Граф коммитов

53 Коммитов

Автор SHA1 Сообщение Дата
Jason A. Donenfeld bf7b042dc6 wireguard: allowedips: free empty intermediate nodes when removing single node
When removing single nodes, it's possible that that node's parent is an
empty intermediate node, in which case, it too should be removed.
Otherwise the trie fills up and never is fully emptied, leading to
gradual memory leaks over time for tries that are modified often. There
was originally code to do this, but was removed during refactoring in
2016 and never reworked. Now that we have proper parent pointers from
the previous commits, we can implement this properly.

In order to reduce branching and expensive comparisons, we want to keep
the double pointer for parent assignment (which lets us easily chain up
to the root), but we still need to actually get the parent's base
address. So encode the bit number into the last two bits of the pointer,
and pack and unpack it as needed. This is a little bit clumsy but is the
fastest and less memory wasteful of the compromises. Note that we align
the root struct here to a minimum of 4, because it's embedded into a
larger struct, and we're relying on having the bottom two bits for our
flag, which would only be 16-bit aligned on m68k.

The existing macro-based helpers were a bit unwieldy for adding the bit
packing to, so this commit replaces them with safer and clearer ordinary
functions.

We add a test to the randomized/fuzzer part of the selftests, to free
the randomized tries by-peer, refuzz it, and repeat, until it's supposed
to be empty, and then then see if that actually resulted in the whole
thing being emptied. That combined with kmemcheck should hopefully make
sure this commit is doing what it should. Along the way this resulted in
various other cleanups of the tests and fixes for recent graphviz.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld dc680de28c wireguard: allowedips: allocate nodes in kmem_cache
The previous commit moved from O(n) to O(1) for removal, but in the
process introduced an additional pointer member to a struct that
increased the size from 60 to 68 bytes, putting nodes in the 128-byte
slab. With deployed systems having as many as 2 million nodes, this
represents a significant doubling in memory usage (128 MiB -> 256 MiB).
Fix this by using our own kmem_cache, that's sized exactly right. This
also makes wireguard's memory usage more transparent in tools like
slabtop and /proc/slabinfo.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld f634f418c2 wireguard: allowedips: remove nodes in O(1)
Previously, deleting peers would require traversing the entire trie in
order to rebalance nodes and safely free them. This meant that removing
1000 peers from a trie with a half million nodes would take an extremely
long time, during which we're holding the rtnl lock. Large-scale users
were reporting 200ms latencies added to the networking stack as a whole
every time their userspace software would queue up significant removals.
That's a serious situation.

This commit fixes that by maintaining a double pointer to the parent's
bit pointer for each node, and then using the already existing node list
belonging to each peer to go directly to the node, fix up its pointers,
and free it with RCU. This means removal is O(1) instead of O(n), and we
don't use gobs of stack.

The removal algorithm has the same downside as the code that it fixes:
it won't collapse needlessly long runs of fillers.  We can enhance that
in the future if it ever becomes a problem. This commit documents that
limitation with a TODO comment in code, a small but meaningful
improvement over the prior situation.

Currently the biggest flaw, which the next commit addresses, is that
because this increases the node size on 64-bit machines from 60 bytes to
68 bytes. 60 rounds up to 64, but 68 rounds up to 128. So we wind up
using twice as much memory per node, because of power-of-two
allocations, which is a big bummer. We'll need to figure something out
there.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld 46cfe8eee2 wireguard: allowedips: initialize list head in selftest
The randomized trie tests weren't initializing the dummy peer list head,
resulting in a NULL pointer dereference when used. Fix this by
initializing it in the randomized trie test, just like we do for the
static unit test.

While we're at it, all of the other strings like this have the word
"self-test", so add it to the missing place here.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld a4e9f8e328 wireguard: peer: allocate in kmem_cache
With deployments having upwards of 600k peers now, this somewhat heavy
structure could benefit from more fine-grained allocations.
Specifically, instead of using a 2048-byte slab for a 1544-byte object,
we can now use 1544-byte objects directly, thus saving almost 25%
per-peer, or with 600k peers, that's a savings of 303 MiB. This also
makes wireguard's memory usage more transparent in tools like slabtop
and /proc/slabinfo.

Fixes: 8b5553ace8 ("wireguard: queueing: get rid of per-peer ring buffers")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld 24b70eeeb4 wireguard: use synchronize_net rather than synchronize_rcu
Many of the synchronization points are sometimes called under the rtnl
lock, which means we should use synchronize_net rather than
synchronize_rcu. Under the hood, this expands to using the expedited
flavor of function in the event that rtnl is held, in order to not stall
other concurrent changes.

This fixes some very, very long delays when removing multiple peers at
once, which would cause some operations to take several minutes.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld cc5060ca02 wireguard: do not use -O3
Apparently, various versions of gcc have O3-related miscompiles. Looking
at the difference between -O2 and -O3 for gcc 11 doesn't indicate
miscompiles, but the difference also doesn't seem so significant for
performance that it's worth risking.

Link: https://lore.kernel.org/lkml/CAHk-=wjuoGyxDhAF8SsrTkN0-YfCx7E6jUN3ikC_tn2AKWTTsA@mail.gmail.com/
Link: https://lore.kernel.org/lkml/CAHmME9otB5Wwxp7H8bR_i2uH2esEMvoBMC8uEXBMH9p0q1s6Bw@mail.gmail.com/
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-04 14:25:14 -07:00
Jason A. Donenfeld 8b5553ace8 wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.

In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.

The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].

Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.

Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.

But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.

[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue

Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:59:34 -08:00
Jason A. Donenfeld 99fff5264e wireguard: device: do not generate ICMP for non-IP packets
If skb->protocol doesn't match the actual skb->data header, it's
probably not a good idea to pass it off to icmp{,v6}_ndo_send, which is
expecting to reply to a valid IP packet. So this commit has that early
mismatch case jump to a later error label.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:59:34 -08:00
Jason A. Donenfeld 5a05986956 wireguard: peer: put frequently used members above cache lines
The is_dead boolean is checked for every single packet, while the
internal_id member is used basically only for pr_debug messages. So it
makes sense to hoist up is_dead into some space formerly unused by a
struct hole, while demoting internal_api to below the lowest struct
cache line.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:59:31 -08:00
Jann Horn 7f57bd8dc2 wireguard: socket: remove bogus __be32 annotation
The endpoint->src_if4 has nothing to do with fixed-endian numbers; remove
the bogus annotation.

This was introduced in
https://git.zx2c4.com/wireguard-monolithic-historical/commit?id=14e7d0a499a676ec55176c0de2f9fcbd34074a82
in the historical WireGuard repo because the old code used to
zero-initialize multiple members as follows:

    endpoint->src4.s_addr = endpoint->src_if4 = fl.saddr = 0;

Because fl.saddr is fixed-endian and an assignment returns a value with the
type of its left operand, this meant that sparse detected an assignment
between values of different endianness.

Since then, this assignment was already split up into separate statements;
just the cast survived.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:53:49 -08:00
Antonio Quartulli 30ac4e2f54 wireguard: avoid double unlikely() notation when using IS_ERR()
The definition of IS_ERR() already applies the unlikely() notation
when checking the error status of the passed pointer. For this
reason there is no need to have the same notation outside of
IS_ERR() itself.

Clean up code by removing redundant notation.

Signed-off-by: Antonio Quartulli <a@unstable.cc>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:53:46 -08:00
Linus Torvalds ca5b877b6c selinux/stable-5.11 PR 20201214
-----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAl/YBtEUHHBhdWxAcGF1
 bC1tb29yZS5jb20ACgkQ6iDy2pc3iXNnwA/9Ek8DG/1t8CEoJxpoRvwovQxNo+bi
 0rCT9vqvx9PeCwoZi/0Vp6oKmpE1HADvbeB/+e00VrbLYnzE3oRY6VkpjoZRofKS
 vc0/MzHSFxFUR1OTHwCefcXlPLK+bfitQbX5jEMeVyQCXNXXIrN7CnJf1LmCeLTR
 kQBPlEN9lt7HyNVAi34FhOD/TQbWnFHgl2z5puffgri6cWnc+TALKMYytUZ+rYex
 NYndDJW5b3g5kTat2eErn0FruxfzloGs0xMIiWb+z2i9kl41D+dkKPdAN7idqCSC
 Jv0nJP/bDftzA0wOe9szmGaLQzu7YnCN5kiWcSspatZVnon42Cy/tp9tiuPGLRFU
 XtelDfpyX6o3CLN0tX7LQEO+GYxPzvM6iaR2OrsChWPozUIIR3TLQg7jJN4bvNKl
 TR6gCGZCoAeS5JLNGjzVKxT/oKQY+tCLLlYXQdQY6swNFi3EKmPr+K1D9lgm98fO
 f3d1QmWiZZNmtxxoVogT0qoQYjkfgpnm3dVx813Vt+lwHlVpHGMEPpO27iD3/RYb
 w2yWOJaGKwMD8iL0l+Cm6CPW0/nE5FFISQjWgC8b4Vgxlyan6+L9eViqGICkrUQ2
 Edo0i1YFFZ4utHYkDf1VYBbJ+36KyCtdktgLAcbgnePiPB3E1XBsXTIIStSUIbVQ
 iEbTkBlsCG4GIeU=
 =6Cqb
 -----END PGP SIGNATURE-----

Merge tag 'selinux-pr-20201214' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux

Pull selinux updates from Paul Moore:
 "While we have a small number of SELinux patches for v5.11, there are a
  few changes worth highlighting:

   - Change the LSM network hooks to pass flowi_common structs instead
     of the parent flowi struct as the LSMs do not currently need the
     full flowi struct and they do not have enough information to use it
     safely (missing information on the address family).

     This patch was discussed both with Herbert Xu (representing team
     netdev) and James Morris (representing team
     LSMs-other-than-SELinux).

   - Fix how we handle errors in inode_doinit_with_dentry() so that we
     attempt to properly label the inode on following lookups instead of
     continuing to treat it as unlabeled.

   - Tweak the kernel logic around allowx, auditallowx, and dontauditx
     SELinux policy statements such that the auditx/dontauditx are
     effective even without the allowx statement.

  Everything passes our test suite"

* tag 'selinux-pr-20201214' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux:
  lsm,selinux: pass flowi_common instead of flowi to the LSM hooks
  selinux: Fix fall-through warnings for Clang
  selinux: drop super_block backpointer from superblock_security_struct
  selinux: fix inode_doinit_with_dentry() LABEL_INVALID error handling
  selinux: allow dontauditx and auditallowx rules to take effect without allowx
  selinux: fix error initialization in inode_doinit_with_dentry()
2020-12-16 11:01:04 -08:00
Paul Moore 3df98d7921 lsm,selinux: pass flowi_common instead of flowi to the LSM hooks
As pointed out by Herbert in a recent related patch, the LSM hooks do
not have the necessary address family information to use the flowi
struct safely.  As none of the LSMs currently use any of the protocol
specific flowi information, replace the flowi pointers with pointers
to the address family independent flowi_common struct.

Reported-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-11-23 18:36:21 -05:00
Heiner Kallweit 42f9e5f0c6 wireguard: switch to dev_get_tstats64
Replace ip_tunnel_get_stats64() with the new identical core function
dev_get_tstats64().

Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-09 17:50:28 -08:00
David S. Miller 3ab0a7a0c3 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Two minor conflicts:

1) net/ipv4/route.c, adding a new local variable while
   moving another local variable and removing it's
   initial assignment.

2) drivers/net/dsa/microchip/ksz9477.c, overlapping changes.
   One pretty prints the port mode differently, whilst another
   changes the driver to try and obtain the port mode from
   the port node rather than the switch node.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-22 16:45:34 -07:00
Jason A. Donenfeld 6147f7b1e9 wireguard: peerlookup: take lock before checking hash in replace operation
Eric's suggested fix for the previous commit's mentioned race condition
was to simply take the table->lock in wg_index_hashtable_replace(). The
table->lock of the hash table is supposed to protect the bucket heads,
not the entires, but actually, since all the mutator functions are
already taking it, it makes sense to take it too for the test to
hlist_unhashed, as a defense in depth measure, so that it no longer
races with deletions, regardless of what other locks are protecting
individual entries. This is sensible from a performance perspective
because, as Eric pointed out, the case of being unhashed is already the
unlikely case, so this won't add common contention. And comparing
instructions, this basically doesn't make much of a difference other
than pushing and popping %r13, used by the new `bool ret`. More
generally, I like the idea of locking consistency across table mutator
functions, and this might let me rest slightly easier at night.

Suggested-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/wireguard/20200908145911.4090480-1-edumazet@google.com/
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-09 11:31:38 -07:00
Jason A. Donenfeld 9179ba3136 wireguard: noise: take lock when removing handshake entry from table
Eric reported that syzkaller found a race of this variety:

CPU 1                                       CPU 2
-------------------------------------------|---------------------------------------
wg_index_hashtable_replace(old, ...)       |
  if (hlist_unhashed(&old->index_hash))    |
                                           | wg_index_hashtable_remove(old)
                                           |   hlist_del_init_rcu(&old->index_hash)
				           |     old->index_hash.pprev = NULL
  hlist_replace_rcu(&old->index_hash, ...) |
    *old->index_hash.pprev                 |

Syzbot wasn't actually able to reproduce this more than once or create a
reproducer, because the race window between checking "hlist_unhashed" and
calling "hlist_replace_rcu" is just so small. Adding an mdelay(5) or
similar there helps make this demonstrable using this simple script:

    #!/bin/bash
    set -ex
    trap 'kill $pid1; kill $pid2; ip link del wg0; ip link del wg1' EXIT
    ip link add wg0 type wireguard
    ip link add wg1 type wireguard
    wg set wg0 private-key <(wg genkey) listen-port 9999
    wg set wg1 private-key <(wg genkey) peer $(wg show wg0 public-key) endpoint 127.0.0.1:9999 persistent-keepalive 1
    wg set wg0 peer $(wg show wg1 public-key)
    ip link set wg0 up
    yes link set wg1 up | ip -force -batch - &
    pid1=$!
    yes link set wg1 down | ip -force -batch - &
    pid2=$!
    wait

The fundumental underlying problem is that we permit calls to wg_index_
hashtable_remove(handshake.entry) without requiring the caller to take
the handshake mutex that is intended to protect members of handshake
during mutations. This is consistently the case with calls to wg_index_
hashtable_insert(handshake.entry) and wg_index_hashtable_replace(
handshake.entry), but it's missing from a pertinent callsite of wg_
index_hashtable_remove(handshake.entry). So, this patch makes sure that
mutex is taken.

The original code was a little bit funky though, in the form of:

    remove(handshake.entry)
    lock(), memzero(handshake.some_members), unlock()
    remove(handshake.entry)

The original intention of that double removal pattern outside the lock
appears to be some attempt to prevent insertions that might happen while
locks are dropped during expensive crypto operations, but actually, all
callers of wg_index_hashtable_insert(handshake.entry) take the write
lock and then explicitly check handshake.state, as they should, which
the aforementioned memzero clears, which means an insertion should
already be impossible. And regardless, the original intention was
necessarily racy, since it wasn't guaranteed that something else would
run after the unlock() instead of after the remove(). So, from a
soundness perspective, it seems positive to remove what looks like a
hack at best.

The crash from both syzbot and from the script above is as follows:

  general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
  KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
  CPU: 0 PID: 7395 Comm: kworker/0:3 Not tainted 5.9.0-rc4-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Workqueue: wg-kex-wg1 wg_packet_handshake_receive_worker
  RIP: 0010:hlist_replace_rcu include/linux/rculist.h:505 [inline]
  RIP: 0010:wg_index_hashtable_replace+0x176/0x330 drivers/net/wireguard/peerlookup.c:174
  Code: 00 fc ff df 48 89 f9 48 c1 e9 03 80 3c 01 00 0f 85 44 01 00 00 48 b9 00 00 00 00 00 fc ff df 48 8b 45 10 48 89 c6 48 c1 ee 03 <80> 3c 0e 00 0f 85 06 01 00 00 48 85 d2 4c 89 28 74 47 e8 a3 4f b5
  RSP: 0018:ffffc90006a97bf8 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: ffff888050ffc4f8 RCX: dffffc0000000000
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88808e04e010
  RBP: ffff88808e04e000 R08: 0000000000000001 R09: ffff8880543d0000
  R10: ffffed100a87a000 R11: 000000000000016e R12: ffff8880543d0000
  R13: ffff88808e04e008 R14: ffff888050ffc508 R15: ffff888050ffc500
  FS:  0000000000000000(0000) GS:ffff8880ae600000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00000000f5505db0 CR3: 0000000097cf7000 CR4: 00000000001526f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
  wg_noise_handshake_begin_session+0x752/0xc9a drivers/net/wireguard/noise.c:820
  wg_receive_handshake_packet drivers/net/wireguard/receive.c:183 [inline]
  wg_packet_handshake_receive_worker+0x33b/0x730 drivers/net/wireguard/receive.c:220
  process_one_work+0x94c/0x1670 kernel/workqueue.c:2269
  worker_thread+0x64c/0x1120 kernel/workqueue.c:2415
  kthread+0x3b5/0x4a0 kernel/kthread.c:292
  ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294

Reported-by: syzbot <syzkaller@googlegroups.com>
Reported-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/wireguard/20200908145911.4090480-1-edumazet@google.com/
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-09 11:31:37 -07:00
Johannes Berg bc04358550 netlink: consistently use NLA_POLICY_MIN_LEN()
Change places that open-code NLA_POLICY_MIN_LEN() to
use the macro instead, giving us flexibility in how we
handle the details of the macro.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-18 12:28:45 -07:00
Johannes Berg 8140860c81 netlink: consistently use NLA_POLICY_EXACT_LEN()
Change places that open-code NLA_POLICY_EXACT_LEN() to
use the macro instead, giving us flexibility in how we
handle the details of the macro.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-18 12:28:45 -07:00
Waiman Long 453431a549 mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus:

  A symmetric naming is only helpful if it implies symmetries in use.
  Otherwise it's actively misleading.

  In "kzalloc()", the z is meaningful and an important part of what the
  caller wants.

  In "kzfree()", the z is actively detrimental, because maybe in the
  future we really _might_ want to use that "memfill(0xdeadbeef)" or
  something. The "zero" part of the interface isn't even _relevant_.

The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.

Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.

The renaming is done by using the command sequence:

  git grep -w --name-only kzfree |\
  xargs sed -i 's/kzfree/kfree_sensitive/'

followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.

[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
Jason A. Donenfeld 1a574074ae wireguard: queueing: make use of ip_tunnel_parse_protocol
Now that wg_examine_packet_protocol has been added for general
consumption as ip_tunnel_parse_protocol, it's possible to remove
wg_examine_packet_protocol and simply use the new
ip_tunnel_parse_protocol function directly.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 12:29:39 -07:00
Jason A. Donenfeld 01a4967c71 wireguard: implement header_ops->parse_protocol for AF_PACKET
WireGuard uses skb->protocol to determine packet type, and bails out if
it's not set or set to something it's not expecting. For AF_PACKET
injection, we need to support its call chain of:

    packet_sendmsg -> packet_snd -> packet_parse_headers ->
      dev_parse_header_protocol -> parse_protocol

Without a valid parse_protocol, this returns zero, and wireguard then
rejects the skb. So, this wires up the ip_tunnel handler for layer 3
packets for that case.

Reported-by: Hans Wippel <ndev@hwipl.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 12:29:39 -07:00
Jason A. Donenfeld df08126e38 wireguard: receive: account for napi_gro_receive never returning GRO_DROP
The napi_gro_receive function no longer returns GRO_DROP ever, making
handling GRO_DROP dead code. This commit removes that dead code.
Further, it's not even clear that device drivers have any business in
taking action after passing off received packets; that's arguably out of
their hands.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Fixes: 6570bc79c0 ("net: core: use listified Rx for GRO_NORMAL in napi_gro_receive()")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-25 16:16:21 -07:00
Jason A. Donenfeld 900575aa33 wireguard: device: avoid circular netns references
Before, we took a reference to the creating netns if the new netns was
different. This caused issues with circular references, with two
wireguard interfaces swapping namespaces. The solution is to rather not
take any extra references at all, but instead simply invalidate the
creating netns pointer when that netns is deleted.

In order to prevent this from happening again, this commit improves the
rough object leak tracking by allowing it to account for created and
destroyed interfaces, aside from just peers and keys. That then makes it
possible to check for the object leak when having two interfaces take a
reference to each others' namespaces.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 14:50:34 -07:00
Frank Werner-Krippendorf 558b353c9c wireguard: noise: do not assign initiation time in if condition
Fixes an error condition reported by checkpatch.pl which caused by
assigning a variable in an if condition in wg_noise_handshake_consume_
initiation().

Signed-off-by: Frank Werner-Krippendorf <mail@hb9fxq.ch>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 14:50:34 -07:00
Jason A. Donenfeld a9e90d9931 wireguard: noise: separate receive counter from send counter
In "wireguard: queueing: preserve flow hash across packet scrubbing", we
were required to slightly increase the size of the receive replay
counter to something still fairly small, but an increase nonetheless.
It turns out that we can recoup some of the additional memory overhead
by splitting up the prior union type into two distinct types. Before, we
used the same "noise_counter" union for both sending and receiving, with
sending just using a simple atomic64_t, while receiving used the full
replay counter checker. This meant that most of the memory being
allocated for the sending counter was being wasted. Since the old
"noise_counter" type increased in size in the prior commit, now is a
good time to split up that union type into a distinct "noise_replay_
counter" for receiving and a boring atomic64_t for sending, each using
neither more nor less memory than required.

Also, since sometimes the replay counter is accessed without
necessitating additional accesses to the bitmap, we can reduce cache
misses by hoisting the always-necessary lock above the bitmap in the
struct layout. We also change a "noise_replay_counter" stack allocation
to kmalloc in a -DDEBUG selftest so that KASAN doesn't trigger a stack
frame warning.

All and all, removing a bit of abstraction in this commit makes the code
simpler and smaller, in addition to the motivating memory usage
recuperation. For example, passing around raw "noise_symmetric_key"
structs is something that really only makes sense within noise.c, in the
one place where the sending and receiving keys can safely be thought of
as the same type of object; subsequent to that, it's important that we
uniformly access these through keypair->{sending,receiving}, where their
distinct roles are always made explicit. So this patch allows us to draw
that distinction clearly as well.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 20:55:09 -07:00
Jason A. Donenfeld c78a0b4a78 wireguard: queueing: preserve flow hash across packet scrubbing
It's important that we clear most header fields during encapsulation and
decapsulation, because the packet is substantially changed, and we don't
want any info leak or logic bug due to an accidental correlation. But,
for encapsulation, it's wrong to clear skb->hash, since it's used by
fq_codel and flow dissection in general. Without it, classification does
not proceed as usual. This change might make it easier to estimate the
number of innerflows by examining clustering of out of order packets,
but this shouldn't open up anything that can't already be inferred
otherwise (e.g. syn packet size inference), and fq_codel can be disabled
anyway.

Furthermore, it might be the case that the hash isn't used or queried at
all until after wireguard transmits the encrypted UDP packet, which
means skb->hash might still be zero at this point, and thus no hash
taken over the inner packet data. In order to address this situation, we
force a calculation of skb->hash before encrypting packet data.

Of course this means that fq_codel might transmit packets slightly more
out of order than usual. Toke did some testing on beefy machines with
high quantities of parallel flows and found that increasing the
reply-attack counter to 8192 takes care of the most pathological cases
pretty well.

Reported-by: Dave Taht <dave.taht@gmail.com>
Reviewed-and-tested-by: Toke Høiland-Jørgensen <toke@toke.dk>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 20:55:09 -07:00
Jason A. Donenfeld bc67d37125 wireguard: noise: read preshared key while taking lock
Prior we read the preshared key after dropping the handshake lock, which
isn't an actual crypto issue if it races, but it's still not quite
correct. So copy that part of the state into a temporary like we do with
the rest of the handshake state variables. Then we can release the lock,
operate on the temporary, and zero it out at the end of the function. In
performance tests, the impact of this was entirely unnoticable, probably
because those bytes are coming from the same cacheline as other things
that are being copied out in the same manner.

Reported-by: Matt Dunwoodie <ncon@noconroy.net>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-20 20:55:09 -07:00
Jason A. Donenfeld 243f214893 wireguard: send/receive: use explicit unlikely branch instead of implicit coalescing
It's very unlikely that send will become true. It's nearly always false
between 0 and 120 seconds of a session, and in most cases becomes true
only between 120 and 121 seconds before becoming false again. So,
unlikely(send) is clearly the right option here.

What happened before was that we had this complex boolean expression
with multiple likely and unlikely clauses nested. Since this is
evaluated left-to-right anyway, the whole thing got converted to
unlikely. So, we can clean this up to better represent what's going on.

The generated code is the same.

Suggested-by: Sultan Alsawaf <sultan@kerneltoast.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-06 20:03:47 -07:00
Jason A. Donenfeld 4fed818ef5 wireguard: selftests: initalize ipv6 members to NULL to squelch clang warning
Without setting these to NULL, clang complains in certain
configurations that have CONFIG_IPV6=n:

In file included from drivers/net/wireguard/ratelimiter.c:223:
drivers/net/wireguard/selftest/ratelimiter.c:173:34: error: variable 'skb6' is uninitialized when used here [-Werror,-Wuninitialized]
                ret = timings_test(skb4, hdr4, skb6, hdr6, &test_count);
                                               ^~~~
drivers/net/wireguard/selftest/ratelimiter.c:123:29: note: initialize the variable 'skb6' to silence this warning
        struct sk_buff *skb4, *skb6;
                                   ^
                                    = NULL
drivers/net/wireguard/selftest/ratelimiter.c:173:40: error: variable 'hdr6' is uninitialized when used here [-Werror,-Wuninitialized]
                ret = timings_test(skb4, hdr4, skb6, hdr6, &test_count);
                                                     ^~~~
drivers/net/wireguard/selftest/ratelimiter.c:125:22: note: initialize the variable 'hdr6' to silence this warning
        struct ipv6hdr *hdr6;
                            ^

We silence this warning by setting the variables to NULL as the warning
suggests.

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-06 20:03:47 -07:00
Jason A. Donenfeld 4005f5c3c9 wireguard: send/receive: cond_resched() when processing worker ringbuffers
Users with pathological hardware reported CPU stalls on CONFIG_
PREEMPT_VOLUNTARY=y, because the ringbuffers would stay full, meaning
these workers would never terminate. That turned out not to be okay on
systems without forced preemption, which Sultan observed. This commit
adds a cond_resched() to the bottom of each loop iteration, so that
these workers don't hog the core. Note that we don't need this on the
napi poll worker, since that terminates after its budget is expended.

Suggested-by: Sultan Alsawaf <sultan@kerneltoast.com>
Reported-by: Wang Jian <larkwang@gmail.com>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-06 20:03:47 -07:00
Jason A. Donenfeld b673e24aad wireguard: socket: remove errant restriction on looping to self
It's already possible to create two different interfaces and loop
packets between them. This has always been possible with tunnels in the
kernel, and isn't specific to wireguard. Therefore, the networking stack
already needs to deal with that. At the very least, the packet winds up
exceeding the MTU and is discarded at that point. So, since this is
already something that happens, there's no need to forbid the not very
exceptional case of routing a packet back to the same interface; this
loop is no different than others, and we shouldn't special case it, but
rather rely on generic handling of loops in general. This also makes it
easier to do interesting things with wireguard such as onion routing.

At the same time, we add a selftest for this, ensuring that both onion
routing works and infinite routing loops do not crash the kernel. We
also add a test case for wireguard interfaces nesting packets and
sending traffic between each other, as well as the loop in this case
too. We make sure to send some throughput-heavy traffic for this use
case, to stress out any possible recursion issues with the locks around
workqueues.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-06 20:03:47 -07:00
Toke Høiland-Jørgensen eebabcb26e wireguard: receive: use tunnel helpers for decapsulating ECN markings
WireGuard currently only propagates ECN markings on tunnel decap according
to the old RFC3168 specification. However, the spec has since been updated
in RFC6040 to recommend slightly different decapsulation semantics. This
was implemented in the kernel as a set of common helpers for ECN
decapsulation, so let's just switch over WireGuard to using those, so it
can benefit from this enhancement and any future tweaks. We do not drop
packets with invalid ECN marking combinations, because WireGuard is
frequently used to work around broken ISPs, which could be doing that.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Reported-by: Olivier Tilmans <olivier.tilmans@nokia-bell-labs.com>
Cc: Dave Taht <dave.taht@gmail.com>
Cc: Rodney W. Grimes <ietf@gndrsh.dnsmgr.net>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-29 14:23:05 -07:00
Jason A. Donenfeld 130c586061 wireguard: queueing: cleanup ptr_ring in error path of packet_queue_init
Prior, if the alloc_percpu of packet_percpu_multicore_worker_alloc
failed, the previously allocated ptr_ring wouldn't be freed. This commit
adds the missing call to ptr_ring_cleanup in the error case.

Reported-by: Sultan Alsawaf <sultan@kerneltoast.com>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-29 14:23:05 -07:00
Sultan Alsawaf d6833e4278 wireguard: send: remove errant newline from packet_encrypt_worker
This commit removes a useless newline at the end of a scope, which
doesn't add anything in the way of organization or readability.

Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-29 14:23:05 -07:00
Pablo Neira Ayuso 2c64605b59 net: Fix CONFIG_NET_CLS_ACT=n and CONFIG_NFT_FWD_NETDEV={y, m} build
net/netfilter/nft_fwd_netdev.c: In function ‘nft_fwd_netdev_eval’:
    net/netfilter/nft_fwd_netdev.c:32:10: error: ‘struct sk_buff’ has no member named ‘tc_redirected’
      pkt->skb->tc_redirected = 1;
              ^~
    net/netfilter/nft_fwd_netdev.c:33:10: error: ‘struct sk_buff’ has no member named ‘tc_from_ingress’
      pkt->skb->tc_from_ingress = 1;
              ^~

To avoid a direct dependency with tc actions from netfilter, wrap the
redirect bits around CONFIG_NET_REDIRECT and move helpers to
include/linux/skbuff.h. Turn on this toggle from the ifb driver, the
only existing client of these bits in the tree.

This patch adds skb_set_redirected() that sets on the redirected bit
on the skbuff, it specifies if the packet was redirect from ingress
and resets the timestamp (timestamp reset was originally missing in the
netfilter bugfix).

Fixes: bcfabee1af ("netfilter: nft_fwd_netdev: allow to redirect to ifb via ingress")
Reported-by: noreply@ellerman.id.au
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-25 12:24:33 -07:00
Jason A. Donenfeld 11a7686aa9 wireguard: noise: error out precomputed DH during handshake rather than config
We precompute the static-static ECDH during configuration time, in order
to save an expensive computation later when receiving network packets.
However, not all ECDH computations yield a contributory result. Prior,
we were just not letting those peers be added to the interface. However,
this creates a strange inconsistency, since it was still possible to add
other weird points, like a valid public key plus a low-order point, and,
like points that result in zeros, a handshake would not complete. In
order to make the behavior more uniform and less surprising, simply
allow all peers to be added. Then, we'll error out later when doing the
crypto if there's an issue. This also adds more separation between the
crypto layer and the configuration layer.

Discussed-with: Mathias Hall-Andersen <mathias@hall-andersen.dk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-18 18:51:43 -07:00
Jason A. Donenfeld 2b8765c52d wireguard: receive: remove dead code from default packet type case
The situation in which we wind up hitting the default case here
indicates a major bug in earlier parsing code. It is not a usual thing
that should ever happen, which means a "friendly" message for it doesn't
make sense. Rather, replace this with a WARN_ON, just like we do earlier
in the file for a similar situation, so that somebody sends us a bug
report and we can fix it.

Reported-by: Fabian Freyer <fabianfreyer@radicallyopensecurity.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-18 18:51:43 -07:00
Jason A. Donenfeld a5588604af wireguard: queueing: account for skb->protocol==0
We carry out checks to the effect of:

  if (skb->protocol != wg_examine_packet_protocol(skb))
    goto err;

By having wg_skb_examine_untrusted_ip_hdr return 0 on failure, this
means that the check above still passes in the case where skb->protocol
is zero, which is possible to hit with AF_PACKET:

  struct sockaddr_pkt saddr = { .spkt_device = "wg0" };
  unsigned char buffer[5] = { 0 };
  sendto(socket(AF_PACKET, SOCK_PACKET, /* skb->protocol = */ 0),
         buffer, sizeof(buffer), 0, (const struct sockaddr *)&saddr, sizeof(saddr));

Additional checks mean that this isn't actually a problem in the code
base, but I could imagine it becoming a problem later if the function is
used more liberally.

I would prefer to fix this by having wg_examine_packet_protocol return a
32-bit ~0 value on failure, which will never match any value of
skb->protocol, which would simply change the generated code from a mov
to a movzx. However, sparse complains, and adding __force casts doesn't
seem like a good idea, so instead we just add a simple helper function
to check for the zero return value. Since wg_examine_packet_protocol
itself gets inlined, this winds up not adding an additional branch to
the generated code, since the 0 return value already happens in a
mergable branch.

Reported-by: Fabian Freyer <fabianfreyer@radicallyopensecurity.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-18 18:51:43 -07:00
Jason A. Donenfeld 1fbc33b0a7 wireguard: socket: remove extra call to synchronize_net
synchronize_net() is a wrapper around synchronize_rcu(), so there's no
point in having synchronize_net and synchronize_rcu back to back,
despite the documentation comment suggesting maybe it's somewhat useful,
"Wait for packets currently being received to be done." This commit
removes the extra call.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Suggested-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-16 19:21:56 -08:00
Jason A. Donenfeld 175f1ca9a9 wireguard: send: account for mtu=0 devices
It turns out there's an easy way to get packets queued up while still
having an MTU of zero, and that's via persistent keep alive. This commit
makes sure that in whatever condition, we don't wind up dividing by
zero. Note that an MTU of zero for a wireguard interface is something
quasi-valid, so I don't think the correct fix is to limit it via
min_mtu. This can be reproduced easily with:

ip link add wg0 type wireguard
ip link add wg1 type wireguard
ip link set wg0 up mtu 0
ip link set wg1 up
wg set wg0 private-key <(wg genkey)
wg set wg1 listen-port 1 private-key <(wg genkey) peer $(wg show wg0 public-key)
wg set wg0 peer $(wg show wg1 public-key) persistent-keepalive 1 endpoint 127.0.0.1:1

However, while min_mtu=0 seems fine, it makes sense to restrict the
max_mtu. This commit also restricts the maximum MTU to the greatest
number for which rounding up to the padding multiple won't overflow a
signed integer. Packets this large were always rejected anyway
eventually, due to checks deeper in, but it seems more sound not to even
let the administrator configure something that won't work anyway.

We use this opportunity to clean up this function a bit so that it's
clear which paths we're expecting.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-16 19:21:56 -08:00
Jason A. Donenfeld 2a8a4df364 wireguard: receive: reset last_under_load to zero
This is a small optimization that prevents more expensive comparisons
from happening when they are no longer necessary, by clearing the
last_under_load variable whenever we wind up in a state where we were
under load but we no longer are.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Suggested-by: Matt Dunwoodie <ncon@noconroy.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-16 19:21:56 -08:00
Jason A. Donenfeld a12d7f3cbd wireguard: device: use icmp_ndo_send helper
Because wireguard is calling icmp from network device context, it should
use the ndo helper so that the rate limiting applies correctly.  This
commit adds a small test to the wireguard test suite to ensure that the
new functions continue doing the right thing in the context of
wireguard. It does this by setting up a condition that will definately
evoke an icmp error message from the driver, but along a nat'd path.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-13 14:19:00 -08:00
Jason A. Donenfeld ec31c2676a wireguard: noise: reject peers with low order public keys
Our static-static calculation returns a failure if the public key is of
low order. We check for this when peers are added, and don't allow them
to be added if they're low order, except in the case where we haven't
yet been given a private key. In that case, we would defer the removal
of the peer until we're given a private key, since at that point we're
doing new static-static calculations which incur failures we can act on.
This meant, however, that we wound up removing peers rather late in the
configuration flow.

Syzkaller points out that peer_remove calls flush_workqueue, which in
turn might then wait for sending a handshake initiation to complete.
Since handshake initiation needs the static identity lock, holding the
static identity lock while calling peer_remove can result in a rare
deadlock. We have precisely this case in this situation of late-stage
peer removal based on an invalid public key. We can't drop the lock when
removing, because then incoming handshakes might interact with a bogus
static-static calculation.

While the band-aid patch for this would involve breaking up the peer
removal into two steps like wg_peer_remove_all does, in order to solve
the locking issue, there's actually a much more elegant way of fixing
this:

If the static-static calculation succeeds with one private key, it
*must* succeed with all others, because all 32-byte strings map to valid
private keys, thanks to clamping. That means we can get rid of this
silly dance and locking headaches of removing peers late in the
configuration flow, and instead just reject them early on, regardless of
whether the device has yet been assigned a private key. For the case
where the device doesn't yet have a private key, we safely use zeros
just for the purposes of checking for low order points by way of
checking the output of the calculation.

The following PoC will trigger the deadlock:

ip link add wg0 type wireguard
ip addr add 10.0.0.1/24 dev wg0
ip link set wg0 up
ping -f 10.0.0.2 &
while true; do
        wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234
        wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=)
done

[    0.949105] ======================================================
[    0.949550] WARNING: possible circular locking dependency detected
[    0.950143] 5.5.0-debug+ #18 Not tainted
[    0.950431] ------------------------------------------------------
[    0.950959] wg/89 is trying to acquire lock:
[    0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0
[    0.951865]
[    0.951865] but task is already holding lock:
[    0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[    0.953011]
[    0.953011] which lock already depends on the new lock.
[    0.953011]
[    0.953651]
[    0.953651] the existing dependency chain (in reverse order) is:
[    0.954292]
[    0.954292] -> #2 (&wg->static_identity.lock){++++}:
[    0.954804]        lock_acquire+0x127/0x350
[    0.955133]        down_read+0x83/0x410
[    0.955428]        wg_noise_handshake_create_initiation+0x97/0x700
[    0.955885]        wg_packet_send_handshake_initiation+0x13a/0x280
[    0.956401]        wg_packet_handshake_send_worker+0x10/0x20
[    0.956841]        process_one_work+0x806/0x1500
[    0.957167]        worker_thread+0x8c/0xcb0
[    0.957549]        kthread+0x2ee/0x3b0
[    0.957792]        ret_from_fork+0x24/0x30
[    0.958234]
[    0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}:
[    0.958808]        lock_acquire+0x127/0x350
[    0.959075]        process_one_work+0x7ab/0x1500
[    0.959369]        worker_thread+0x8c/0xcb0
[    0.959639]        kthread+0x2ee/0x3b0
[    0.959896]        ret_from_fork+0x24/0x30
[    0.960346]
[    0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}:
[    0.960945]        check_prev_add+0x167/0x1e20
[    0.961351]        __lock_acquire+0x2012/0x3170
[    0.961725]        lock_acquire+0x127/0x350
[    0.961990]        flush_workqueue+0x106/0x12f0
[    0.962280]        peer_remove_after_dead+0x160/0x220
[    0.962600]        wg_set_device+0xa24/0xcc0
[    0.962994]        genl_rcv_msg+0x52f/0xe90
[    0.963298]        netlink_rcv_skb+0x111/0x320
[    0.963618]        genl_rcv+0x1f/0x30
[    0.963853]        netlink_unicast+0x3f6/0x610
[    0.964245]        netlink_sendmsg+0x700/0xb80
[    0.964586]        __sys_sendto+0x1dd/0x2c0
[    0.964854]        __x64_sys_sendto+0xd8/0x1b0
[    0.965141]        do_syscall_64+0x90/0xd9a
[    0.965408]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[    0.965769]
[    0.965769] other info that might help us debug this:
[    0.965769]
[    0.966337] Chain exists of:
[    0.966337]   (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock
[    0.966337]
[    0.967417]  Possible unsafe locking scenario:
[    0.967417]
[    0.967836]        CPU0                    CPU1
[    0.968155]        ----                    ----
[    0.968497]   lock(&wg->static_identity.lock);
[    0.968779]                                lock((work_completion)(&peer->transmit_handshake_work));
[    0.969345]                                lock(&wg->static_identity.lock);
[    0.969809]   lock((wq_completion)wg-kex-wg0);
[    0.970146]
[    0.970146]  *** DEADLOCK ***
[    0.970146]
[    0.970531] 5 locks held by wg/89:
[    0.970908]  #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30
[    0.971400]  #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90
[    0.971924]  #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0
[    0.972488]  #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0
[    0.973095]  #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[    0.973653]
[    0.973653] stack backtrace:
[    0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18
[    0.974476] Call Trace:
[    0.974638]  dump_stack+0x97/0xe0
[    0.974869]  check_noncircular+0x312/0x3e0
[    0.975132]  ? print_circular_bug+0x1f0/0x1f0
[    0.975410]  ? __kernel_text_address+0x9/0x30
[    0.975727]  ? unwind_get_return_address+0x51/0x90
[    0.976024]  check_prev_add+0x167/0x1e20
[    0.976367]  ? graph_lock+0x70/0x160
[    0.976682]  __lock_acquire+0x2012/0x3170
[    0.976998]  ? register_lock_class+0x1140/0x1140
[    0.977323]  lock_acquire+0x127/0x350
[    0.977627]  ? flush_workqueue+0xe3/0x12f0
[    0.977890]  flush_workqueue+0x106/0x12f0
[    0.978147]  ? flush_workqueue+0xe3/0x12f0
[    0.978410]  ? find_held_lock+0x2c/0x110
[    0.978662]  ? lock_downgrade+0x6e0/0x6e0
[    0.978919]  ? queue_rcu_work+0x60/0x60
[    0.979166]  ? netif_napi_del+0x151/0x3b0
[    0.979501]  ? peer_remove_after_dead+0x160/0x220
[    0.979871]  peer_remove_after_dead+0x160/0x220
[    0.980232]  wg_set_device+0xa24/0xcc0
[    0.980516]  ? deref_stack_reg+0x8e/0xc0
[    0.980801]  ? set_peer+0xe10/0xe10
[    0.981040]  ? __ww_mutex_check_waiters+0x150/0x150
[    0.981430]  ? __nla_validate_parse+0x163/0x270
[    0.981719]  ? genl_family_rcv_msg_attrs_parse+0x13f/0x310
[    0.982078]  genl_rcv_msg+0x52f/0xe90
[    0.982348]  ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[    0.982690]  ? register_lock_class+0x1140/0x1140
[    0.983049]  netlink_rcv_skb+0x111/0x320
[    0.983298]  ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[    0.983645]  ? netlink_ack+0x880/0x880
[    0.983888]  genl_rcv+0x1f/0x30
[    0.984168]  netlink_unicast+0x3f6/0x610
[    0.984443]  ? netlink_detachskb+0x60/0x60
[    0.984729]  ? find_held_lock+0x2c/0x110
[    0.984976]  netlink_sendmsg+0x700/0xb80
[    0.985220]  ? netlink_broadcast_filtered+0xa60/0xa60
[    0.985533]  __sys_sendto+0x1dd/0x2c0
[    0.985763]  ? __x64_sys_getpeername+0xb0/0xb0
[    0.986039]  ? sockfd_lookup_light+0x17/0x160
[    0.986397]  ? __sys_recvmsg+0x8c/0xf0
[    0.986711]  ? __sys_recvmsg_sock+0xd0/0xd0
[    0.987018]  __x64_sys_sendto+0xd8/0x1b0
[    0.987283]  ? lockdep_hardirqs_on+0x39b/0x5a0
[    0.987666]  do_syscall_64+0x90/0xd9a
[    0.987903]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[    0.988223] RIP: 0033:0x7fe77c12003e
[    0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4
[    0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[    0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e
[    0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004
[    0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c
[    0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c
[    0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 14:14:18 +01:00
Eric Dumazet 9981159fc3 wireguard: allowedips: fix use-after-free in root_remove_peer_lists
In the unlikely case a new node could not be allocated, we need to
remove @newnode from @peer->allowedips_list before freeing it.

syzbot reported:

BUG: KASAN: use-after-free in __list_del_entry_valid+0xdc/0xf5 lib/list_debug.c:54
Read of size 8 at addr ffff88809881a538 by task syz-executor.4/30133

CPU: 0 PID: 30133 Comm: syz-executor.4 Not tainted 5.5.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x197/0x210 lib/dump_stack.c:118
 print_address_description.constprop.0.cold+0xd4/0x30b mm/kasan/report.c:374
 __kasan_report.cold+0x1b/0x32 mm/kasan/report.c:506
 kasan_report+0x12/0x20 mm/kasan/common.c:639
 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:135
 __list_del_entry_valid+0xdc/0xf5 lib/list_debug.c:54
 __list_del_entry include/linux/list.h:132 [inline]
 list_del include/linux/list.h:146 [inline]
 root_remove_peer_lists+0x24f/0x4b0 drivers/net/wireguard/allowedips.c:65
 wg_allowedips_free+0x232/0x390 drivers/net/wireguard/allowedips.c:300
 wg_peer_remove_all+0xd5/0x620 drivers/net/wireguard/peer.c:187
 wg_set_device+0xd01/0x1350 drivers/net/wireguard/netlink.c:542
 genl_family_rcv_msg_doit net/netlink/genetlink.c:672 [inline]
 genl_family_rcv_msg net/netlink/genetlink.c:717 [inline]
 genl_rcv_msg+0x67d/0xea0 net/netlink/genetlink.c:734
 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477
 genl_rcv+0x29/0x40 net/netlink/genetlink.c:745
 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline]
 netlink_unicast+0x59e/0x7e0 net/netlink/af_netlink.c:1328
 netlink_sendmsg+0x91c/0xea0 net/netlink/af_netlink.c:1917
 sock_sendmsg_nosec net/socket.c:652 [inline]
 sock_sendmsg+0xd7/0x130 net/socket.c:672
 ____sys_sendmsg+0x753/0x880 net/socket.c:2343
 ___sys_sendmsg+0x100/0x170 net/socket.c:2397
 __sys_sendmsg+0x105/0x1d0 net/socket.c:2430
 __do_sys_sendmsg net/socket.c:2439 [inline]
 __se_sys_sendmsg net/socket.c:2437 [inline]
 __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2437
 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
 entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x45b399
Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007f99a9bcdc78 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f99a9bce6d4 RCX: 000000000045b399
RDX: 0000000000000000 RSI: 0000000020001340 RDI: 0000000000000003
RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000004
R13: 00000000000009ba R14: 00000000004cb2b8 R15: 0000000000000009

Allocated by task 30103:
 save_stack+0x23/0x90 mm/kasan/common.c:72
 set_track mm/kasan/common.c:80 [inline]
 __kasan_kmalloc mm/kasan/common.c:513 [inline]
 __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:486
 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:527
 kmem_cache_alloc_trace+0x158/0x790 mm/slab.c:3551
 kmalloc include/linux/slab.h:556 [inline]
 kzalloc include/linux/slab.h:670 [inline]
 add+0x70a/0x1970 drivers/net/wireguard/allowedips.c:236
 wg_allowedips_insert_v4+0xf6/0x160 drivers/net/wireguard/allowedips.c:320
 set_allowedip drivers/net/wireguard/netlink.c:343 [inline]
 set_peer+0xfb9/0x1150 drivers/net/wireguard/netlink.c:468
 wg_set_device+0xbd4/0x1350 drivers/net/wireguard/netlink.c:591
 genl_family_rcv_msg_doit net/netlink/genetlink.c:672 [inline]
 genl_family_rcv_msg net/netlink/genetlink.c:717 [inline]
 genl_rcv_msg+0x67d/0xea0 net/netlink/genetlink.c:734
 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477
 genl_rcv+0x29/0x40 net/netlink/genetlink.c:745
 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline]
 netlink_unicast+0x59e/0x7e0 net/netlink/af_netlink.c:1328
 netlink_sendmsg+0x91c/0xea0 net/netlink/af_netlink.c:1917
 sock_sendmsg_nosec net/socket.c:652 [inline]
 sock_sendmsg+0xd7/0x130 net/socket.c:672
 ____sys_sendmsg+0x753/0x880 net/socket.c:2343
 ___sys_sendmsg+0x100/0x170 net/socket.c:2397
 __sys_sendmsg+0x105/0x1d0 net/socket.c:2430
 __do_sys_sendmsg net/socket.c:2439 [inline]
 __se_sys_sendmsg net/socket.c:2437 [inline]
 __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2437
 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 30103:
 save_stack+0x23/0x90 mm/kasan/common.c:72
 set_track mm/kasan/common.c:80 [inline]
 kasan_set_free_info mm/kasan/common.c:335 [inline]
 __kasan_slab_free+0x102/0x150 mm/kasan/common.c:474
 kasan_slab_free+0xe/0x10 mm/kasan/common.c:483
 __cache_free mm/slab.c:3426 [inline]
 kfree+0x10a/0x2c0 mm/slab.c:3757
 add+0x12d2/0x1970 drivers/net/wireguard/allowedips.c:266
 wg_allowedips_insert_v4+0xf6/0x160 drivers/net/wireguard/allowedips.c:320
 set_allowedip drivers/net/wireguard/netlink.c:343 [inline]
 set_peer+0xfb9/0x1150 drivers/net/wireguard/netlink.c:468
 wg_set_device+0xbd4/0x1350 drivers/net/wireguard/netlink.c:591
 genl_family_rcv_msg_doit net/netlink/genetlink.c:672 [inline]
 genl_family_rcv_msg net/netlink/genetlink.c:717 [inline]
 genl_rcv_msg+0x67d/0xea0 net/netlink/genetlink.c:734
 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477
 genl_rcv+0x29/0x40 net/netlink/genetlink.c:745
 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline]
 netlink_unicast+0x59e/0x7e0 net/netlink/af_netlink.c:1328
 netlink_sendmsg+0x91c/0xea0 net/netlink/af_netlink.c:1917
 sock_sendmsg_nosec net/socket.c:652 [inline]
 sock_sendmsg+0xd7/0x130 net/socket.c:672
 ____sys_sendmsg+0x753/0x880 net/socket.c:2343
 ___sys_sendmsg+0x100/0x170 net/socket.c:2397
 __sys_sendmsg+0x105/0x1d0 net/socket.c:2430
 __do_sys_sendmsg net/socket.c:2439 [inline]
 __se_sys_sendmsg net/socket.c:2437 [inline]
 __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2437
 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

The buggy address belongs to the object at ffff88809881a500
 which belongs to the cache kmalloc-64 of size 64
The buggy address is located 56 bytes inside of
 64-byte region [ffff88809881a500, ffff88809881a540)
The buggy address belongs to the page:
page:ffffea0002620680 refcount:1 mapcount:0 mapping:ffff8880aa400380 index:0x0
raw: 00fffe0000000200 ffffea000250b748 ffffea000254bac8 ffff8880aa400380
raw: 0000000000000000 ffff88809881a000 0000000100000020 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88809881a400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
 ffff88809881a480: 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc
>ffff88809881a500: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
                                        ^
 ffff88809881a580: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
 ffff88809881a600: 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: wireguard@lists.zx2c4.com
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 14:14:18 +01:00
Jason A. Donenfeld dcfea72e79 net: introduce skb_list_walk_safe for skb segment walking
As part of the continual effort to remove direct usage of skb->next and
skb->prev, this patch adds a helper for iterating through the
singly-linked variant of skb lists, which are used for lists of GSO
packet. The name "skb_list_..." has been chosen to match the existing
function, "kfree_skb_list, which also operates on these singly-linked
lists, and the "..._walk_safe" part is the same idiom as elsewhere in
the kernel.

This patch removes the helper from wireguard and puts it into
linux/skbuff.h, while making it a bit more robust for general usage. In
particular, parenthesis are added around the macro argument usage, and it
now accounts for trying to iterate through an already-null skb pointer,
which will simply run the iteration zero times. This latter enhancement
means it can be used to replace both do { ... } while and while (...)
open-coded idioms.

This should take care of these three possible usages, which match all
current methods of iterations.

skb_list_walk_safe(segs, skb, next) { ... }
skb_list_walk_safe(skb, skb, next) { ... }
skb_list_walk_safe(segs, skb, segs) { ... }

Gcc appears to generate efficient code for each of these.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-08 15:19:54 -08:00
Jason A. Donenfeld 736775d06b wireguard: socket: mark skbs as not on list when receiving via gro
Certain drivers will pass gro skbs to udp, at which point the udp driver
simply iterates through them and passes them off to encap_rcv, which is
where we pick up. At the moment, we're not attempting to coalesce these
into bundles, but we also don't want to wind up having cascaded lists of
skbs treated separately. The right behavior here, then, is to just mark
each incoming one as not on a list. This can be seen in practice, for
example, with Qualcomm's rmnet_perf driver.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Tested-by: Yaroslav Furman <yaro330@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-05 14:08:32 -08:00
Jason A. Donenfeld 04d2ea92a1 wireguard: queueing: do not account for pfmemalloc when clearing skb header
Before 8b7008620b ("net: Don't copy pfmemalloc flag in __copy_skb_
header()"), the pfmemalloc flag used to be between headers_start and
headers_end, which is a region we clear when preparing the packet for
encryption/decryption. This is a parameter we certainly want to
preserve, which is why 8b7008620b moved it out of there. The code here
was written in a world before 8b7008620b, though, where we had to
manually account for it. This commit brings things up to speed.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-05 14:08:32 -08:00
Wei Yongjun d89ee7d5c7 wireguard: allowedips: use kfree_rcu() instead of call_rcu()
The callback function of call_rcu() just calls a kfree(), so we
can use kfree_rcu() instead of call_rcu() + callback function.

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-16 19:22:22 -08:00