singh e759959fe3 x86/sev-es: Rename sev-es.{ch} to sev.{ch}
SEV-SNP builds upon the SEV-ES functionality while adding new hardware
protection. Version 2 of the GHCB specification adds new NAE events that
are SEV-SNP specific. Rename the sev-es.{ch} to sev.{ch} so that all
SEV* functionality can be consolidated in one place.

Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-2-brijesh.singh@amd.com
2021-05-10 07:40:27 +02:00
Linus Torvalds 8404c9fbc8 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "The remainder of the main mm/ queue.

  143 patches.

  Subsystems affected by this patch series (all mm): pagecache, hugetlb,
  userfaultfd, vmscan, compaction, migration, cma, ksm, vmstat, mmap,
  kconfig, util, memory-hotplug, zswap, zsmalloc, highmem, cleanups, and
  kfence"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (143 commits)
  kfence: use power-efficient work queue to run delayed work
  kfence: maximize allocation wait timeout duration
  kfence: await for allocation using wait_event
  kfence: zero guard page after out-of-bounds access
  mm/process_vm_access.c: remove duplicate include
  mm/mempool: minor coding style tweaks
  mm/highmem.c: fix coding style issue
  btrfs: use memzero_page() instead of open coded kmap pattern
  iov_iter: lift memzero_page() to highmem.h
  mm/zsmalloc: use BUG_ON instead of if condition followed by BUG.
  mm/zswap.c: switch from strlcpy to strscpy
  arm64/Kconfig: introduce ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
  x86/Kconfig: introduce ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
  mm,memory_hotplug: add kernel boot option to enable memmap_on_memory
  acpi,memhotplug: enable MHP_MEMMAP_ON_MEMORY when supported
  mm,memory_hotplug: allocate memmap from the added memory range
  mm,memory_hotplug: factor out adjusting present pages into adjust_present_page_count()
  mm,memory_hotplug: relax fully spanned sections check
  drivers/base/memory: introduce memory_block_{online,offline}
  mm/memory_hotplug: remove broken locking of zone PCP structures during hot remove
  ...
2021-05-05 13:50:15 -07:00
Saravanan D 575299ea18 x86/mm: track linear mapping split events
To help with debugging the sluggishness caused by TLB miss/reload, we
introduce monotonic hugepage [direct mapped] split event counts since
system state: SYSTEM_RUNNING to be displayed as part of /proc/vmstat in
x86 servers

The lifetime split event information will be displayed at the bottom of
/proc/vmstat
  ....
  swap_ra 0
  swap_ra_hit 0
  direct_map_level2_splits 94
  direct_map_level3_splits 4
  nr_unstable 0
  ....

One of the many lasting sources of direct hugepage splits is kernel
tracing (kprobes, tracepoints).

Note that the kernel's code segment [512 MB] points to the same physical
addresses that have been already mapped in the kernel's direct mapping
range.

Source : Documentation/x86/x86_64/mm.rst

When we enable kernel tracing, the kernel has to modify
attributes/permissions of the text segment hugepages that are direct
mapped causing them to split.

Kernel's direct mapped hugepages do not coalesce back after split and
remain in place for the remainder of the lifetime.

An instance of direct page splits when we turn on dynamic kernel tracing
....
cat /proc/vmstat | grep -i direct_map_level
direct_map_level2_splits 784
direct_map_level3_splits 12
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @ [pid, comm] =
count(); }'
cat /proc/vmstat | grep -i
direct_map_level
direct_map_level2_splits 789
direct_map_level3_splits 12
....

Link: https://lkml.kernel.org/r/20210218235744.1040634-1-saravanand@fb.com
Signed-off-by: Saravanan D <saravanand@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Linus Torvalds 152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Kefeng Wang 1f9d03c5e9 mm: move mem_init_print_info() into mm_init()
mem_init_print_info() is called in mem_init() on each architecture, and
pass NULL argument, so using void argument and move it into mm_init().

Link: https://lkml.kernel.org/r/20210317015210.33641-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>	[x86]
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>	[powerpc]
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Anatoly Pugachev <matorola@gmail.com>	[sparc64]
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>	[arm]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Guo Ren <guoren@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:42 -07:00
Nicholas Piggin 97dc2a1548 x86: inline huge vmap supported functions
This allows unsupported levels to be constant folded away, and so
p4d_free_pud_page can be removed because it's no longer linked to.

Link: https://lkml.kernel.org/r/20210317062402.533919-10-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:40 -07:00
Nicholas Piggin bbc180a5ad mm: HUGE_VMAP arch support cleanup
This changes the awkward approach where architectures provide init
functions to determine which levels they can provide large mappings for,
to one where the arch is queried for each call.

This removes code and indirection, and allows constant-folding of dead
code for unsupported levels.

This also adds a prot argument to the arch query.  This is unused
currently but could help with some architectures (e.g., some powerpc
processors can't map uncacheable memory with large pages).

Link: https://lkml.kernel.org/r/20210317062402.533919-7-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Ding Tianhong <dingtianhong@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:40 -07:00
Oscar Salvador faf1c0008a x86/vmemmap: optimize for consecutive sections in partial populated PMDs
We can optimize in the case we are adding consecutive sections, so no
memset(PAGE_UNUSED) is needed.

In that case, let us keep track where the unused range of the previous
memory range begins, so we can compare it with start of the range to be
added.  If they are equal, we know sections are added consecutively.

For that purpose, let us introduce 'unused_pmd_start', which always holds
the beginning of the unused memory range.

In the case a section does not contiguously follow the previous one, we
know we can memset [unused_pmd_start, PMD_BOUNDARY) with PAGE_UNUSE.

This patch is based on a similar patch by David Hildenbrand:

https://lore.kernel.org/linux-mm/20200722094558.9828-10-david@redhat.com/

Link: https://lkml.kernel.org/r/20210309214050.4674-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:38 -07:00
Oscar Salvador 8d400913c2 x86/vmemmap: handle unpopulated sub-pmd ranges
When sizeof(struct page) is not a power of 2, sections do not span a PMD
anymore and so when populating them some parts of the PMD will remain
unused.

Because of this, PMDs will be left behind when depopulating sections since
remove_pmd_table() thinks that those unused parts are still in use.

Fix this by marking the unused parts with PAGE_UNUSED, so memchr_inv()
will do the right thing and will let us free the PMD when the last user of
it is gone.

This patch is based on a similar patch by David Hildenbrand:

https://lore.kernel.org/linux-mm/20200722094558.9828-9-david@redhat.com/

[osalvador@suse.de: go back to the ifdef version]
  Link: https://lkml.kernel.org/r/YGy++mSft7K4u+88@localhost.localdomain

Link: https://lkml.kernel.org/r/20210309214050.4674-4-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:38 -07:00
Oscar Salvador 69ccfe74e1 x86/vmemmap: drop handling of 1GB vmemmap ranges
There is no code to allocate 1GB pages when mapping the vmemmap range as
this might waste some memory and requires more complexity which is not
really worth.

Drop the dead code both for the aligned and unaligned cases and leave only
the direct map handling.

Link: https://lkml.kernel.org/r/20210309214050.4674-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:38 -07:00
Oscar Salvador 8e2df191ae x86/vmemmap: drop handling of 4K unaligned vmemmap range
Patch series "Cleanup and fixups for vmemmap handling", v6.

This series contains cleanups to remove dead code that handles unaligned
cases for 4K and 1GB pages (patch#1 and patch#2) when removing the vemmmap
range, and a fix (patch#3) to handle the case when two vmemmap ranges
intersect the same PMD.

This patch (of 4):

remove_pte_table() is prepared to handle the case where either the start
or the end of the range is not PAGE aligned.  This cannot actually happen:

__populate_section_memmap enforces the range to be PMD aligned, so as long
as the size of the struct page remains multiple of 8, the vmemmap range
will be aligned to PAGE_SIZE.

Drop the dead code and place a VM_BUG_ON in vmemmap_{populate,free} to
catch nasty cases.  Note that the VM_BUG_ON is placed in there because
vmemmap_{populate,free= } is the gate of all removing and freeing page
tables logic.

Link: https://lkml.kernel.org/r/20210309214050.4674-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210309214050.4674-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:38 -07:00
Linus Torvalds 635de956a7 The x86 MM changes in this cycle were:
- Implement concurrent TLB flushes, which overlaps the local TLB flush with the
    remote TLB flush. In testing this improved sysbench performance measurably by
    a couple of percentage points, especially if TLB-heavy security mitigations
    are active.
 
  - Further micro-optimizations to improve the performance of TLB flushes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCKbNcRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hjYBAAsyNUa/gOu0g6/Cx8R86w9HtHHmm5vso/
 6nJjWj2fd2qJ9JShlddxvXEMeXtPTYabVWQkiiriFMuofk6JeKnlHm1Jzl6keABX
 OQFwjIFeNASPRcdXvuuYPOVWAJJdr2oL9QUr6OOK1ccQJTz/Cd0zA+VQ5YqcsCon
 yaWbkxELwKXpgql+qt66eAZ6Q2Y1TKXyrTW7ZgxQi0yeeWqMaEOub0/oyS7Ax1Rg
 qEJMwm1prb76NPzeqR/G3e4KTrDZfQ/B/KnSsz36GTJpl4eye6XqWDUgm1nAGNIc
 5dbc4Vx7JtZsUOuC0AmzWb3hsDyzVcN/lQvijdZ2RsYR3gvuYGaBhKqExqV0XH6P
 oqaWOKWCz+LqWbsgJmxCpqkt1LZl5+VUOcfJ97WkIS7DyIPtSHTzQXbBMZqKLeat
 mn5UcKYB2Gi7wsUPv6VC2ChKbDqN0VT8G86XbYylGo4BE46KoZKPUNY/QWKLUPd6
 0UKcVeNM2HFyf1C73p/tO/z7hzu3qLuMMnsphP6/c2pKLpdgawEXgbnVKNId1B/c
 NrzyhTvVaMt+Um28bBRhHONIlzPJwWcnZbdY7NqMnu+LBKQ68cL/h4FOIV/RDLNb
 GJLgfAr8fIw/zIpqYuFHiiMNo9wWqVtZko1MvXhGceXUL69QuzTra2XR/6aDxkPf
 6gQVesetTvo=
 =3Cyp
 -----END PGP SIGNATURE-----

Merge tag 'x86-mm-2021-04-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 tlb updates from Ingo Molnar:
 "The x86 MM changes in this cycle were:

   - Implement concurrent TLB flushes, which overlaps the local TLB
     flush with the remote TLB flush.

     In testing this improved sysbench performance measurably by a
     couple of percentage points, especially if TLB-heavy security
     mitigations are active.

   - Further micro-optimizations to improve the performance of TLB
     flushes"

* tag 'x86-mm-2021-04-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  smp: Micro-optimize smp_call_function_many_cond()
  smp: Inline on_each_cpu_cond() and on_each_cpu()
  x86/mm/tlb: Remove unnecessary uses of the inline keyword
  cpumask: Mark functions as pure
  x86/mm/tlb: Do not make is_lazy dirty for no reason
  x86/mm/tlb: Privatize cpu_tlbstate
  x86/mm/tlb: Flush remote and local TLBs concurrently
  x86/mm/tlb: Open-code on_each_cpu_cond_mask() for tlb_is_not_lazy()
  x86/mm/tlb: Unify flush_tlb_func_local() and flush_tlb_func_remote()
  smp: Run functions concurrently in smp_call_function_many_cond()
2021-04-29 11:41:43 -07:00
Linus Torvalds ea5bc7b977 Trivial cleanups and fixes all over the place.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
 VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
 +HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
 /uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
 4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
 lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
 LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
 sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
 kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
 dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
 wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
 Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
 =bO1i
 -----END PGP SIGNATURE-----

Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Borislav Petkov:
 "Trivial cleanups and fixes all over the place"

* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  MAINTAINERS: Remove me from IDE/ATAPI section
  x86/pat: Do not compile stubbed functions when X86_PAT is off
  x86/asm: Ensure asm/proto.h can be included stand-alone
  x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
  x86/msr: Make locally used functions static
  x86/cacheinfo: Remove unneeded dead-store initialization
  x86/process/64: Move cpu_current_top_of_stack out of TSS
  tools/turbostat: Unmark non-kernel-doc comment
  x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
  x86/fpu/math-emu: Fix function cast warning
  x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
  x86: Fix various typos in comments, take #2
  x86: Remove unusual Unicode characters from comments
  x86/kaslr: Return boolean values from a function returning bool
  x86: Fix various typos in comments
  x86/setup: Remove unused RESERVE_BRK_ARRAY()
  stacktrace: Move documentation for arch_stack_walk_reliable() to header
  x86: Remove duplicate TSC DEADLINE MSR definitions
2021-04-26 09:25:47 -07:00
Linus Torvalds 26a4ef7e48 Add support for SEV-ES guests booting through the 32-bit boot path, along with
cleanups, fixes and improvements.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGkbQACgkQEsHwGGHe
 VUrJ4w/+M9TbCppcILNvtaHn0mgpcDVmKvRSDdLl/MWcW1kuzczcdFYAK+OFFD0E
 TYKSEmkJUz3Tm0YBkO9PSPTBk+hnduPunXRk2Mzse1Uv3LxPuWEN3q6ZAfP1rOZ1
 3nlEnzHCWZdf4d7uz49qCXj96bfv98+zU2DaCoVoNUImp8jzo6hMtTPI4N31Tply
 Rb0b0acIkdmy0eaADilMciimZevs9EF3KgiwSd0AUAJE1aRtRpPKtv2F1OraJPkH
 T7AunJvoO8Sb2vpHfaW8iZrx2HKE8KZ4QOfM+dAXurjadlPVBLN34MC8FIw4tIS+
 m2dc/CMaVy1QpyHKOTZqY9ZsCndunrMJXsolhCyBjA6fAZ1aFZswxRWUeGrOkCJ2
 ZGJetB0tADi0gIRZerwyPXOKLiJBo8BSmIr8FzHq8CYYoxKH9D1dqEZVj9kBcGLJ
 SYbgUIKNuw54RzE00S8i2s625RG5A7qn6GrRMvnkVyJnKoD01na0trND2AbufBJz
 oDhBXfvP5SwswEt4YYZ1rn3JO1nRZzn4WGfiUQ4ElOEFYuUEZOJtcw1LHwDJ0LcQ
 bfOs0mmDFajFH1DyILyHfji4rdqHGWIpGIHfmYs98Njtfa8dtximU/csr69by/xV
 dcycXbPaw5psDe4Acw2vb7DM7h7T9fHNG+VgRJb25gXeywGutac=
 =AUGR
 -----END PGP SIGNATURE-----

Merge tag 'x86_seves_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 AMD secure virtualization (SEV-ES) updates from Borislav Petkov:
 "Add support for SEV-ES guests booting through the 32-bit boot path,
  along with cleanups, fixes and improvements"

* tag 'x86_seves_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sev-es: Optimize __sev_es_ist_enter() for better readability
  x86/sev-es: Replace open-coded hlt-loops with sev_es_terminate()
  x86/boot/compressed/64: Check SEV encryption in the 32-bit boot-path
  x86/boot/compressed/64: Add CPUID sanity check to 32-bit boot-path
  x86/boot/compressed/64: Add 32-bit boot #VC handler
  x86/boot/compressed/64: Setup IDT in startup_32 boot path
  x86/boot/compressed/64: Reload CS in startup_32
  x86/sev: Do not require Hypervisor CPUID bit for SEV guests
  x86/boot/compressed/64: Cleanup exception handling before booting kernel
  x86/virtio: Have SEV guests enforce restricted virtio memory access
  x86/sev-es: Remove subtraction of res variable
2021-04-26 09:11:10 -07:00
Sean Christopherson 4daf2a1c45 x86/sev: Drop redundant and potentially misleading 'sev_enabled'
Drop the sev_enabled flag and switch its one user over to sev_active().
sev_enabled was made redundant with the introduction of sev_status in
commit b57de6cd16 ("x86/sev-es: Add SEV-ES Feature Detection").
sev_enabled and sev_active() are guaranteed to be equivalent, as each is
true iff 'sev_status & MSR_AMD64_SEV_ENABLED' is true, and are only ever
written in tandem (ignoring compressed boot's version of sev_status).

Removing sev_enabled avoids confusion over whether it refers to the guest
or the host, and will also allow KVM to usurp "sev_enabled" for its own
purposes.

No functional change intended.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-7-seanjc@google.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:14 -04:00
Jan Kiszka 16854b567d x86/pat: Do not compile stubbed functions when X86_PAT is off
Those are already provided by linux/io.h as stubs.

The conflict remains invisible until someone would pull linux/io.h into
memtype.c. This fixes a build error when this file is used outside of
the kernel tree.

  [ bp: Massage commit message. ]

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/a9351615-7a0d-9d47-af65-d9e2fffe8192@siemens.com
2021-04-14 08:21:41 +02:00
Lai Jiangshan 1591584e2e x86/process/64: Move cpu_current_top_of_stack out of TSS
cpu_current_top_of_stack is currently stored in TSS.sp1. TSS is exposed
through the cpu_entry_area which is visible with user CR3 when PTI is
enabled and active.

This makes it a coveted fruit for attackers.  An attacker can fetch the
kernel stack top from it and continue next steps of actions based on the
kernel stack.

But it is actualy not necessary to be stored in the TSS.  It is only
accessed after the entry code switched to kernel CR3 and kernel GS_BASE
which means it can be in any regular percpu variable.

The reason why it is in TSS is historical (pre PTI) because TSS is also
used as scratch space in SYSCALL_64 and therefore cache hot.

A syscall also needs the per CPU variable current_task and eventually
__preempt_count, so placing cpu_current_top_of_stack next to them makes it
likely that they end up in the same cache line which should avoid
performance regressions. This is not enforced as the compiler is free to
place these variables, so these entry relevant variables should move into
a data structure to make this enforceable.

The seccomp_benchmark doesn't show any performance loss in the "getpid
native" test result.  Actually, the result changes from 93ns before to 92ns
with this change when KPTI is disabled. The test is very stable and
although the test doesn't show a higher degree of precision it gives enough
confidence that moving cpu_current_top_of_stack does not cause a
regression.

[ tglx: Removed unneeded export. Massaged changelog ]

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210125173444.22696-2-jiangshanlai@gmail.com
2021-03-28 22:40:10 +02:00
Isaku Yamahata 8249d17d31 x86/mem_encrypt: Correct physical address calculation in __set_clr_pte_enc()
The pfn variable contains the page frame number as returned by the
pXX_pfn() functions, shifted to the right by PAGE_SHIFT to remove the
page bits. After page protection computations are done to it, it gets
shifted back to the physical address using page_level_shift().

That is wrong, of course, because that function determines the shift
length based on the level of the page in the page table but in all the
cases, it was shifted by PAGE_SHIFT before.

Therefore, shift it back using PAGE_SHIFT to get the correct physical
address.

 [ bp: Rewrite commit message. ]

Fixes: dfaaec9033 ("x86: Add support for changing memory encryption attribute in early boot")
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/81abbae1657053eccc535c16151f63cd049dcb97.1616098294.git.isaku.yamahata@intel.com
2021-03-23 11:59:45 +01:00
Ingo Molnar 163b099146 x86: Fix various typos in comments, take #2
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-21 23:50:28 +01:00
Joerg Roedel eab696d8e8 x86/sev: Do not require Hypervisor CPUID bit for SEV guests
A malicious hypervisor could disable the CPUID intercept for an SEV or
SEV-ES guest and trick it into the no-SEV boot path, where it could
potentially reveal secrets. This is not an issue for SEV-SNP guests,
as the CPUID intercept can't be disabled for those.

Remove the Hypervisor CPUID bit check from the SEV detection code to
protect against this kind of attack and add a Hypervisor bit equals zero
check to the SME detection path to prevent non-encrypted guests from
trying to enable SME.

This handles the following cases:

	1) SEV(-ES) guest where CPUID intercept is disabled. The guest
	   will still see leaf 0x8000001f and the SEV bit. It can
	   retrieve the C-bit and boot normally.

	2) Non-encrypted guests with intercepted CPUID will check
	   the SEV_STATUS MSR and find it 0 and will try to enable SME.
	   This will fail when the guest finds MSR_K8_SYSCFG to be zero,
	   as it is emulated by KVM. But we can't rely on that, as there
	   might be other hypervisors which return this MSR with bit
	   23 set. The Hypervisor bit check will prevent that the guest
	   tries to enable SME in this case.

	3) Non-encrypted guests on SEV capable hosts with CPUID intercept
	   disabled (by a malicious hypervisor) will try to boot into
	   the SME path. This will fail, but it is also not considered
	   a problem because non-encrypted guests have no protection
	   against the hypervisor anyway.

 [ bp: s/non-SEV/non-encrypted/g ]

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20210312123824.306-3-joro@8bytes.org
2021-03-18 16:44:40 +01:00
Ingo Molnar d9f6e12fb0 x86: Fix various typos in comments
Fix ~144 single-word typos in arch/x86/ code comments.

Doing this in a single commit should reduce the churn.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-18 15:31:53 +01:00
Tom Lendacky 229164175f x86/virtio: Have SEV guests enforce restricted virtio memory access
An SEV guest requires that virtio devices use the DMA API to allow the
hypervisor to successfully access guest memory as needed.

The VIRTIO_F_VERSION_1 and VIRTIO_F_ACCESS_PLATFORM features tell virtio
to use the DMA API. Add arch_has_restricted_virtio_memory_access() for
x86, to fail the device probe if these features have not been set for the
device when running as an SEV guest.

 [ bp: Fix -Wmissing-prototypes warning
   Reported-by: kernel test robot <lkp@intel.com> ]

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/b46e0211f77ca1831f11132f969d470a6ffc9267.1614897610.git.thomas.lendacky@amd.com
2021-03-08 20:41:33 +01:00
Nadav Amit 1608e4cf31 x86/mm/tlb: Remove unnecessary uses of the inline keyword
The compiler is smart enough without these hints.

Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-9-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit 09c5272e48 x86/mm/tlb: Do not make is_lazy dirty for no reason
Blindly writing to is_lazy for no reason, when the written value is
identical to the old value, makes the cacheline dirty for no reason.
Avoid making such writes to prevent cache coherency traffic for no
reason.

Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-7-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit 2f4305b19f x86/mm/tlb: Privatize cpu_tlbstate
cpu_tlbstate is mostly private and only the variable is_lazy is shared.
This causes some false-sharing when TLB flushes are performed.

Break cpu_tlbstate intro cpu_tlbstate and cpu_tlbstate_shared, and mark
each one accordingly.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-6-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit 4ce94eabac x86/mm/tlb: Flush remote and local TLBs concurrently
To improve TLB shootdown performance, flush the remote and local TLBs
concurrently. Introduce flush_tlb_multi() that does so. Introduce
paravirtual versions of flush_tlb_multi() for KVM, Xen and hyper-v (Xen
and hyper-v are only compile-tested).

While the updated smp infrastructure is capable of running a function on
a single local core, it is not optimized for this case. The multiple
function calls and the indirect branch introduce some overhead, and
might make local TLB flushes slower than they were before the recent
changes.

Before calling the SMP infrastructure, check if only a local TLB flush
is needed to restore the lost performance in this common case. This
requires to check mm_cpumask() one more time, but unless this mask is
updated very frequently, this should impact performance negatively.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com> # Hyper-v parts
Reviewed-by: Juergen Gross <jgross@suse.com> # Xen and paravirt parts
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-5-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit 6035152d8e x86/mm/tlb: Open-code on_each_cpu_cond_mask() for tlb_is_not_lazy()
Open-code on_each_cpu_cond_mask() in native_flush_tlb_others() to
optimize the code. Open-coding eliminates the need for the indirect branch
that is used to call is_lazy(), and in CPUs that are vulnerable to
Spectre v2, it eliminates the retpoline. In addition, it allows to use a
preallocated cpumask to compute the CPUs that should be.

This would later allow us not to adapt on_each_cpu_cond_mask() to
support local and remote functions.

Note that calling tlb_is_not_lazy() for every CPU that needs to be
flushed, as done in native_flush_tlb_multi() might look ugly, but it is
equivalent to what is currently done in on_each_cpu_cond_mask().
Actually, native_flush_tlb_multi() does it more efficiently since it
avoids using an indirect branch for the matter.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-4-namit@vmware.com
2021-03-06 12:59:09 +01:00
Nadav Amit 4c1ba3923e x86/mm/tlb: Unify flush_tlb_func_local() and flush_tlb_func_remote()
The unification of these two functions allows to use them in the updated
SMP infrastrucutre.

To do so, remove the reason argument from flush_tlb_func_local(), add
a member to struct tlb_flush_info that says which CPU initiated the
flush and act accordingly. Optimize the size of flush_tlb_info while we
are at it.

Unfortunately, this prevents us from using a constant tlb_flush_info for
arch_tlbbatch_flush(), but in a later stage we may be able to inline
tlb_flush_info into the IPI data, so it should not have an impact
eventually.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-3-namit@vmware.com
2021-03-06 12:59:09 +01:00
NeilBrown 3d2fc4c082 x86: fix seq_file iteration for pat/memtype.c
The memtype seq_file iterator allocates a buffer in the ->start and ->next
functions and frees it in the ->show function.  The preferred handling for
such resources is to free them in the subsequent ->next or ->stop function
call.

Since Commit 1f4aace60b ("fs/seq_file.c: simplify seq_file iteration
code and interface") there is no guarantee that ->show will be called
after ->next, so this function can now leak memory.

So move the freeing of the buffer to ->next and ->stop.

Link: https://lkml.kernel.org/r/161248539022.21478.13874455485854739066.stgit@noble1
Fixes: 1f4aace60b ("fs/seq_file.c: simplify seq_file iteration code and interface")
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Xin Long <lucien.xin@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:05 -08:00
Marco Elver bc8fbc5f30 kfence: add test suite
Add KFENCE test suite, testing various error detection scenarios. Makes
use of KUnit for test organization. Since KFENCE's interface to obtain
error reports is via the console, the test verifies that KFENCE outputs
expected reports to the console.

[elver@google.com: fix typo in test]
  Link: https://lkml.kernel.org/r/X9lHQExmHGvETxY4@elver.google.com
[elver@google.com: show access type in report]
  Link: https://lkml.kernel.org/r/20210111091544.3287013-2-elver@google.com

Link: https://lkml.kernel.org/r/20201103175841.3495947-9-elver@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:02 -08:00
Marco Elver d438fabce7 kfence: use pt_regs to generate stack trace on faults
Instead of removing the fault handling portion of the stack trace based on
the fault handler's name, just use struct pt_regs directly.

Change kfence_handle_page_fault() to take a struct pt_regs, and plumb it
through to kfence_report_error() for out-of-bounds, use-after-free, or
invalid access errors, where pt_regs is used to generate the stack trace.

If the kernel is a DEBUG_KERNEL, also show registers for more information.

Link: https://lkml.kernel.org/r/20201105092133.2075331-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:02 -08:00
Alexander Potapenko 1dc0da6e9e x86, kfence: enable KFENCE for x86
Add architecture specific implementation details for KFENCE and enable
KFENCE for the x86 architecture. In particular, this implements the
required interface in <asm/kfence.h> for setting up the pool and
providing helper functions for protecting and unprotecting pages.

For x86, we need to ensure that the pool uses 4K pages, which is done
using the set_memory_4k() helper function.

[elver@google.com: add missing copyright and description header]
  Link: https://lkml.kernel.org/r/20210118092159.145934-2-elver@google.com

Link: https://lkml.kernel.org/r/20201103175841.3495947-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:02 -08:00
Linus Torvalds ae821d2107 - PTRACE_GETREGS/PTRACE_PUTREGS regset selection cleanup
- Another initial cleanup - more to follow - to the fault handling code.
 
 - Other minor cleanups and corrections.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmAqU0oACgkQEsHwGGHe
 VUruWw//VA+/K7Ykd8tjZdmJPWdfsdqBtOrolh4hiajM6iYckTip/FdwHpeEQwM9
 ff0iNMrxICG3gbQxCX6WNzPeJatYsnjtF67whfat2SEzNHSDtZDb1Bm20s2/1fbY
 OurRBTEBzuYMolpEJ2XABpu7LQ+6TV3LJ6yUBungILMOjP7KvrCK0SUrWj253VDU
 XljK5XBZnmYlEjPU6dlhn64Wsl/GD7AWCAeZGq47EgjH2cR6gxNmu9kYAArGbdiJ
 WjF8MWE7qVwCPUTiCBv+P1CjsQawvlcUY54wtG65dBYAZvpjmN82T2ypguzAt8KT
 12A38vFlBuEUAWC0rUymNouh8Q20AElpdw/odLElHkpNxbHhf/7RyZ1E00LjsFtn
 MF9Gp9aSIQbfYWK+Hin9oRvqXckV08u3KtzUNeyMbdCmpyqHh6prj8JEZaxKZZUp
 zCaX8Qasn+Q9zL0DO51WI9EPOwpvSpifUYHmd5RHGbQDW9DjYK4mkBCHhjVfYXd/
 NcxRO5rrMLmMG+XuNPg9vuHMi2HJnClJ6odD6b80xGvBodTZxZnqnYO9tUImbYnW
 pdmt73YDvakei8XY7cAdNWcsTi0kQYZGfInna6z43Ri2l+I1TZaoKGDqn7TbzNbb
 9RB0lrD0tfW0PvvDbVwco0Q+8/ykIbvPkHPvjQGWioxHi6yI49s=
 =uVEk
 -----END PGP SIGNATURE-----

Merge tag 'x86_mm_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm cleanups from Borislav Petkov:

 - PTRACE_GETREGS/PTRACE_PUTREGS regset selection cleanup

 - Another initial cleanup - more to follow - to the fault handling
   code.

 - Other minor cleanups and corrections.

* tag 'x86_mm_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/{fault,efi}: Fix and rename efi_recover_from_page_fault()
  x86/fault: Don't run fixups for SMAP violations
  x86/fault: Don't look for extable entries for SMEP violations
  x86/fault: Rename no_context() to kernelmode_fixup_or_oops()
  x86/fault: Bypass no_context() for implicit kernel faults from usermode
  x86/fault: Split the OOPS code out from no_context()
  x86/fault: Improve kernel-executing-user-memory handling
  x86/fault: Correct a few user vs kernel checks wrt WRUSS
  x86/fault: Document the locking in the fault_signal_pending() path
  x86/fault/32: Move is_f00f_bug() to do_kern_addr_fault()
  x86/fault: Fold mm_fault_error() into do_user_addr_fault()
  x86/fault: Skip the AMD erratum #91 workaround on unaffected CPUs
  x86/fault: Fix AMD erratum #91 errata fixup for user code
  x86/Kconfig: Remove HPET_EMULATE_RTC depends on RTC
  x86/asm: Fixup TASK_SIZE_MAX comment
  x86/ptrace: Clean up PTRACE_GETREGS/PTRACE_PUTREGS regset selection
  x86/vm86/32: Remove VM86_SCREEN_BITMAP support
  x86: Remove definition of DEBUG
  x86/entry: Remove now unused do_IRQ() declaration
  x86/mm: Remove duplicate definition of _PAGE_PAT_LARGE
  ...
2021-02-20 19:34:09 -08:00
Linus Torvalds b9cdab6820 Do not unroll string I/O for SEV-ES guests because they support it.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmAqT+UACgkQEsHwGGHe
 VUr1hQ//d4lgbpkXAq17f/43kMZK5GJKMocdBZw+6QmUr4TYWS2PPTfXEr4FCjM1
 NqxR2wo97bjbg0oHZOd0JzjxzhC6fHXwiyyFGRv3sS7WNfVPlJRZ47dNa1qPxuZX
 QjFwjtWtR2YzKue5Xq7O87gf2YEWFgojWRd5cCyqNU2a0SAHSOhNij8vSswXaBZA
 tD2ApIlce1de4HJxXXFBN9xAows7EqKH4OTqRld66aUqDsUfLQCdPB0aKqnTpItA
 pzW6TRM392K97j2jvMjEJsHcRUVdsYvE8ICz36vk2vmpP1V3stPxOW8lfC4JV5dL
 NXmhuol+CzW/3FeyW5wTtmhJRj3I5MvPl3ddf30Ex9tXSx1RT/7VU7p/zDcv81WZ
 32bQFYnPeNI0SHXH+CW7p13GWDE+yTBCUy838Olmkx69K+2OBgt5B6W2BcOkiKPN
 RH1NAkwxhjP53eR7CIjirvKK77/p/48/Jg2TyLVWKHcdr7QPZdFG0+FpYbQ2nKoj
 q2Gy7l/uxTciu7/RTRHM3E/STVqEmrWSjIuy+dhTOJaHqjMXPyiWXWdYgH2QymUX
 pkTi72uaHy5HF0DyOo5pONkJrODUBasr1iJxUKuWkR++wLJihxN5+lbTxd9Vvcop
 KN5HNhLoyyQ8jYuc8OLwoHIDEskJgMqLDfNx9sLqCXfR380FfAc=
 =anHE
 -----END PGP SIGNATURE-----

Merge tag 'x86_seves_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 SEV-ES fix from Borislav Petkov:
 "Do not unroll string I/O for SEV-ES guests because they support it"

* tag 'x86_seves_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sev-es: Do not unroll string I/O for SEV-ES guests
2021-02-20 19:16:02 -08:00
Ingo Molnar 40c1fa52cd Merge branch 'x86/cleanups' into x86/mm
Merge recent cleanups to the x86 MM code to resolve a conflict.

Conflicts:
	arch/x86/mm/fault.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-02-12 13:40:02 +01:00
Andy Lutomirski c46f52231e x86/{fault,efi}: Fix and rename efi_recover_from_page_fault()
efi_recover_from_page_fault() doesn't recover -- it does a special EFI
mini-oops.  Rename it to make it clear that it crashes.

While renaming it, I noticed a blatant bug: a page fault oops in a
different thread happening concurrently with an EFI runtime service call
would be misinterpreted as an EFI page fault.  Fix that.

This isn't quite exact. The situation could be improved by using a
special CS for calls into EFI.

 [ bp: Massage commit message and simplify in interrupt check. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/f43b1e80830dc78ed60ed8b0826f4f189254570c.1612924255.git.luto@kernel.org
2021-02-10 18:39:23 +01:00
Andy Lutomirski ca24728378 x86/fault: Don't run fixups for SMAP violations
A SMAP-violating kernel access is not a recoverable condition.  Imagine
kernel code that, outside of a uaccess region, dereferences a pointer to
the user range by accident.  If SMAP is on, this will reliably generate
as an intentional user access.  This makes it easy for bugs to be
overlooked if code is inadequately tested both with and without SMAP.

This was discovered because BPF can generate invalid accesses to user
memory, but those warnings only got printed if SMAP was off. Make it so
that this type of error will be discovered with SMAP on as well.

 [ bp: Massage commit message. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/66a02343624b1ff46f02a838c497fc05c1a871b3.1612924255.git.luto@kernel.org
2021-02-10 16:27:57 +01:00
Andy Lutomirski 66fcd98883 x86/fault: Don't look for extable entries for SMEP violations
If the kernel gets a SMEP violation or a fault that would have been a
SMEP violation if it had SMEP support, it shouldn't run fixups. Just
OOPS.

 [ bp: Massage commit message. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/46160d8babce2abf1d6daa052146002efa24ac56.1612924255.git.luto@kernel.org
2021-02-10 14:45:39 +01:00
Andy Lutomirski 6456a2a69e x86/fault: Rename no_context() to kernelmode_fixup_or_oops()
The name no_context() has never been very clear.  It's only called for
faults from kernel mode, so rename it and change the no-longer-useful
user_mode(regs) check to a WARN_ON_ONCE.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c21940efe676024bb4bc721f7d70c29c420e127e.1612924255.git.luto@kernel.org
2021-02-10 14:41:19 +01:00
Andy Lutomirski 5042d40a26 x86/fault: Bypass no_context() for implicit kernel faults from usermode
Drop an indentation level and remove the last user_mode(regs) == true
caller of no_context() by directly OOPSing for implicit kernel faults
from usermode.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/6e3d1129494a8de1e59d28012286e3a292a2296e.1612924255.git.luto@kernel.org
2021-02-10 14:39:52 +01:00
Andy Lutomirski 2cc624b0a7 x86/fault: Split the OOPS code out from no_context()
Not all callers of no_context() want to run exception fixups.
Separate the OOPS code out from the fixup code in no_context().

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/450f8d8eabafb83a5df349108c8e5ea83a2f939d.1612924255.git.luto@kernel.org
2021-02-10 14:33:36 +01:00
Andy Lutomirski 03c81ea333 x86/fault: Improve kernel-executing-user-memory handling
Right now, the case of the kernel trying to execute from user memory
is treated more or less just like the kernel getting a page fault on a
user access. In the failure path, it checks for erratum #93, tries to
otherwise fix up the error, and then oopses.

If it manages to jump to the user address space, with or without SMEP,
it should not try to resolve the page fault. This is an error, pure and
simple. Rearrange the code so that this case is caught early, check for
erratum #93, and bail out.

 [ bp: Massage commit message. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/ab8719c7afb8bd501c4eee0e36493150fbbe5f6a.1612924255.git.luto@kernel.org
2021-02-10 14:20:54 +01:00
Andy Lutomirski 56e62cd28a x86/fault: Correct a few user vs kernel checks wrt WRUSS
In general, page fault errors for WRUSS should be just like get_user(),
etc.  Fix three bugs in this area:

There is a comment that says that, if the kernel can't handle a page fault
on a user address due to OOM, the OOM-kill-and-retry logic would be
skipped.  The code checked kernel *privilege*, not kernel mode, so it
missed WRUSS.  This means that the kernel would malfunction if it got OOM
on a WRUSS fault -- this would be a kernel-mode, user-privilege fault, and
the OOM killer would be invoked and the handler would retry the faulting
instruction.

A failed user access from kernel while a fatal signal is pending should
fail even if the instruction in question was WRUSS.

do_sigbus() should not send SIGBUS for WRUSS -- it should handle it like
any other kernel mode failure.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/a7b7bcea730bd4069e6b7e629236bb2cf526c2fb.1612924255.git.luto@kernel.org
2021-02-10 14:13:32 +01:00
Andy Lutomirski ef2544fb3f x86/fault: Document the locking in the fault_signal_pending() path
If fault_signal_pending() returns true, then the core mm has unlocked the
mm for us.  Add a comment to help future readers of this code.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c56de3d103f40e6304437b150aa7b215530d23f7.1612924255.git.luto@kernel.org
2021-02-10 14:12:07 +01:00
Andy Lutomirski f42a40fd53 x86/fault/32: Move is_f00f_bug() to do_kern_addr_fault()
bad_area() and its relatives are called from many places in fault.c, and
exactly one of them wants the F00F workaround.

__bad_area_nosemaphore() no longer contains any kernel fault code, which
prepares for further cleanups.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/e9668729a48ce6754022b0a4415631e8ebdd00e7.1612924255.git.luto@kernel.org
2021-02-10 14:11:07 +01:00
Andy Lutomirski ec352711ce x86/fault: Fold mm_fault_error() into do_user_addr_fault()
mm_fault_error() is logically just the end of do_user_addr_fault().
Combine the functions.  This makes the code easier to read.

Most of the churn here is from renaming hw_error_code to error_code in
do_user_addr_fault().

This makes no difference at all to the generated code (objdump -dr) as
compared to changing noinline to __always_inline in the definition of
mm_fault_error().

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/dedc4d9c9b047e51ce38b991bd23971a28af4e7b.1612924255.git.luto@kernel.org
2021-02-10 14:10:07 +01:00
Andy Lutomirski d24df8ecf9 x86/fault: Skip the AMD erratum #91 workaround on unaffected CPUs
According to the Revision Guide for AMD Athlon™ 64 and AMD Opteron™
Processors, only early revisions of family 0xF are affected. This will
avoid unnecessarily fetching instruction bytes before sending SIGSEGV to
user programs.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/477173b7784bc28afb3e53d76ae5ef143917e8dd.1612924255.git.luto@kernel.org
2021-02-10 13:38:12 +01:00
Andy Lutomirski 35f1c89b0c x86/fault: Fix AMD erratum #91 errata fixup for user code
The recent rework of probe_kernel_address() and its conversion to
get_kernel_nofault() inadvertently broke is_prefetch(). Before this
change, probe_kernel_address() was used as a sloppy "read user or
kernel memory" helper, but it doesn't do that any more. The new
get_kernel_nofault() reads *kernel* memory only, which completely broke
is_prefetch() for user access.

Adjust the code to the correct accessor based on access mode. The
manual address bounds check is no longer necessary, since the accessor
helpers (get_user() / get_kernel_nofault()) do the right thing all by
themselves. As a bonus, by using the correct accessor, the open-coded
address bounds check is not needed anymore.

 [ bp: Massage commit message. ]

Fixes: eab0c6089b ("maccess: unify the probe kernel arch hooks")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/b91f7f92f3367d2d3a88eec3b09c6aab1b2dc8ef.1612924255.git.luto@kernel.org
2021-02-10 13:11:41 +01:00
Sean Christopherson ccd85d90ce KVM: SVM: Treat SVM as unsupported when running as an SEV guest
Don't let KVM load when running as an SEV guest, regardless of what
CPUID says.  Memory is encrypted with a key that is not accessible to
the host (L0), thus it's impossible for L0 to emulate SVM, e.g. it'll
see garbage when reading the VMCB.

Technically, KVM could decrypt all memory that needs to be accessible to
the L0 and use shadow paging so that L0 does not need to shadow NPT, but
exposing such information to L0 largely defeats the purpose of running as
an SEV guest.  This can always be revisited if someone comes up with a
use case for running VMs inside SEV guests.

Note, VMLOAD, VMRUN, etc... will also #GP on GPAs with C-bit set, i.e. KVM
is doomed even if the SEV guest is debuggable and the hypervisor is willing
to decrypt the VMCB.  This may or may not be fixed on CPUs that have the
SVME_ADDR_CHK fix.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202212017.2486595-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-03 04:30:37 -05:00
Tom Lendacky 62a08a7193 x86/sev-es: Do not unroll string I/O for SEV-ES guests
Under the GHCB specification, SEV-ES guests can support string I/O.
The current #VC handler contains this support, so remove the need to
unroll kernel string I/O operations. This will reduce the number of #VC
exceptions generated as well as the number VM exits for the guest.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/3de04b5b638546ac75d42ba52307fe1a922173d3.1612203987.git.thomas.lendacky@amd.com
2021-02-02 16:25:05 +01:00
Andy Lutomirski 8ece53ef7f x86/vm86/32: Remove VM86_SCREEN_BITMAP support
The implementation was rather buggy.  It unconditionally marked PTEs
read-only, even for VM_SHARED mappings.  I'm not sure whether this is
actually a problem, but it certainly seems unwise.  More importantly, it
released the mmap lock before flushing the TLB, which could allow a racing
CoW operation to falsely believe that the underlying memory was not
writable.

I can't find any users at all of this mechanism, so just remove it.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Stas Sergeev <stsp2@yandex.ru>
Link: https://lkml.kernel.org/r/f3086de0babcab36f69949b5780bde851f719bc8.1611078018.git.luto@kernel.org
2021-01-21 20:08:53 +01:00
Tom Rix b86cb29287 x86: Remove definition of DEBUG
Defining DEBUG should only be done in development. So remove it.

Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20210114212827.47584-1-trix@redhat.com
2021-01-15 08:23:10 +01:00
Dan Williams d1c5246e08 x86/mm: Fix leak of pmd ptlock
Commit

  28ee90fe60 ("x86/mm: implement free pmd/pte page interfaces")

introduced a new location where a pmd was released, but neglected to
run the pmd page destructor. In fact, this happened previously for a
different pmd release path and was fixed by commit:

  c283610e44 ("x86, mm: do not leak page->ptl for pmd page tables").

This issue was hidden until recently because the failure mode is silent,
but commit:

  b2b29d6d01 ("mm: account PMD tables like PTE tables")

turns the failure mode into this signature:

 BUG: Bad page state in process lt-pmem-ns  pfn:15943d
 page:000000007262ed7b refcount:0 mapcount:-1024 mapping:0000000000000000 index:0x0 pfn:0x15943d
 flags: 0xaffff800000000()
 raw: 00affff800000000 dead000000000100 0000000000000000 0000000000000000
 raw: 0000000000000000 ffff913a029bcc08 00000000fffffbff 0000000000000000
 page dumped because: nonzero mapcount
 [..]
  dump_stack+0x8b/0xb0
  bad_page.cold+0x63/0x94
  free_pcp_prepare+0x224/0x270
  free_unref_page+0x18/0xd0
  pud_free_pmd_page+0x146/0x160
  ioremap_pud_range+0xe3/0x350
  ioremap_page_range+0x108/0x160
  __ioremap_caller.constprop.0+0x174/0x2b0
  ? memremap+0x7a/0x110
  memremap+0x7a/0x110
  devm_memremap+0x53/0xa0
  pmem_attach_disk+0x4ed/0x530 [nd_pmem]
  ? __devm_release_region+0x52/0x80
  nvdimm_bus_probe+0x85/0x210 [libnvdimm]

Given this is a repeat occurrence it seemed prudent to look for other
places where this destructor might be missing and whether a better
helper is needed. try_to_free_pmd_page() looks like a candidate, but
testing with setting up and tearing down pmd mappings via the dax unit
tests is thus far not triggering the failure.

As for a better helper pmd_free() is close, but it is a messy fit
due to requiring an @mm arg. Also, ___pmd_free_tlb() wants to call
paravirt_tlb_remove_table() instead of free_page(), so open-coded
pgtable_pmd_page_dtor() seems the best way forward for now.

Debugged together with Matthew Wilcox <willy@infradead.org>.

Fixes: 28ee90fe60 ("x86/mm: implement free pmd/pte page interfaces")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/160697689204.605323.17629854984697045602.stgit@dwillia2-desk3.amr.corp.intel.com
2021-01-05 11:40:23 +01:00
Lorenzo Stoakes 167dcfc08b x86/mm: Increase pgt_buf size for 5-level page tables
pgt_buf is used to allocate page tables on initial direct page mapping
which bootstraps the kernel into being able to allocate these before the
direct mapping makes further pages available.

INIT_PGD_PAGE_COUNT is set to 6 pages (doubled for KASLR) - 3 (PUD, PMD,
PTE) for the 1 MiB ISA mapping and 3 more for the first direct mapping
assignment in each case providing 2 MiB of address space.

This has not been updated for 5-level page tables which has an
additional P4D page table level above PUD.

In most instances, this will not have a material impact as the first
4 page levels allocated for the ISA mapping will provide sufficient
address space to encompass all further address mappings.

If the first direct mapping is within 512 GiB of the ISA mapping, only
a PMD and PTE needs to be added in the instance the kernel is using 4
KiB page tables (e.g. CONFIG_DEBUG_PAGEALLOC is enabled) and only a PMD
if the kernel can use 2 MiB pages (the first allocation is limited to
PMD_SIZE so a GiB page cannot be used there).

However, if the machine has more than 512 GiB of RAM and the kernel is
allocating 4 KiB page size, 3 further page tables are required.

If the machine has more than 256 TiB of RAM at 4 KiB or 2 MiB page size,
further 3 or 4 page tables are required respectively.

Update INIT_PGD_PAGE_COUNT to reflect this.

 [ bp: Sanitize text into passive voice without ambiguous personal pronouns. ]

Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/20201215205641.34096-1-lstoakes@gmail.com
2021-01-04 18:07:50 +01:00
Linus Torvalds 007c74e16c Merge branch 'stable/for-linus-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb
Pull swiotlb update from Konrad Rzeszutek Wilk:
 "A generic (but for right now engaged only with AMD SEV) mechanism to
  adjust a larger size SWIOTLB based on the total memory of the SEV
  guests which right now require the bounce buffer for interacting with
  the outside world.

  Normal knobs (swiotlb=XYZ) still work"

* 'stable/for-linus-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb:
  x86,swiotlb: Adjust SWIOTLB bounce buffer size for SEV guests
2020-12-16 13:51:34 -08:00
Linus Torvalds ac73e3dc8a Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - a few random little subsystems

 - almost all of the MM patches which are staged ahead of linux-next
   material. I'll trickle to post-linux-next work in as the dependents
   get merged up.

Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
  mm: cleanup kstrto*() usage
  mm: fix fall-through warnings for Clang
  mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
  mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
  mm:backing-dev: use sysfs_emit in macro defining functions
  mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
  mm: use sysfs_emit for struct kobject * uses
  mm: fix kernel-doc markups
  zram: break the strict dependency from lzo
  zram: add stat to gather incompressible pages since zram set up
  zram: support page writeback
  mm/process_vm_access: remove redundant initialization of iov_r
  mm/zsmalloc.c: rework the list_add code in insert_zspage()
  mm/zswap: move to use crypto_acomp API for hardware acceleration
  mm/zswap: fix passing zero to 'PTR_ERR' warning
  mm/zswap: make struct kernel_param_ops definitions const
  userfaultfd/selftests: hint the test runner on required privilege
  userfaultfd/selftests: fix retval check for userfaultfd_open()
  userfaultfd/selftests: always dump something in modes
  userfaultfd: selftests: make __{s,u}64 format specifiers portable
  ...
2020-12-15 12:53:37 -08:00
Mike Rapoport 32a0de886e arch, mm: make kernel_page_present() always available
For architectures that enable ARCH_HAS_SET_MEMORY having the ability to
verify that a page is mapped in the kernel direct map can be useful
regardless of hibernation.

Add RISC-V implementation of kernel_page_present(), update its forward
declarations and stubs to be a part of set_memory API and remove ugly
ifdefery in inlcude/linux/mm.h around current declarations of
kernel_page_present().

Link: https://lkml.kernel.org/r/20201109192128.960-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:43 -08:00