Граф коммитов

233 Коммитов

Автор SHA1 Сообщение Дата
Hugh Dickins 0175ab610c mm/khugepaged: fix conflicting mods to collapse_file()
Inserting Ivan Orlov's syzbot fix commit 2ce0bdfebc
("mm: khugepaged: fix kernel BUG in hpage_collapse_scan_file()")
ahead of Jiaqi Yan's and David Stevens's commits
12904d9533 ("mm/khugepaged: recover from poisoned file-backed memory")
cae106dd67 ("mm/khugepaged: refactor collapse_file control flow")
ac492b9c70 ("mm/khugepaged: skip shmem with userfaultfd")
(all of which restructure collapse_file()) did not work out well.

xfstests generic/086 on huge tmpfs (with accelerated khugepaged) freezes
(if not on the first attempt, then the 2nd or 3rd) in find_lock_entries()
while doing drop_caches: the file's xarray seems to have been corrupted,
with find_get_entry() returning nonsense which makes no progress.

Bisection led to ac492b9c70ca; and diff against earlier working linux-next
suggested that it's probably down to an errant xas_store(), which does not
belong with the later changes (and nor does the positioning of warnings). 
The later changes look as if they fix the syzbot issue independently.

Remove most of what's left of 2ce0bdfebc74: just leave one WARN_ON_ONCE
(xas_error) after the final xas_store() of the multi-index entry.

Link: https://lkml.kernel.org/r/b6c881-c352-bb91-85a8-febeb09dfd71@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Ivan Orlov <ivan.orlov0322@gmail.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-27 13:42:16 -07:00
David Stevens a2e17cc2ef mm/khugepaged: maintain page cache uptodate flag
Make sure that collapse_file doesn't interfere with checking the uptodate
flag in the page cache by only inserting hpage into the page cache after
it has been updated and marked uptodate.  This is achieved by simply not
replacing present pages with hpage when iterating over the target range.

The present pages are already locked, so replacing them with the locked
hpage before the collapse is finalized is unnecessary.  However, it is
necessary to stop freezing the present pages after validating them, since
leaving long-term frozen pages in the page cache can lead to deadlocks. 
Simply checking the reference count is sufficient to ensure that there are
no long-term references hanging around that would the collapse would
break.  Similar to hpage, there is no reason that the present pages
actually need to be frozen in addition to being locked.

This fixes a race where folio_seek_hole_data would mistake hpage for an
fallocated but unwritten page.  This race is visible to userspace via data
temporarily disappearing from SEEK_DATA/SEEK_HOLE.  This also fixes a
similar race where pages could temporarily disappear from mincore.

Link: https://lkml.kernel.org/r/20230404120117.2562166-5-stevensd@google.com
Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: David Stevens <stevensd@chromium.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:52 -07:00
David Stevens ac492b9c70 mm/khugepaged: skip shmem with userfaultfd
Make sure that collapse_file respects any userfaultfds registered with
MODE_MISSING.  If userspace has any such userfaultfds registered, then for
any page which it knows to be missing, it may expect a
UFFD_EVENT_PAGEFAULT.  This means collapse_file needs to be careful when
collapsing a shmem range would result in replacing an empty page with a
THP, to avoid breaking userfaultfd.

Synchronization when checking for userfaultfds in collapse_file is tricky
because the mmap locks can't be used to prevent races with the
registration of new userfaultfds.  Instead, we provide synchronization by
ensuring that userspace cannot observe the fact that pages are missing
before we check for userfaultfds.  Although this allows registration of a
userfaultfd to race with collapse_file, it ensures that userspace cannot
observe any pages transition from missing to present after such a race
occurs.  This makes such a race indistinguishable to the collapse
occurring immediately before the userfaultfd registration.

The first step to provide this synchronization is to stop filling gaps
during the loop iterating over the target range, since the page cache lock
can be dropped during that loop.  The second step is to fill the gaps with
XA_RETRY_ENTRY after the page cache lock is acquired the final time, to
avoid races with accesses to the page cache that only take the RCU read
lock.

The fact that we don't fill holes during the initial iteration means that
collapse_file now has to handle faults occurring during the collapse. 
This is done by re-validating the number of missing pages after acquiring
the page cache lock for the final time.

This fix is targeted at khugepaged, but the change also applies to
MADV_COLLAPSE.  MADV_COLLAPSE on a range with a userfaultfd will now
return EBUSY if there are any missing pages (instead of succeeding on
shmem and returning EINVAL on anonymous memory).  There is also now a
window during MADV_COLLAPSE where a fault on a missing page will cause the
syscall to fail with EAGAIN.

The fact that intermediate page cache state can no longer be observed
before the rollback of a failed collapse is also technically a
userspace-visible change (via at least SEEK_DATA and SEEK_END), but it is
exceedingly unlikely that anything relies on being able to observe that
transient state.

Link: https://lkml.kernel.org/r/20230404120117.2562166-4-stevensd@google.com
Signed-off-by: David Stevens <stevensd@chromium.org>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:52 -07:00
David Stevens cae106dd67 mm/khugepaged: refactor collapse_file control flow
Add a rollback label to deal with failure, instead of continuously
checking for RESULT_SUCCESS, to make it easier to add more failure cases. 
The refactoring also allows the collapse_file tracepoint to include hpage
on success (instead of NULL).

Link: https://lkml.kernel.org/r/20230404120117.2562166-3-stevensd@google.com
Signed-off-by: David Stevens <stevensd@chromium.org>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:52 -07:00
David Stevens efa3d814fa mm/khugepaged: drain lru after swapping in shmem
Patch series "mm/khugepaged: fixes for khugepaged+shmem", v6.

This series reworks collapse_file so that the intermediate state of the
collapse does not leak out of collapse_file. Although this makes
collapse_file a bit more complicated, it means that the rest of the
kernel doesn't have to deal with the unusual state. This directly fixes
races with both lseek and mincore.

This series also fixes the fact that khugepaged completely breaks
userfaultfd+shmem. The rework of collapse_file provides a convenient
place to check for registered userfaultfds without making the shmem
userfaultfd implementation care about khugepaged.

Finally, this series adds a lru_add_drain after swapping in shmem pages,
which makes the subsequent folio_isolate_lru significantly more likely to
succeed.


This patch (of 4):

Call lru_add_drain after swapping in shmem pages so that isolate_lru_page
is more likely to succeed.

Link: https://lkml.kernel.org/r/20230404120117.2562166-1-stevensd@google.com
Link: https://lkml.kernel.org/r/20230404120117.2562166-2-stevensd@google.com
Signed-off-by: David Stevens <stevensd@chromium.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:51 -07:00
Jiaqi Yan 12904d9533 mm/khugepaged: recover from poisoned file-backed memory
Make collapse_file roll back when copying pages failed. More concretely:
- extract copying operations into a separate loop
- postpone the updates for nr_none until both scanning and copying
  succeeded
- postpone joining small xarray entries until both scanning and copying
  succeeded
- postpone the update operations to NR_XXX_THPS until both scanning and
  copying succeeded
- for non-SHMEM file, roll back filemap_nr_thps_inc if scan succeeded but
  copying failed

Tested manually:
0. Enable khugepaged on system under test. Mount tmpfs at /mnt/ramdisk.
1. Start a two-thread application. Each thread allocates a chunk of
   non-huge memory buffer from /mnt/ramdisk.
2. Pick 4 random buffer address (2 in each thread) and inject
   uncorrectable memory errors at physical addresses.
3. Signal both threads to make their memory buffer collapsible, i.e.
   calling madvise(MADV_HUGEPAGE).
4. Wait and then check kernel log: khugepaged is able to recover from
   poisoned pages by skipping them.
5. Signal both threads to inspect their buffer contents and make sure no
   data corruption.

Link: https://lkml.kernel.org/r/20230329151121.949896-4-jiaqiyan@google.com
Signed-off-by: Jiaqi Yan <jiaqiyan@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Tong Tiangen <tongtiangen@huawei.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:51 -07:00
Jiaqi Yan 98c76c9f1e mm/khugepaged: recover from poisoned anonymous memory
Problem
=======
Memory DIMMs are subject to multi-bit flips, i.e.  memory errors.  As
memory size and density increase, the chances of and number of memory
errors increase.  The increasing size and density of server RAM in the
data center and cloud have shown increased uncorrectable memory errors. 
There are already mechanisms in the kernel to recover from uncorrectable
memory errors.  This series of patches provides the recovery mechanism for
the particular kernel agent khugepaged when it collapses memory pages.

Impact
======
The main reason we chose to make khugepaged collapsing tolerant of memory
failures was its high possibility of accessing poisoned memory while
performing functionally optional compaction actions.  Standard
applications typically don't have strict requirements on the size of its
pages.  So they are given 4K pages by the kernel.  The kernel is able to
improve application performance by either

  1) giving applications 2M pages to begin with, or
  2) collapsing 4K pages into 2M pages when possible.

This collapsing operation is done by khugepaged, a kernel agent that is
constantly scanning memory.  When collapsing 4K pages into a 2M page, it
must copy the data from the 4K pages into a physically contiguous 2M page.
Therefore, as long as there exists one poisoned cache line in collapsible
4K pages, khugepaged will eventually access it.  The current impact to
users is a machine check exception triggered kernel panic.  However,
khugepaged’s compaction operations are not functionally required kernel
actions.  Therefore making khugepaged tolerant to poisoned memory will
greatly improve user experience.

This patch series is for cases where khugepaged is the first guy that
detects the memory errors on the poisoned pages.  IOW, the pages are not
known to have memory errors when khugepaged collapsing gets to them.  In
our observation, this happens frequently when the huge page ratio of the
system is relatively low, which is fairly common in virtual machines
running on cloud.

Solution
========
As stated before, it is less desirable to crash the system only because
khugepaged accesses poisoned pages while it is collapsing 4K pages.  The
high level idea of this patch series is to skip the group of pages
(usually 512 4K-size pages) once khugepaged finds one of them is poisoned,
as these pages have become ineligible to be collapsed.

We are also careful to unwind operations khuagepaged has performed before
it detects memory failures.  For example, before copying and collapsing a
group of anonymous pages into a huge page, the source pages will be
isolated and their page table is unlinked from their PMD.  These
operations need to be undone in order to ensure these pages are not
changed/lost from the perspective of other threads (both user and kernel
space).  As for file backed memory pages, there already exists a rollback
case.  This patch just extends it so that khugepaged also correctly rolls
back when it fails to copy poisoned 4K pages.


This patch (of 3):

Make __collapse_huge_page_copy return whether copying anonymous pages
succeeded, and make collapse_huge_page handle the return status.

Break existing PTE scan loop into two for-loops.  The first loop copies
source pages into target huge page, and can fail gracefully when running
into memory errors in source pages.  If copying all pages succeeds, the
second loop releases and clears up these normal pages.  Otherwise, the
second loop rolls back the page table and page states by:

- re-establishing the original PTEs-to-PMD connection.
- releasing source pages back to their LRU list.

Tested manually:
0. Enable khugepaged on system under test.
1. Start a two-thread application. Each thread allocates a chunk of
   non-huge anonymous memory buffer.
2. Pick 4 random buffer locations (2 in each thread) and inject
   uncorrectable memory errors at corresponding physical addresses.
3. Signal both threads to make their memory buffer collapsible, i.e.
   calling madvise(MADV_HUGEPAGE).
4. Wait and check kernel log: khugepaged is able to recover from poisoned
   pages and skips collapsing them.
5. Signal both threads to inspect their buffer contents and make sure no
   data corruption.

Link: https://lkml.kernel.org/r/20230329151121.949896-1-jiaqiyan@google.com
Link: https://lkml.kernel.org/r/20230329151121.949896-2-jiaqiyan@google.com
Signed-off-by: Jiaqi Yan <jiaqiyan@google.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Tong Tiangen <tongtiangen@huawei.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:51 -07:00
Ivan Orlov 2ce0bdfebc mm: khugepaged: fix kernel BUG in hpage_collapse_scan_file()
Syzkaller reported the following issue:

kernel BUG at mm/khugepaged.c:1823!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 5097 Comm: syz-executor220 Not tainted 6.2.0-syzkaller-13154-g857f1268a591 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/16/2023
RIP: 0010:collapse_file mm/khugepaged.c:1823 [inline]
RIP: 0010:hpage_collapse_scan_file+0x67c8/0x7580 mm/khugepaged.c:2233
Code: 00 00 89 de e8 c9 66 a3 ff 31 ff 89 de e8 c0 66 a3 ff 45 84 f6 0f 85 28 0d 00 00 e8 22 64 a3 ff e9 dc f7 ff ff e8 18 64 a3 ff <0f> 0b f3 0f 1e fa e8 0d 64 a3 ff e9 93 f6 ff ff f3 0f 1e fa 4c 89
RSP: 0018:ffffc90003dff4e0 EFLAGS: 00010093
RAX: ffffffff81e95988 RBX: 00000000000001c1 RCX: ffff8880205b3a80
RDX: 0000000000000000 RSI: 00000000000001c0 RDI: 00000000000001c1
RBP: ffffc90003dff830 R08: ffffffff81e90e67 R09: fffffbfff1a433c3
R10: 0000000000000000 R11: dffffc0000000001 R12: 0000000000000000
R13: ffffc90003dff6c0 R14: 00000000000001c0 R15: 0000000000000000
FS:  00007fdbae5ee700(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdbae6901e0 CR3: 000000007b2dd000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 madvise_collapse+0x721/0xf50 mm/khugepaged.c:2693
 madvise_vma_behavior mm/madvise.c:1086 [inline]
 madvise_walk_vmas mm/madvise.c:1260 [inline]
 do_madvise+0x9e5/0x4680 mm/madvise.c:1439
 __do_sys_madvise mm/madvise.c:1452 [inline]
 __se_sys_madvise mm/madvise.c:1450 [inline]
 __x64_sys_madvise+0xa5/0xb0 mm/madvise.c:1450
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The xas_store() call during page cache scanning can potentially translate
'xas' into the error state (with the reproducer provided by the syzkaller
the error code is -ENOMEM).  However, there are no further checks after
the 'xas_store', and the next call of 'xas_next' at the start of the
scanning cycle doesn't increase the xa_index, and the issue occurs.

This patch will add the xarray state error checking after the xas_store()
and the corresponding result error code.

Tested via syzbot.

[akpm@linux-foundation.org: update include/trace/events/huge_memory.h's SCAN_STATUS]
Link: https://lkml.kernel.org/r/20230329145330.23191-1-ivan.orlov0322@gmail.com
Link: https://syzkaller.appspot.com/bug?id=7d6bb3760e026ece7524500fe44fb024a0e959fc
Signed-off-by: Ivan Orlov <ivan.orlov0322@gmail.com>
Reported-by: syzbot+9578faa5475acb35fa50@syzkaller.appspotmail.com
Tested-by: Zach O'Keefe <zokeefe@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Himadri Pandya <himadrispandya@gmail.com>
Cc: Ivan Orlov <ivan.orlov0322@gmail.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:29:43 -07:00
Andrew Morton e492cd61b9 sync mm-stable with mm-hotfixes-stable to pick up depended-upon upstream changes 2023-04-16 12:31:58 -07:00
Peter Xu dd47ac428c mm/khugepaged: check again on anon uffd-wp during isolation
Khugepaged collapse an anonymous thp in two rounds of scans.  The 2nd
round done in __collapse_huge_page_isolate() after
hpage_collapse_scan_pmd(), during which all the locks will be released
temporarily.  It means the pgtable can change during this phase before 2nd
round starts.

It's logically possible some ptes got wr-protected during this phase, and
we can errornously collapse a thp without noticing some ptes are
wr-protected by userfault.  e1e267c792 wanted to avoid it but it only
did that for the 1st phase, not the 2nd phase.

Since __collapse_huge_page_isolate() happens after a round of small page
swapins, we don't need to worry on any !present ptes - if it existed
khugepaged will already bail out.  So we only need to check present ptes
with uffd-wp bit set there.

This is something I found only but never had a reproducer, I thought it
was one caused a bug in Muhammad's recent pagemap new ioctl work, but it
turns out it's not the cause of that but an userspace bug.  However this
seems to still be a real bug even with a very small race window, still
worth to have it fixed and copy stable.

Link: https://lkml.kernel.org/r/20230405155120.3608140-1-peterx@redhat.com
Fixes: e1e267c792 ("khugepaged: skip collapse if uffd-wp detected")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-16 10:41:24 -07:00
Suren Baghdasaryan 55fd6fccad mm/khugepaged: write-lock VMA while collapsing a huge page
Protect VMA from concurrent page fault handler while collapsing a huge
page.  Page fault handler needs a stable PMD to use PTL and relies on
per-VMA lock to prevent concurrent PMD changes.  pmdp_collapse_flush(),
set_huge_pmd() and collapse_and_free_pmd() can modify a PMD, which will
not be detected by a page fault handler without proper locking.

Before this patch, page tables can be walked under any one of the
mmap_lock, the mapping lock, and the anon_vma lock; so when khugepaged
unlinks and frees page tables, it must ensure that all of those either are
locked or don't exist.  This patch adds a fourth lock under which page
tables can be traversed, and so khugepaged must also lock out that one.

[surenb@google.com: vm_lock/i_mmap_rwsem inversion in retract_page_tables]
  Link: https://lkml.kernel.org/r/20230303213250.3555716-1-surenb@google.com
[surenb@google.com: build fix]
  Link: https://lkml.kernel.org/r/CAJuCfpFjWhtzRE1X=J+_JjgJzNKhq-=JT8yTBSTHthwp0pqWZw@mail.gmail.com
Link: https://lkml.kernel.org/r/20230227173632.3292573-16-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 20:02:58 -07:00
Peter Xu 2bad466cc9 mm/uffd: UFFD_FEATURE_WP_UNPOPULATED
Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4.

The new feature bit makes anonymous memory acts the same as file memory on
userfaultfd-wp in that it'll also wr-protect none ptes.

It can be useful in two cases:

(1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot,
    so pre-fault can be replaced by enabling this flag and speed up
    protections

(2) It helps to implement async uffd-wp mode that Muhammad is working on [1]

It's debatable whether this is the most ideal solution because with the
new feature bit set, wr-protect none pte needs to pre-populate the
pgtables to the last level (PAGE_SIZE).  But it seems fine so far to
service either purpose above, so we can leave optimizations for later.

The series brings pte markers to anonymous memory too.  There's some
change in the common mm code path in the 1st patch, great to have some eye
looking at it, but hopefully they're still relatively straightforward.


This patch (of 2):

This is a new feature that controls how uffd-wp handles none ptes.  When
it's set, the kernel will handle anonymous memory the same way as file
memory, by allowing the user to wr-protect unpopulated ptes.

File memories handles none ptes consistently by allowing wr-protecting of
none ptes because of the unawareness of page cache being exist or not. 
For anonymous it was not as persistent because we used to assume that we
don't need protections on none ptes or known zero pages.

One use case of such a feature bit was VM live snapshot, where if without
wr-protecting empty ptes the snapshot can contain random rubbish in the
holes of the anonymous memory, which can cause misbehave of the guest when
the guest OS assumes the pages should be all zeros.

QEMU worked it around by pre-populate the section with reads to fill in
zero page entries before starting the whole snapshot process [1].

Recently there's another need raised on using userfaultfd wr-protect for
detecting dirty pages (to replace soft-dirty in some cases) [2].  In that
case if without being able to wr-protect none ptes by default, the dirty
info can get lost, since we cannot treat every none pte to be dirty (the
current design is identify a page dirty based on uffd-wp bit being
cleared).

In general, we want to be able to wr-protect empty ptes too even for
anonymous.

This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make
uffd-wp handling on none ptes being consistent no matter what the memory
type is underneath.  It doesn't have any impact on file memories so far
because we already have pte markers taking care of that.  So it only
affects anonymous.

The feature bit is by default off, so the old behavior will be maintained.
Sometimes it may be wanted because the wr-protect of none ptes will
contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte
markers to anonymous), but also on creating the pgtables to store the pte
markers.  So there's potentially less chance of using thp on the first
fault for a none pmd or larger than a pmd.

The major implementation part is teaching the whole kernel to understand
pte markers even for anonymously mapped ranges, meanwhile allowing the
UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the
new feature bit is set.

Note that even if the patch subject starts with mm/uffd, there're a few
small refactors to major mm path of handling anonymous page faults.  But
they should be straightforward.

With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all
the memory before wr-protect during taking a live snapshot.  Quotting from
Muhammad's test result here [3] based on a simple program [4]:

  (1) With huge page disabled
  echo madvise > /sys/kernel/mm/transparent_hugepage/enabled
  ./uffd_wp_perf
  Test DEFAULT: 4
  Test PRE-READ: 1111453 (pre-fault 1101011)
  Test MADVISE: 278276 (pre-fault 266378)
  Test WP-UNPOPULATE: 11712

  (2) With Huge page enabled
  echo always > /sys/kernel/mm/transparent_hugepage/enabled
  ./uffd_wp_perf
  Test DEFAULT: 4
  Test PRE-READ: 22521 (pre-fault 22348)
  Test MADVISE: 4909 (pre-fault 4743)
  Test WP-UNPOPULATE: 14448

There'll be a great perf boost for no-thp case, while for thp enabled with
extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE,
but that's low possibility in reality, also the overhead was not reduced
but postponed until a follow up write on any huge zero thp, so potentially
it is faster by making the follow up writes slower.

[1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/
[2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/
[3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/
[4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c

[peterx@redhat.com: comment changes, oneliner fix to khugepaged]
  Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n
Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:44 -07:00
Peter Xu 7cb1d7ef66 mm/khugepaged: cleanup memcg uncharge for failure path
Explicit memcg uncharging is not needed when the memcg accounting has the
same lifespan of the page/folio.  That becomes the case for khugepaged
after Yang & Zach's recent rework so the hpage will be allocated for each
collapse rather than being cached.

Cleanup the explicit memcg uncharge in khugepaged failure path and leave
that for put_page().

Link: https://lkml.kernel.org/r/20230303151218.311015-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-28 16:20:11 -07:00
Peter Xu 94c02ad7ff mm/khugepaged: alloc_charge_hpage() take care of mem charge errors
If memory charge failed, instead of returning the hpage but with an error,
allow the function to cleanup the folio properly, which is normally what a
function should do in this case - either return successfully, or return
with no side effect of partial runs with an indicated error.

This will also avoid the caller calling mem_cgroup_uncharge()
unnecessarily with either anon or shmem path (even if it's safe to do so).

Link: https://lkml.kernel.org/r/20230222195247.791227-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Stevens <stevensd@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-28 16:20:06 -07:00
Linus Torvalds 3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00
Baolin Wang f7f9c00dfa mm: change to return bool for isolate_lru_page()
The isolate_lru_page() can only return 0 or -EBUSY, and most users did not
care about the negative error of isolate_lru_page(), except one user in
add_page_for_migration().  So we can convert the isolate_lru_page() to
return a boolean value, which can help to make the code more clear when
checking the return value of isolate_lru_page().

Also convert all users' logic of checking the isolation state.

No functional changes intended.

Link: https://lkml.kernel.org/r/3074c1ab628d9dbf139b33f248a8bc253a3f95f0.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-20 12:46:17 -08:00
Baolin Wang be2d575638 mm: change to return bool for folio_isolate_lru()
Patch series "Change the return value for page isolation functions", v3.

Now the page isolation functions did not return a boolean to indicate
success or not, instead it will return a negative error when failed
to isolate a page. So below code used in most places seem a boolean
success/failure thing, which can confuse people whether the isolation
is successful.

if (folio_isolate_lru(folio))
        continue;

Moreover the page isolation functions only return 0 or -EBUSY, and
most users did not care about the negative error except for few users,
thus we can convert all page isolation functions to return a boolean
value, which can remove the confusion to make code more clear.

No functional changes intended in this patch series.


This patch (of 4):

Now the folio_isolate_lru() did not return a boolean value to indicate
isolation success or not, however below code checking the return value can
make people think that it was a boolean success/failure thing, which makes
people easy to make mistakes (see the fix patch[1]).

if (folio_isolate_lru(folio))
	continue;

Thus it's better to check the negative error value expilictly returned by
folio_isolate_lru(), which makes code more clear per Linus's
suggestion[2].  Moreover Matthew suggested we can convert the isolation
functions to return a boolean[3], since most users did not care about the
negative error value, and can also remove the confusing of checking return
value.

So this patch converts the folio_isolate_lru() to return a boolean value,
which means return 'true' to indicate the folio isolation is successful,
and 'false' means a failure to isolation.  Meanwhile changing all users'
logic of checking the isolation state.

No functional changes intended.

[1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u
[2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/
[3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/

Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-20 12:46:17 -08:00
Zach O'Keefe ae63c898f4 mm/MADV_COLLAPSE: set EAGAIN on unexpected page refcount
During collapse, in a few places we check to see if a given small page has
any unaccounted references.  If the refcount on the page doesn't match our
expectations, it must be there is an unknown user concurrently interested
in the page, and so it's not safe to move the contents elsewhere. 
However, the unaccounted pins are likely an ephemeral state.

In this situation, MADV_COLLAPSE returns -EINVAL when it should return
-EAGAIN.  This could cause userspace to conclude that the syscall
failed, when it in fact could succeed by retrying.

Link: https://lkml.kernel.org/r/20230125015738.912924-1-zokeefe@google.com
Fixes: 7d8faaf155 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 18:11:59 -08:00
Vishal Moola (Oracle) f528260b1a mm/khugepaged: fix invalid page access in release_pte_pages()
release_pte_pages() converts from a pfn to a folio by using pfn_folio(). 
If the pte is not mapped, pfn_folio() will result in undefined behavior
which ends up causing a kernel panic[1].

Only call pfn_folio() once we have validated that the pte is both valid
and mapped to fix the issue.

[1] https://lore.kernel.org/linux-mm/ff300770-afe9-908d-23ed-d23e0796e899@samsung.com/

Link: https://lkml.kernel.org/r/20230213214324.34215-1-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Fixes: 9bdfeea46f ("mm/khugepaged: convert release_pte_pages() to use folios")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Debugged-by: Alexandre Ghiti <alex@ghiti.fr>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:26 -08:00
Vishal Moola (Oracle) 9bdfeea46f mm/khugepaged: convert release_pte_pages() to use folios
Converts release_pte_pages() to use folios instead of pages.

Link: https://lkml.kernel.org/r/20230114001556.43795-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:33:05 -08:00
Vishal Moola (Oracle) 92644f583d mm/khugepaged: introduce release_pte_folio() to replace release_pte_page()
release_pte_page() is converted to be a wrapper for release_pte_folio() to
help facilitate the khugepaged conversion to folios.

This replaces 3 calls to compound_head() with 1, and saves 85 bytes of
kernel text.

Link: https://lkml.kernel.org/r/20230114001556.43795-1-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:33:05 -08:00
Alistair Popple 7d4a8be0c4 mm/mmu_notifier: remove unused mmu_notifier_range_update_to_read_only export
mmu_notifier_range_update_to_read_only() was originally introduced in
commit c6d23413f8 ("mm/mmu_notifier:
mmu_notifier_range_update_to_read_only() helper") as an optimisation for
device drivers that know a range has only been mapped read-only.  However
there are no users of this feature so remove it.  As it is the only user
of the struct mmu_notifier_range.vma field remove that also.

Link: https://lkml.kernel.org/r/20230110025722.600912-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:32:54 -08:00
Zach O'Keefe edb5d0cf55 mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups
In commit 34488399fa ("mm/madvise: add file and shmem support to
MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none():

	-       if (!pmd_present(pmde))
	-               return SCAN_PMD_NULL;
	+       if (pmd_none(pmde))
	+               return SCAN_PMD_NONE;

This was for-use by MADV_COLLAPSE file/shmem codepaths, where
MADV_COLLAPSE might identify a pte-mapped hugepage, only to have
khugepaged race-in, free the pte table, and clear the pmd.  Such codepaths
include:

A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER
   already in the pagecache.
B) In retract_page_tables(), if we fail to grab mmap_lock for the target
   mm/address.

In these cases, collapse_pte_mapped_thp() really does expect a none (not
just !present) pmd, and we want to suitably identify that case separate
from the case where no pmd is found, or it's a bad-pmd (of course, many
things could happen once we drop mmap_lock, and the pmd could plausibly
undergo multiple transitions due to intervening fault, split, etc). 
Regardless, the code is prepared install a huge-pmd only when the existing
pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd.

However, the commit introduces a logical hole; namely, that we've allowed
!none- && !huge- && !bad-pmds to be classified as genuine
pte-table-mapping-pmds.  One such example that could leak through are swap
entries.  The pmd values aren't checked again before use in
pte_offset_map_lock(), which is expecting nothing less than a genuine
pte-table-mapping-pmd.

We want to put back the !pmd_present() check (below the pmd_none() check),
but need to be careful to deal with subtleties in pmd transitions and
treatments by various arch.

The issue is that __split_huge_pmd_locked() temporarily clears the present
bit (or otherwise marks the entry as invalid), but pmd_present() and
pmd_trans_huge() still need to return true while the pmd is in this
transitory state.  For example, x86's pmd_present() also checks the
_PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also
checks a PMD_PRESENT_INVALID bit.

Covering all 4 cases for x86 (all checks done on the same pmd value):

1) pmd_present() && pmd_trans_huge()
   All we actually know here is that the PSE bit is set. Either:
   a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE
      is set.
      => huge-pmd
   b) We are currently racing with __split_huge_page().  The danger here
      is that we proceed as-if we have a huge-pmd, but really we are
      looking at a pte-mapping-pmd.  So, what is the risk of this
      danger?

      The only relevant path is:

	madvise_collapse() -> collapse_pte_mapped_thp()

      Where we might just incorrectly report back "success", when really
      the memory isn't pmd-backed.  This is fine, since split could
      happen immediately after (actually) successful madvise_collapse().
      So, it should be safe to just assume huge-pmd here.

2) pmd_present() && !pmd_trans_huge()
   Either:
   a) PSE not set and either PRESENT or PROTNONE is.
      => pte-table-mapping pmd (or PROT_NONE)
   b) devmap.  This routine can be called immediately after
      unlocking/locking mmap_lock -- or called with no locks held (see
      khugepaged_scan_mm_slot()), so previous VMA checks have since been
      invalidated.

3) !pmd_present() && pmd_trans_huge()
  Not possible.

4) !pmd_present() && !pmd_trans_huge()
  Neither PRESENT nor PROTNONE set
  => not present

I've checked all archs that implement pmd_trans_huge() (arm64, riscv,
powerpc, longarch, x86, mips, s390) and this logic roughly translates
(though devmap treatment is unique to x86 and powerpc, and (3) doesn't
necessarily hold in general -- but that doesn't matter since
!pmd_present() always takes failure path).

Also, add a comment above find_pmd_or_thp_or_none() to help future
travelers reason about the validity of the code; namely, the possible
mutations that might happen out from under us, depending on how mmap_lock
is held (if at all).

Link: https://lkml.kernel.org/r/20230125225358.2576151-1-zokeefe@google.com
Fixes: 34488399fa ("mm/madvise: add file and shmem support to MADV_COLLAPSE")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-31 16:44:09 -08:00
Jann Horn 023f47a825 mm/khugepaged: fix ->anon_vma race
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.

Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them. 
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).

If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.

Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.

Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)". 
It can also lead to use-after-free access.

Link: https://lore.kernel.org/linux-mm/CAG48ez3434wZBKFFbdx4M9j6eUwSUVPd4dxhzW_k_POneSDF+A@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230111133351.807024-1-jannh@google.com
Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Jann Horn <jannh@google.com>
Reported-by: Zach O'Keefe <zokeefe@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@intel.linux.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-31 16:44:07 -08:00
Zach O'Keefe 52dc031088 mm/MADV_COLLAPSE: don't expand collapse when vm_end is past requested end
MADV_COLLAPSE acts on one hugepage-aligned/sized region at a time, until
it has collapsed all eligible memory contained within the bounds supplied
by the user.

At the top of each hugepage iteration we (re)lock mmap_lock and
(re)validate the VMA for eligibility and update variables that might have
changed while mmap_lock was dropped.  One thing that might occur is that
the VMA could be resized, and as such, we refetch vma->vm_end to make sure
we don't collapse past the end of the VMA's new end.

However, it's possible that when refetching vma->vm_end that we expand the
region acted on by MADV_COLLAPSE if vma->vm_end is greater than size+len
supplied by the user.

The consequence here is that we may attempt to collapse more memory than
requested, possibly yielding either "too much success" or "false failure"
user-visible results.  An example of the former is if we MADV_COLLAPSE the
first 4MiB of a 2TiB mmap()'d file, the incorrect refetch would cause the
operation to block for much longer than anticipated as we attempt to
collapse the entire TiB region.  An example of the latter is that applying
MADV_COLLPSE to a 4MiB file mapped to the start of a 6MiB VMA will
successfully collapse the first 4MiB, then incorrectly attempt to collapse
the last hugepage-aligned/sized region -- fail (since readahead/page cache
lookup will fail) -- and report a failure to the user.

I don't believe there is a kernel stability concern here as we always
(re)validate the VMA / region accordingly.  Also as Hugh mentions, the
user-visible effects are: we try to collapse more memory than requested
by the user, and/or failing an operation that should have otherwise
succeeded.  An example is trying to collapse a 4MiB file contained
within a 12MiB VMA.

Don't expand the acted-on region when refetching vma->vm_end.

Link: https://lkml.kernel.org/r/20221224082035.3197140-1-zokeefe@google.com
Fixes: 4d24de9425 ("mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-11 16:14:20 -08:00
Hugh Dickins ab0c3f1251 mm/khugepaged: fix collapse_pte_mapped_thp() to allow anon_vma
uprobe_write_opcode() uses collapse_pte_mapped_thp() to restore huge pmd,
when removing a breakpoint from hugepage text: vma->anon_vma is always set
in that case, so undo the prohibition.  And MADV_COLLAPSE ought to be able
to collapse some page tables in a vma which happens to have anon_vma set
from CoWing elsewhere.

Is anon_vma lock required?  Almost not: if any page other than expected
subpage of the non-anon huge page is found in the page table, collapse is
aborted without making any change.  However, it is possible that an anon
page was CoWed from this extent in another mm or vma, in which case a
concurrent lookup might look here: so keep it away while clearing pmd (but
perhaps we shall go back to using pmd_lock() there in future).

Note that collapse_pte_mapped_thp() is exceptional in freeing a page table
without having cleared its ptes: I'm uneasy about that, and had thought
pte_clear()ing appropriate; but exclusive i_mmap lock does fix the
problem, and we would have to move the mmu_notification if clearing those
ptes.

What this fixes is not a dangerous instability.  But I suggest Cc stable
because uprobes "healing" has regressed in that way, so this should follow
8d3c106e19 into those stable releases where it was backported (and may
want adjustment there - I'll supply backports as needed).

Link: https://lkml.kernel.org/r/b740c9fb-edba-92ba-59fb-7a5592e5dfc@google.com
Fixes: 8d3c106e19 ("mm/khugepaged: take the right locks for page table retraction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>    [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-11 16:14:19 -08:00
Linus Torvalds 4f292c4de4 New Feature:
* Randomize the per-cpu entry areas
 Cleanups:
 * Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open
   coding it
 * Move to "native" set_memory_rox() helper
 * Clean up pmd_get_atomic() and i386-PAE
 * Remove some unused page table size macros
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOc53UACgkQaDWVMHDJ
 krCUHw//SGZ+La0hLZLAiAiZTXLZZHpYkOmg1Oj1+11qSU11uZzTFqDpauhaKpRS
 cJCSh+D+RXe5e2ipgt0+Zl0hESLt7pJf8258OE4ra0DL/IlyO9uqruAs9Kn3eRS/
 Fk76nG8gdEU+JKJqpG02GqOLslYQuIy96n9hpuj1x25b614+uezPfC7S4XEat0NT
 MbJQ+jnVDf16aJIJkzT+iSwhubDVeh+bSHeO0SSCzX23WLUqDeg5NvlyxoCHGbBh
 UpUTWggV/0pYAkBKRHToeJs8qTWREwuuH/8JGewpe9A0tjdB5wyZfNL2PuracweN
 9MauXC3T5f0+Ca4yIIaPq1fF7Ny/PR2dBFihk27rOD0N7tjaZxNwal2pB1sZcmvZ
 +PAokjyTPVH5ZXjkMYGGAUe1jyjwr2+TgFSZxhTnDuGtyVQiY4pihGKOifLCX6tv
 x6khvYeTBw7wfaDRtKEAf+2kLHYn+71HszHP/8bNKX9T03h+Zf0i1wdZu5xbM5Gc
 VK2wR7bCC+UftJJYG0pldcHg2qaF19RBHK2tLwp7zngUv7lTbkKfkgKjre73KV2a
 D4b76lrqdUMo6UYwYdw7WtDyarZS4OVLq2DcNhwwMddBCaX8kyN5a4AqwQlZYJ0u
 dM+kuMofE8U3yMxmMhJimkZUsj09yLHIqfynY0jbAcU3nhKZZNY=
 =wwVF
 -----END PGP SIGNATURE-----

Merge tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm updates from Dave Hansen:
 "New Feature:

   - Randomize the per-cpu entry areas

  Cleanups:

   - Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it

   - Move to "native" set_memory_rox() helper

   - Clean up pmd_get_atomic() and i386-PAE

   - Remove some unused page table size macros"

* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
  x86/mm: Ensure forced page table splitting
  x86/kasan: Populate shadow for shared chunk of the CPU entry area
  x86/kasan: Add helpers to align shadow addresses up and down
  x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
  x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
  x86/mm: Recompute physical address for every page of per-CPU CEA mapping
  x86/mm: Rename __change_page_attr_set_clr(.checkalias)
  x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
  x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
  x86/mm: Add a few comments
  x86/mm: Fix CR3_ADDR_MASK
  x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
  mm: Convert __HAVE_ARCH_P..P_GET to the new style
  mm: Remove pointless barrier() after pmdp_get_lockless()
  x86/mm/pae: Get rid of set_64bit()
  x86_64: Remove pointless set_64bit() usage
  x86/mm/pae: Be consistent with pXXp_get_and_clear()
  x86/mm/pae: Use WRITE_ONCE()
  x86/mm/pae: Don't (ab)use atomic64
  mm/gup: Fix the lockless PMD access
  ...
2022-12-17 14:06:53 -06:00
Peter Zijlstra dab6e71742 mm: Rename pmd_read_atomic()
There's no point in having the identical routines for PTE/PMD have
different names.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.841277397%40infradead.org
2022-12-15 10:37:27 -08:00
Vishal Moola (Oracle) 284a344ed1 khugepage: replace lru_cache_add() with folio_add_lru()
Replaces some calls with their folio equivalents.  This is in preparation
for the removal of lru_cache_add().  This replaces 3 calls to
compound_head() with 1.

Link: https://lkml.kernel.org/r/20221101175326.13265-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:13 -08:00
Gautam Menghani 4c9473e87e mm/khugepaged: add tracepoint to collapse_file()
"mm_khugepaged_collapse_file" for capturing is_shmem.
Currently, is_shmem is not being captured. Capturing is_shmem is useful
as it can indicate if tmpfs is being used as a backing store instead of
persistent storage. Add the tracepoint in collapse_file() named
"mm_khugepaged_collapse_file" for capturing is_shmem.

[gautammenghani201@gmail.com: swap is_shmem and addr to save space, per Steven Rostedt]
  Link: https://lkml.kernel.org/r/20221202201807.182829-1-gautammenghani201@gmail.com
Link: https://lkml.kernel.org/r/20221026052218.148234-1-gautammenghani201@gmail.com
Signed-off-by: Gautam Menghani <gautammenghani201@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>	[tracing]
Cc: David Hildenbrand <david@redhat.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:09 -08:00
Vishal Moola (Oracle) 64ab3195ea khugepage: replace try_to_release_page() with filemap_release_folio()
Replace some calls with their folio equivalents.  This change removes 4
calls to compound_head() and is in preparation for the removal of the
try_to_release_page() wrapper.

Link: https://lkml.kernel.org/r/20221118073055.55694-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:02 -08:00
Hugh Dickins cb67f4282b mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag. 
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.

Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently.  Delete the unloved PageDoubleMap.

page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).

But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained?  Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented.  The statistics might become
inaccurate, and even drift down until they underflow through 0.  That is
not good enough, but is better dealt with in a followup patch.

Update a few comments on first and second tail page overlaid fields. 
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.

A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages.  Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms. 
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.

Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:46 -08:00
Johannes Weiner 57e9cc50f4 mm: vmscan: split khugepaged stats from direct reclaim stats
Direct reclaim stats are useful for identifying a potential source for
application latency, as well as spotting issues with kswapd.  However,
khugepaged currently distorts the picture: as a kernel thread it doesn't
impose allocation latencies on userspace, and it explicitly opts out of
kswapd reclaim.  Its activity showing up in the direct reclaim stats is
misleading.  Counting it as kswapd reclaim could also cause confusion when
trying to understand actual kswapd behavior.

Break out khugepaged from the direct reclaim counters into new
pgsteal_khugepaged, pgdemote_khugepaged, pgscan_khugepaged counters.

Test with a huge executable (CONFIG_READ_ONLY_THP_FOR_FS):

pgsteal_kswapd 1342185
pgsteal_direct 0
pgsteal_khugepaged 3623
pgscan_kswapd 1345025
pgscan_direct 0
pgscan_khugepaged 3623

Link: https://lkml.kernel.org/r/20221026180133.377671-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Eric Bergen <ebergen@meta.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:41 -08:00
Jann Horn f268f6cf87 mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
Any codepath that zaps page table entries must invoke MMU notifiers to
ensure that secondary MMUs (like KVM) don't keep accessing pages which
aren't mapped anymore.  Secondary MMUs don't hold their own references to
pages that are mirrored over, so failing to notify them can lead to page
use-after-free.

I'm marking this as addressing an issue introduced in commit f3f0e1d215
("khugepaged: add support of collapse for tmpfs/shmem pages"), but most of
the security impact of this only came in commit 27e1f82731 ("khugepaged:
enable collapse pmd for pte-mapped THP"), which actually omitted flushes
for the removal of present PTEs, not just for the removal of empty page
tables.

Link: https://lkml.kernel.org/r/20221129154730.2274278-3-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-3-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-3-jannh@google.com
Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Jann Horn 2ba99c5e08 mm/khugepaged: fix GUP-fast interaction by sending IPI
Since commit 70cbc3cc78 ("mm: gup: fix the fast GUP race against THP
collapse"), the lockless_pages_from_mm() fastpath rechecks the pmd_t to
ensure that the page table was not removed by khugepaged in between.

However, lockless_pages_from_mm() still requires that the page table is
not concurrently freed.  Fix it by sending IPIs (if the architecture uses
semi-RCU-style page table freeing) before freeing/reusing page tables.

Link: https://lkml.kernel.org/r/20221129154730.2274278-2-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-2-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-2-jannh@google.com
Fixes: ba76149f47 ("thp: khugepaged")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Jann Horn 8d3c106e19 mm/khugepaged: take the right locks for page table retraction
pagetable walks on address ranges mapped by VMAs can be done under the
mmap lock, the lock of an anon_vma attached to the VMA, or the lock of the
VMA's address_space.  Only one of these needs to be held, and it does not
need to be held in exclusive mode.

Under those circumstances, the rules for concurrent access to page table
entries are:

 - Terminal page table entries (entries that don't point to another page
   table) can be arbitrarily changed under the page table lock, with the
   exception that they always need to be consistent for
   hardware page table walks and lockless_pages_from_mm().
   This includes that they can be changed into non-terminal entries.
 - Non-terminal page table entries (which point to another page table)
   can not be modified; readers are allowed to READ_ONCE() an entry, verify
   that it is non-terminal, and then assume that its value will stay as-is.

Retracting a page table involves modifying a non-terminal entry, so
page-table-level locks are insufficient to protect against concurrent page
table traversal; it requires taking all the higher-level locks under which
it is possible to start a page walk in the relevant range in exclusive
mode.

The collapse_huge_page() path for anonymous THP already follows this rule,
but the shmem/file THP path was getting it wrong, making it possible for
concurrent rmap-based operations to cause corruption.

Link: https://lkml.kernel.org/r/20221129154730.2274278-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-1-jannh@google.com
Fixes: 27e1f82731 ("khugepaged: enable collapse pmd for pte-mapped THP")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Gautam Menghani 045634ff1e mm/khugepaged: refactor mm_khugepaged_scan_file tracepoint to remove filename from function call
Refactor the mm_khugepaged_scan_file tracepoint to move filename
dereference to the tracepoint definition, to maintain consistency with
other tracepoints[1].

[1]:lore.kernel.org/lkml/20221024111621.3ba17e2c@gandalf.local.home/

Link: https://lkml.kernel.org/r/20221026044524.54793-1-gautammenghani201@gmail.com
Fixes: d41fd2016e ("mm/khugepaged: add tracepoint to hpage_collapse_scan_file()")
Signed-off-by: Gautam Menghani <gautammenghani201@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:41 -08:00
Yang Shi e031ff96b3 mm: khugepaged: allow page allocation fallback to eligible nodes
Syzbot reported the below splat:

WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline]
WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline]
WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963
Modules linked in:
CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline]
RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline]
RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963
Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae
RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001
RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000
FS:  00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715
 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156
 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611
 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066
 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240
 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419
 do_madvise mm/madvise.c:1432 [inline]
 __do_sys_madvise mm/madvise.c:1432 [inline]
 __se_sys_madvise mm/madvise.c:1430 [inline]
 __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f6b48a4eef9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c
RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9
RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000
RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4
R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000
 </TASK>

The khugepaged code would pick up the node with the most hit as the preferred
node, and also tries to do some balance if several nodes have the same
hit record.  Basically it does conceptually:
    * If the target_node <= last_target_node, then iterate from
last_target_node + 1 to MAX_NUMNODES (1024 on default config)
    * If the max_value == node_load[nid], then target_node = nid

But there is a corner case, paritucularly for MADV_COLLAPSE, that the
non-existing node may be returned as preferred node.

Assuming the system has 2 nodes, the target_node is 0 and the
last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may
be 0, then it may return 2 for target_node, but it is actually not
existing (offline), so the warn is triggered.

The node balance was introduced by commit 9f1b868a13 ("mm: thp:
khugepaged: add policy for finding target node") to satisfy
"numactl --interleave=all".  But interleaving is a mere hint rather than
something that has hard requirements.

So use nodemask to record the nodes which have the same hit record, the
hugepage allocation could fallback to those nodes.  And remove
__GFP_THISNODE since it does disallow fallback.  And if the nodemask
just has one node set, it means there is one single node has the most
hit record, the nodemask approach actually behaves like __GFP_THISNODE.

Link: https://lkml.kernel.org/r/20221108184357.55614-2-shy828301@gmail.com
Fixes: 7d8faaf155 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Signed-off-by: Yang Shi <shy828301@gmail.com>
Suggested-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reported-by: <syzbot+0044b22d177870ee974f@syzkaller.appspotmail.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:41 -08:00
Linus Torvalds 27bc50fc90 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative
   reports (or any positive ones, come to that).
 
 - Also the Maple Tree from Liam R.  Howlett.  An overlapping range-based
   tree for vmas.  It it apparently slight more efficient in its own right,
   but is mainly targeted at enabling work to reduce mmap_lock contention.
 
   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.
 
   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
   This has yet to be addressed due to Liam's unfortunately timed
   vacation.  He is now back and we'll get this fixed up.
 
 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer.  It uses
   clang-generated instrumentation to detect used-unintialized bugs down to
   the single bit level.
 
   KMSAN keeps finding bugs.  New ones, as well as the legacy ones.
 
 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.
 
 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
   file/shmem-backed pages.
 
 - userfaultfd updates from Axel Rasmussen
 
 - zsmalloc cleanups from Alexey Romanov
 
 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
 
 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.
 
 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.
 
 - memcg cleanups from Kairui Song.
 
 - memcg fixes and cleanups from Johannes Weiner.
 
 - Vishal Moola provides more folio conversions
 
 - Zhang Yi removed ll_rw_block() :(
 
 - migration enhancements from Peter Xu
 
 - migration error-path bugfixes from Huang Ying
 
 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths.  For optimizations by PMEM drivers, DRM
   drivers, etc.
 
 - vma merging improvements from Jakub Matěn.
 
 - NUMA hinting cleanups from David Hildenbrand.
 
 - xu xin added aditional userspace visibility into KSM merging activity.
 
 - THP & KSM code consolidation from Qi Zheng.
 
 - more folio work from Matthew Wilcox.
 
 - KASAN updates from Andrey Konovalov.
 
 - DAMON cleanups from Kaixu Xia.
 
 - DAMON work from SeongJae Park: fixes, cleanups.
 
 - hugetlb sysfs cleanups from Muchun Song.
 
 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
 joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
 bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
 =xfWx
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
   linux-next for a couple of months without, to my knowledge, any
   negative reports (or any positive ones, come to that).

 - Also the Maple Tree from Liam Howlett. An overlapping range-based
   tree for vmas. It it apparently slightly more efficient in its own
   right, but is mainly targeted at enabling work to reduce mmap_lock
   contention.

   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.

   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   at [1]. This has yet to be addressed due to Liam's unfortunately
   timed vacation. He is now back and we'll get this fixed up.

 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
   clang-generated instrumentation to detect used-unintialized bugs down
   to the single bit level.

   KMSAN keeps finding bugs. New ones, as well as the legacy ones.

 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.

 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
   support file/shmem-backed pages.

 - userfaultfd updates from Axel Rasmussen

 - zsmalloc cleanups from Alexey Romanov

 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
   memory-failure

 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.

 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.

 - memcg cleanups from Kairui Song.

 - memcg fixes and cleanups from Johannes Weiner.

 - Vishal Moola provides more folio conversions

 - Zhang Yi removed ll_rw_block() :(

 - migration enhancements from Peter Xu

 - migration error-path bugfixes from Huang Ying

 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths. For optimizations by PMEM drivers, DRM
   drivers, etc.

 - vma merging improvements from Jakub Matěn.

 - NUMA hinting cleanups from David Hildenbrand.

 - xu xin added aditional userspace visibility into KSM merging
   activity.

 - THP & KSM code consolidation from Qi Zheng.

 - more folio work from Matthew Wilcox.

 - KASAN updates from Andrey Konovalov.

 - DAMON cleanups from Kaixu Xia.

 - DAMON work from SeongJae Park: fixes, cleanups.

 - hugetlb sysfs cleanups from Muchun Song.

 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.

Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]

* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
  hugetlb: allocate vma lock for all sharable vmas
  hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
  hugetlb: fix vma lock handling during split vma and range unmapping
  mglru: mm/vmscan.c: fix imprecise comments
  mm/mglru: don't sync disk for each aging cycle
  mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
  mm: memcontrol: use do_memsw_account() in a few more places
  mm: memcontrol: deprecate swapaccounting=0 mode
  mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
  mm/secretmem: remove reduntant return value
  mm/hugetlb: add available_huge_pages() func
  mm: remove unused inline functions from include/linux/mm_inline.h
  selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
  selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
  selftests/vm: add thp collapse shmem testing
  selftests/vm: add thp collapse file and tmpfs testing
  selftests/vm: modularize thp collapse memory operations
  selftests/vm: dedup THP helpers
  mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
  mm/madvise: add file and shmem support to MADV_COLLAPSE
  ...
2022-10-10 17:53:04 -07:00
Linus Torvalds 30c999937f Scheduler changes for v6.1:
- Debuggability:
 
      - Change most occurances of BUG_ON() to WARN_ON_ONCE()
 
      - Reorganize & fix TASK_ state comparisons, turn it into a bitmap
 
      - Update/fix misc scheduler debugging facilities
 
  - Load-balancing & regular scheduling:
 
      - Improve the behavior of the scheduler in presence of lot of
        SCHED_IDLE tasks - in particular they should not impact other
        scheduling classes.
 
      - Optimize task load tracking, cleanups & fixes
 
      - Clean up & simplify misc load-balancing code
 
  - Freezer:
 
      - Rewrite the core freezer to behave better wrt thawing and be simpler
        in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting
        all the fallout.
 
  - Deadline scheduler:
 
      - Fix the DL capacity-aware code
 
      - Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period()
 
      - Relax/optimize locking in task_non_contending()
 
  - Cleanups:
 
      - Factor out the update_current_exec_runtime() helper
 
      - Various cleanups, simplifications
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/01cRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1geZA/+PB4KC1T9aVxzaTHI36R03YgJYZmIdtxw
 wTf02MixePmz+gQCbepJbempGOh5ST28aOcI0xhdYOql5B63MaUBBMlB0HvGUyDG
 IU3zETqLMRtAbnSTdQFv8m++ECUtZYp8/x1FCel4WO7ya4ETkRu1NRfCoUepEhpZ
 aVAlae9LH3NBaF9t7s0PT2lTjf3pIzMFRkddJ0ywJhbFR3VnWat05fAK+J6fGY8+
 LS54coefNlJD4oDh5TY8uniL1j5SmWmmwbk9Cdj7bLU5P3dFSS0/+5FJNHJPVGDE
 srGT7wstRUcDrN0CnZo48VIUBiApJCCDqTfJYi9wNYd0NAHvwY6MIJJgEIY8mKsI
 L/qH26H81Wt+ezSZ/5JIlGlZ/LIeNaa6OO/fbWEYABBQogvvx3nxsRNUYKSQzumH
 CnSBasBjLnjWyLlK4qARM9cI7NFSEK6NUigrEx/7h8JFu/8T4DlSy6LsF1HUyKgq
 4+FJLAqG6cL0tcwB/fHYd0oRESN8dStnQhGxSojgufwLc7dlFULvCYF5JM/dX+/V
 IKwbOfIOeOn6ViMtSOXAEGdII+IQ2/ZFPwr+8Z5JC7NzvTVL6xlu/3JXkLZR3L7o
 yaXTSaz06h1vil7Z+GRf7RHc+wUeGkEpXh5vnarGZKXivhFdWsBdROIJANK+xR0i
 TeSLCxQxXlU=
 =KjMD
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "Debuggability:

   - Change most occurances of BUG_ON() to WARN_ON_ONCE()

   - Reorganize & fix TASK_ state comparisons, turn it into a bitmap

   - Update/fix misc scheduler debugging facilities

  Load-balancing & regular scheduling:

   - Improve the behavior of the scheduler in presence of lot of
     SCHED_IDLE tasks - in particular they should not impact other
     scheduling classes.

   - Optimize task load tracking, cleanups & fixes

   - Clean up & simplify misc load-balancing code

  Freezer:

   - Rewrite the core freezer to behave better wrt thawing and be
     simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
     fixing/adjusting all the fallout.

  Deadline scheduler:

   - Fix the DL capacity-aware code

   - Factor out dl_task_is_earliest_deadline() &
     replenish_dl_new_period()

   - Relax/optimize locking in task_non_contending()

  Cleanups:

   - Factor out the update_current_exec_runtime() helper

   - Various cleanups, simplifications"

* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  sched: Fix more TASK_state comparisons
  sched: Fix TASK_state comparisons
  sched/fair: Move call to list_last_entry() in detach_tasks
  sched/fair: Cleanup loop_max and loop_break
  sched/fair: Make sure to try to detach at least one movable task
  sched: Show PF_flag holes
  freezer,sched: Rewrite core freezer logic
  sched: Widen TAKS_state literals
  sched/wait: Add wait_event_state()
  sched/completion: Add wait_for_completion_state()
  sched: Add TASK_ANY for wait_task_inactive()
  sched: Change wait_task_inactive()s match_state
  freezer,umh: Clean up freezer/initrd interaction
  freezer: Have {,un}lock_system_sleep() save/restore flags
  sched: Rename task_running() to task_on_cpu()
  sched/fair: Cleanup for SIS_PROP
  sched/fair: Default to false in test_idle_cores()
  sched/fair: Remove useless check in select_idle_core()
  sched/fair: Avoid double search on same cpu
  sched/fair: Remove redundant check in select_idle_smt()
  ...
2022-10-10 09:10:28 -07:00
Zach O'Keefe d41fd2016e mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
Add huge_memory:trace_mm_khugepaged_scan_file tracepoint to
hpage_collapse_scan_file() analogously to hpage_collapse_scan_pmd().

While this change is targeted at debugging MADV_COLLAPSE pathway, the
"mm_khugepaged" prefix is retained for symmetry with
huge_memory:trace_mm_khugepaged_scan_pmd, which retains it's legacy name
to prevent changing kernel ABI as much as possible.

Link: https://lkml.kernel.org/r/20220907144521.3115321-5-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-5-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe 34488399fa mm/madvise: add file and shmem support to MADV_COLLAPSE
Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed
memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y).

On success, the backing memory will be a hugepage.  For the memory range
and process provided, the page tables will synchronously have a huge pmd
installed, mapping the THP.  Other mappings of the file extent mapped by
the memory range may be added to a set of entries that khugepaged will
later process and attempt update their page tables to map the THP by a
pmd.

This functionality unlocks two important uses:

(1)	Immediately back executable text by THPs.  Current support provided
	by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
	system which might impair services from serving at their full rated
	load after (re)starting.  Tricks like mremap(2)'ing text onto
	anonymous memory to immediately realize iTLB performance prevents
	page sharing and demand paging, both of which increase steady state
	memory footprint.  Now, we can have the best of both worlds: Peak
	upfront performance and lower RAM footprints.

(2)	userfaultfd-based live migration of virtual machines satisfy UFFD
	faults by fetching native-sized pages over the network (to avoid
	latency of transferring an entire hugepage).  However, after guest
	memory has been fully copied to the new host, MADV_COLLAPSE can
	be used to immediately increase guest performance.

Since khugepaged is single threaded, this change now introduces
possibility of collapse contexts racing in file collapse path.  There a
important few places to consider:

(1)	hpage_collapse_scan_file(), when we xas_pause() and drop RCU.
	We could have the memory collapsed out from under us, but
	the next xas_for_each() iteration will correctly pick up the
	hugepage.  The hugepage might not be up to date (insofar as
	copying of small page contents might not have completed - the
	page still may be locked), but regardless what small page index
	we were iterating over, we'll find the hugepage and identify it
	as a suitably aligned compound page of order HPAGE_PMD_ORDER.

	In khugepaged path, we locklessly check the value of the pmd,
	and only add it to deferred collapse array if we find pmd
	mapping pte table. This is fine, since other values that could
	have raced in right afterwards denote failure, or that the
	memory was successfully collapsed, so we don't need further
	processing.

	In madvise path, we'll take mmap_lock() in write to serialize
	against page table updates and will know what to do based on the
	true value of the pmd: recheck all ptes if we point to a pte table,
	directly install the pmd, if the pmd has been cleared, but
	memory not yet faulted, or nothing at all if we find a huge pmd.

	It's worth putting emphasis here on how we treat the none pmd
	here.  If khugepaged has processed this mm's page tables
	already, it will have left the pmd cleared (ready for refault by
	the process).  Depending on the VMA flags and sysfs settings,
	amount of RAM on the machine, and the current load, could be a
	relatively common occurrence - and as such is one we'd like to
	handle successfully in MADV_COLLAPSE.  When we see the none pmd
	in collapse_pte_mapped_thp(), we've locked mmap_lock in write
	and checked (a) huepaged_vma_check() to see if the backing
	memory is appropriate still, along with VMA sizing and
	appropriate hugepage alignment within the file, and (b) we've
	found a hugepage head of order HPAGE_PMD_ORDER at the offset
	in the file mapped by our hugepage-aligned virtual address.
	Even though the common-case is likely race with khugepaged,
	given these checks (regardless how we got here - we could be
	operating on a completely different file than originally checked
	in hpage_collapse_scan_file() for all we know) it should be safe
	to directly make the pmd a huge pmd pointing to this hugepage.

(2)	collapse_file() is mostly serialized on the same file extent by
	lock sequence:

		|	lock hupepage
		|		lock mapping->i_pages
		|			lock 1st page
		|		unlock mapping->i_pages
		|				<page checks>
		|		lock mapping->i_pages
		|				page_ref_freeze(3)
		|				xas_store(hugepage)
		|		unlock mapping->i_pages
		|				page_ref_unfreeze(1)
		|			unlock 1st page
		V	unlock hugepage

	Once a context (who already has their fresh hugepage locked)
	locks mapping->i_pages exclusively, it will hold said lock
	until it locks the first page, and it will hold that lock until
	the after the hugepage has been added to the page cache (and
	will unlock the hugepage after page table update, though that
	isn't important here).

	A racing context that loses the race for mapping->i_pages will
	then lose the race to locking the first page.  Here - depending
	on how far the other racing context has gotten - we might find
	the new hugepage (in which case we'll exit cleanly when we
	check PageTransCompound()), or we'll find the "old" 1st small
	page (in which we'll exit cleanly when we discover unexpected
	refcount of 2 after isolate_lru_page()).  This is assuming we
	are able to successfully lock the page we find - in shmem path,
	we could just fail the trylock and exit cleanly anyways.

	Failure path in collapse_file() is similar: once we hold lock
	on 1st small page, we are serialized against other collapse
	contexts.  Before the 1st small page is unlocked, we add it
	back to the pagecache and unfreeze the refcount appropriately.
	Contexts who lost the race to the 1st small page will then find
	the same 1st small page with the correct refcount and will be
	able to proceed.

[zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()]
  Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com
[shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove
	check for multi-add in khugepaged_add_pte_mapped_thp()]
  Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe 58ac9a8993 mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds
The main benefit of THPs are that they can be mapped at the pmd level,
increasing the likelihood of TLB hit and spending less cycles in page
table walks.  pte-mapped hugepages - that is - hugepage-aligned compound
pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous
in physical memory, don't have this advantage.  In fact, one could argue
they are detrimental to system performance overall since they occupy a
precious hugepage-aligned/sized region of physical memory that could
otherwise be used more effectively.  Additionally, pte-mapped hugepages
can be the cheapest memory to collapse for khugepaged since no new
hugepage allocation or copying of memory contents is necessary - we only
need to update the mapping page tables.

In the anonymous collapse path, we are able to collapse pte-mapped
hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no
effort when compound pages (of any order) are encountered.

Identify pte-mapped hugepages in the file/shmem collapse path.  The
final step of which makes a racy check of the value of the pmd to
ensure it maps a pte table.  This should be fine, since races that
result in false-positive (i.e.  attempt collapse even though we
shouldn't) will fail later in collapse_pte_mapped_thp() once we
actually lock mmap_lock and reinspect the pmd value.  Races that result
in false-negatives (i.e.  where we decide to not attempt collapse, but
should have) shouldn't be an issue, since in the worst case, we do
nothing - which is what we've done up to this point.  We make a similar
check in retract_page_tables().  If we do think we've found a
pte-mapped hugepgae in khugepaged context, attempt to update page
tables mapping this hugepage.

Note that these collapses still count towards the
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter,
and if the pte-mapped hugepage was also mapped into multiple process'
address spaces, could be incremented for each page table update.  Since we
increment the counter when a pte-mapped hugepage is successfully added to
the list of to-collapse pte-mapped THPs, it's possible that we never
actually update the page table either.  This is different from how
file/shmem pages_collapsed accounting works today where only a successful
page cache update is counted (it's also possible here that no page tables
are actually changed).  Though it incurs some slop, this is preferred to
either not accounting for the event at all, or plumbing through data in
struct mm_slot on whether to account for the collapse or not.

Also note that work still needs to be done to support arbitrary compound
pages, and that this should all be converted to using folios.

[shy828301@gmail.com: Spelling mistake, update comment, and add Documentation]
  Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe 0f3e2a2c42 mm/madvise: MADV_COLLAPSE return EAGAIN when page cannot be isolated
MADV_COLLAPSE is a best-effort request that attempts to set an actionable
errno value if the request cannot be fulfilled at the time.  EAGAIN should
be used to communicate that a resource was temporarily unavailable, but
that the user may try again immediately.

SCAN_DEL_PAGE_LRU is an internal result code used when a page cannot be
isolated from it's LRU list.  Since this, like SCAN_PAGE_LRU, is likely a
transitory state, make MADV_COLLAPSE return EAGAIN so that users know they
may reattempt the operation.

Another important scenario to consider is race with khugepaged. 
khugepaged might isolate a page while MADV_COLLAPSE is interested in it. 
Even though racing with khugepaged might mean that the memory has already
been collapsed, signalling an errno that is non-intrinsic to that memory
or arguments provided to madvise(2) lets the user know that future
attempts might (and in this case likely would) succeed, and avoids
false-negative assumptions by the user.

Link: https://lkml.kernel.org/r/20220922184651.1016461-1-zokeefe@google.com
Fixes: 7d8faaf155 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Zach O'Keefe 780a4b6fb8 mm/khugepaged: check compound_order() in collapse_pte_mapped_thp()
By the time we lock a page in collapse_pte_mapped_thp(), the page mapped
by the address pushed onto the slot's .pte_mapped_thp[] array might have
changed arbitrarily since we last looked at it.  We revalidate that the
page is still the head of a compound page, but we don't revalidate if the
compound page is of order HPAGE_PMD_ORDER before applying rmap and page
table updates.

Since the kernel now supports large folios of arbitrary order, and since
replacing page's pte mappings by a pmd mapping only makes sense for
compound pages of order HPAGE_PMD_ORDER, revalidate that the compound
order is indeed of order HPAGE_PMD_ORDER before proceeding.

Link: https://lore.kernel.org/linux-mm/CAHbLzkon+2ky8v9ywGcsTUgXM_B35jt5NThYqQKXW2YV_GUacw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220922222731.1124481-1-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Matthew Wilcox (Oracle) 7459c149ae khugepaged: call shmem_get_folio()
shmem_getpage() is being removed, so call its replacement and find the
precise page ourselves.

Link: https://lkml.kernel.org/r/20220902194653.1739778-32-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:50 -07:00
Qi Zheng b26e27015e mm: thp: convert to use common struct mm_slot
Rename private struct mm_slot to struct khugepaged_mm_slot and convert to
use common struct mm_slot with no functional change.

[zhengqi.arch@bytedance.com: fix build error with CONFIG_SHMEM disabled]
  Link: https://lkml.kernel.org/r/639fa8d5-8e5b-2333-69dc-40ed46219364@bytedance.com
Link: https://lkml.kernel.org/r/20220831031951.43152-3-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:02:43 -07:00
Matthew Wilcox (Oracle) 685405020b mm/khugepaged: stop using vma linked list
Use vma iterator & find_vma() instead of vma linked list.

Link: https://lkml.kernel.org/r/20220906194824.2110408-53-Liam.Howlett@oracle.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:23 -07:00
Liam R. Howlett 94d815b279 mm/khugepaged: optimize collapse_pte_mapped_thp() by using vma_lookup()
vma_lookup() will walk the vma tree once and not continue to look for the
next vma.  Since the exact vma is checked below, this is a more optimal
way of searching.

Link: https://lkml.kernel.org/r/20220906194824.2110408-22-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:17 -07:00
Yang Shi 4d24de9425 mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock
The syzbot reported the below problem:

BUG: Bad page map in process syz-executor198  pte:8000000071c00227 pmd:74b30067
addr:0000000020563000 vm_flags:08100077 anon_vma:ffff8880547d2200 mapping:0000000000000000 index:20563
file:(null) fault:0x0 mmap:0x0 read_folio:0x0
CPU: 1 PID: 3614 Comm: syz-executor198 Not tainted 6.0.0-rc3-next-20220901-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
 print_bad_pte.cold+0x2a7/0x2d0 mm/memory.c:565
 vm_normal_page+0x10c/0x2a0 mm/memory.c:636
 hpage_collapse_scan_pmd+0x729/0x1da0 mm/khugepaged.c:1199
 madvise_collapse+0x481/0x910 mm/khugepaged.c:2433
 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1062
 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1236
 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1415
 do_madvise mm/madvise.c:1428 [inline]
 __do_sys_madvise mm/madvise.c:1428 [inline]
 __se_sys_madvise mm/madvise.c:1426 [inline]
 __x64_sys_madvise+0x113/0x150 mm/madvise.c:1426
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f770ba87929
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 11 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f770ba18308 EFLAGS: 00000246 ORIG_RAX: 000000000000001c
RAX: ffffffffffffffda RBX: 00007f770bb0f3f8 RCX: 00007f770ba87929
RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000
RBP: 00007f770bb0f3f0 R08: 00007f770ba18700 R09: 0000000000000000
R10: 00007f770ba18700 R11: 0000000000000246 R12: 00007f770bb0f3fc
R13: 00007ffc2d8b62ef R14: 00007f770ba18400 R15: 0000000000022000

Basically the test program does the below conceptually:
1. mmap 0x2000000 - 0x21000000 as anonymous region
2. mmap io_uring SQ stuff at 0x20563000 with MAP_FIXED, io_uring_mmap()
   actually remaps the pages with special PTEs
3. call MADV_COLLAPSE for 0x20000000 - 0x21000000

It actually triggered the below race:

             CPU A                                          CPU B
mmap 0x20000000 - 0x21000000 as anon
                                           madvise_collapse is called on this area
                                             Retrieve start and end address from the vma (NEVER updated later!)
                                             Collapsed the first 2M area and dropped mmap_lock
Acquire mmap_lock
mmap io_uring file at 0x20563000
Release mmap_lock
                                             Reacquire mmap_lock
                                             revalidate vma pass since 0x20200000 + 0x200000 > 0x20563000
                                             scan the next 2M (0x20200000 - 0x20400000), but due to whatever reason it didn't release mmap_lock
                                             scan the 3rd 2M area (start from 0x20400000)
                                               get into the vma created by io_uring

The hend should be updated after MADV_COLLAPSE reacquire mmap_lock since
the vma may be shrunk.  We don't have to worry about shink from the other
direction since it could be caught by hugepage_vma_revalidate().  Either
no valid vma is found or the vma doesn't fit anymore.

Link: https://lkml.kernel.org/r/20220914162220.787703-1-shy828301@gmail.com
Fixes: 7d8faaf155 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Reported-by: syzbot+915f3e317adb0e85835f@syzkaller.appspotmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:03 -07:00