Dave Jones hit the following bug report:
===============================
[ INFO: suspicious RCU usage. ]
3.10.0-rc2+ #1 Not tainted
-------------------------------
include/linux/rcupdate.h:771 rcu_read_lock() used illegally while idle!
other info that might help us debug this:
RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0
RCU used illegally from extended quiescent state!
2 locks held by cc1/63645:
#0: (&rq->lock){-.-.-.}, at: [<ffffffff816b39fd>] __schedule+0xed/0x9b0
#1: (rcu_read_lock){.+.+..}, at: [<ffffffff8109d645>] cpuacct_charge+0x5/0x1f0
CPU: 1 PID: 63645 Comm: cc1 Not tainted 3.10.0-rc2+ #1 [loadavg: 40.57 27.55 13.39 25/277 64369]
Hardware name: Gigabyte Technology Co., Ltd. GA-MA78GM-S2H/GA-MA78GM-S2H, BIOS F12a 04/23/2010
0000000000000000 ffff88010f78fcf8 ffffffff816ae383 ffff88010f78fd28
ffffffff810b698d ffff88011c092548 000000000023d073 ffff88011c092500
0000000000000001 ffff88010f78fd60 ffffffff8109d7c5 ffffffff8109d645
Call Trace:
[<ffffffff816ae383>] dump_stack+0x19/0x1b
[<ffffffff810b698d>] lockdep_rcu_suspicious+0xfd/0x130
[<ffffffff8109d7c5>] cpuacct_charge+0x185/0x1f0
[<ffffffff8109d645>] ? cpuacct_charge+0x5/0x1f0
[<ffffffff8108dffc>] update_curr+0xec/0x240
[<ffffffff8108f528>] put_prev_task_fair+0x228/0x480
[<ffffffff816b3a71>] __schedule+0x161/0x9b0
[<ffffffff816b4721>] preempt_schedule+0x51/0x80
[<ffffffff816b4800>] ? __cond_resched_softirq+0x60/0x60
[<ffffffff816b6824>] ? retint_careful+0x12/0x2e
[<ffffffff810ff3cc>] ftrace_ops_control_func+0x1dc/0x210
[<ffffffff816be280>] ftrace_call+0x5/0x2f
[<ffffffff816b681d>] ? retint_careful+0xb/0x2e
[<ffffffff816b4805>] ? schedule_user+0x5/0x70
[<ffffffff816b4805>] ? schedule_user+0x5/0x70
[<ffffffff816b6824>] ? retint_careful+0x12/0x2e
------------[ cut here ]------------
What happened was that the function tracer traced the schedule_user() code
that tells RCU that the system is coming back from userspace, and to
add the CPU back to the RCU monitoring.
Because the function tracer does a preempt_disable/enable_notrace() calls
the preempt_enable_notrace() checks the NEED_RESCHED flag. If it is set,
then preempt_schedule() is called. But this is called before the user_exit()
function can inform the kernel that the CPU is no longer in user mode and
needs to be accounted for by RCU.
The fix is to create a new preempt_schedule_context() that checks if
the kernel is still in user mode and if so to switch it to kernel mode
before calling schedule. It also switches back to user mode coming back
from schedule in need be.
The only user of this currently is the preempt_enable_notrace(), which is
only used by the tracing subsystem.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1369423420.6828.226.camel@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In UP and non-preempt respectively, the spinlocks and preemption
disable/enable points are stubbed out entirely, because there is no
regular code that can ever hit the kind of concurrency they are meant to
protect against.
However, while there is no regular code that can cause scheduling, we
_do_ end up having some exceptional (literally!) code that can do so,
and that we need to make sure does not ever get moved into the critical
region by the compiler.
In particular, get_user() and put_user() is generally implemented as
inline asm statements (even if the inline asm may then make a call
instruction to call out-of-line), and can obviously cause a page fault
and IO as a result. If that inline asm has been scheduled into the
middle of a preemption-safe (or spinlock-protected) code region, we
obviously lose.
Now, admittedly this is *very* unlikely to actually ever happen, and
we've not seen examples of actual bugs related to this. But partly
exactly because it's so hard to trigger and the resulting bug is so
subtle, we should be extra careful to get this right.
So make sure that even when preemption is disabled, and we don't have to
generate any actual *code* to explicitly tell the system that we are in
a preemption-disabled region, we need to at least tell the compiler not
to move things around the critical region.
This patch grew out of the same discussion that caused commits
79e5f05edc ("ARC: Add implicit compiler barrier to raw_local_irq*
functions") and 3e2e0d2c22 ("tile: comment assumption about
__insn_mtspr for <asm/irqflags.h>") to come about.
Note for stable: use discretion when/if applying this. As mentioned,
this bug may never have actually bitten anybody, and gcc may never have
done the required code motion for it to possibly ever trigger in
practice.
Cc: stable@vger.kernel.org
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a distinction between scheduler related preempt_enable_no_resched()
calls and the nearly one hundred other places in the kernel that do not
want to reschedule, for one reason or another.
This distinction matters for -rt, where the scheduler and the non-scheduler
preempt models (and checks) are different. For upstream it's purely
documentational.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-gs88fvx2mdv5psnzxnv575ke@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Create a new CONFIG_PREEMPT_COUNT that handles the inc/dec
of preempt count offset independently. So that the offset
can be updated by preempt_disable() and preempt_enable()
even without the need for CONFIG_PREEMPT beeing set.
This prepares to make CONFIG_DEBUG_SPINLOCK_SLEEP working
with !CONFIG_PREEMPT where it currently doesn't detect
code that sleeps inside explicit preemption disabled
sections.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
498657a478 incorrectly assumed
that preempt wasn't disabled around context_switch() and thus
was fixing imaginary problem. It also broke KVM because it
depended on ->sched_in() to be called with irq enabled so that
it can do smp calls from there.
Revert the incorrect commit and add comment describing different
contexts under with the two callbacks are invoked.
Avi: spotted transposed in/out in the added comment.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Avi Kivity <avi@redhat.com>
Cc: peterz@infradead.org
Cc: efault@gmx.de
Cc: rusty@rustcorp.com.au
LKML-Reference: <1259726212-30259-2-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add preempt off timings. A lot of kernel core code is taken from the RT patch
latency trace that was written by Ingo Molnar.
This adds "preemptoff" and "preemptirqsoff" to /debugfs/tracing/available_tracers
Now instead of just tracing irqs off, preemption off can be selected
to be recorded.
When this is selected, it shares the same files as irqs off timings.
One can either trace preemption off, irqs off, or one or the other off.
By echoing "preemptoff" into /debugfs/tracing/current_tracer, recording
of preempt off only is performed. "irqsoff" will only record the time
irqs are disabled, but "preemptirqsoff" will take the total time irqs
or preemption are disabled. Runtime switching of these options is now
supported by simpling echoing in the appropriate trace name into
/debugfs/tracing/current_tracer.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The tracer may need to call preempt_enable and disable functions
for time keeping and such. The trace gets ugly when we see these
functions show up for all traces. To make the output cleaner
this patch adds preempt_enable_notrace and preempt_disable_notrace
to be used by tracer (and debugging) functions.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This adds a general mechanism whereby a task can request the scheduler to
notify it whenever it is preempted or scheduled back in. This allows the
task to swap any special-purpose registers like the fpu or Intel's VT
registers.
Signed-off-by: Avi Kivity <avi@qumranet.com>
[ mingo@elte.hu: fixes, cleanups ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently a simple
void foo(void) { preempt_enable(); }
produces the following code on ARM:
foo:
bic r3, sp, #8128
bic r3, r3, #63
ldr r2, [r3, #4]
ldr r1, [r3, #0]
sub r2, r2, #1
tst r1, #4
str r2, [r3, #4]
blne preempt_schedule
mov pc, lr
The problem is that the TIF_NEED_RESCHED flag is loaded _before_ the
preemption count is stored back, hence any interrupt coming within that
3 instruction window causing TIF_NEED_RESCHED to be set won't be
seen and scheduling won't happen as it should.
Nothing currently prevents gcc from performing that reordering. There
is already a barrier() before the decrement of the preemption count, but
another one is needed between this and the TIF_NEED_RESCHED flag test
for proper code ordering.
Signed-off-by: Nicolas Pitre <nico@cam.org>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
a) in smp_lock.h #include of sched.h and spinlock.h moved under #ifdef
CONFIG_LOCK_KERNEL.
b) interrupt.h now explicitly pulls sched.h (not via smp_lock.h from
hardirq.h as it used to)
c) in three more places we need changes to compensate for (a) - one place
in arch/sparc needs string.h now, hardirq.h needs forward declaration of
task_struct and preempt.h needs direct include of thread_info.h.
d) thread_info-related helpers in sched.h and thread_info.h put under
ifndef __HAVE_THREAD_FUNCTIONS. Obviously safe.
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!