Граф коммитов

31 Коммитов

Автор SHA1 Сообщение Дата
Hans Holmberg 9156f360a7 lightnvm: pblk: don't recover unwritten lines
If the line has not been written to, we should not
try to recover any data from it, so check the state of the
chunks in the line before attempting to read smeta.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Javier González e46f4e4822 lightnvm: simplify geometry structure
Currently, the device geometry is stored redundantly in the nvm_id and
nvm_geo structures at a device level. Moreover, when instantiating
targets on a specific number of LUNs, these structures are replicated
and manually modified to fit the instance channel and LUN partitioning.

Instead, create a generic geometry around nvm_geo, which can be used by
(i) the underlying device to describe the geometry of the whole device,
and (ii) instances to describe their geometry independently.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Matias Bjørling 89a09c5643 lightnvm: remove nvm_dev_ops->max_phys_sect
The value of max_phys_sect is always static. Instead of
defining it in the nvm_dev_ops structure, declare it as a global
value.

Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Hans Holmberg 76758390f8 lightnvm: pblk: export write amplification counters to sysfs
In a SSD, write amplification, WA, is defined as the average
number of page writes per user page write. Write amplification
negatively affects write performance and decreases the lifetime
of the disk, so it's a useful metric to add to sysfs.

In plkb's case, the number of writes per user sector is the sum of:

    (1) number of user writes
    (2) number of sectors written by the garbage collector
    (3) number of sectors padded (i.e. due to syncs)

This patch adds persistent counters for 1-3 and two sysfs attributes
to export these along with WA calculated with five decimals:

    write_amp_mileage: the accumulated write amplification stats
                      for the lifetime of the pblk instance

    write_amp_trip: resetable stats to facilitate delta measurements,
                    values reset at creation and if 0 is written
                    to the attribute.

64-bit counters are used as a 32 bit counter would wrap around
already after about 17 TB worth of user data. It will take a
long long time before the 64 bit sector counters wrap around.

The counters are stored after the bad block bitmap in the first
emeta sector of each written line. There is plenty of space in the
first emeta sector, so we don't need to bump the major version of
the line data format.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Hans Holmberg d0ab0b1ab9 lightnvm: pblk: check data lines version on recovery
As a preparation for future bumps of data line persistent storage
versions, we need to start checking the emeta line version during
recovery. Also slit up the current emeta/smeta version into two
bytes (major,minor).

Recovering lines with the same major number as the current pblk data
line version must succeed. This means that any changes in the
persistent format must be:

 (1) Backward compatible: if we switch back to and older
     kernel, recovery of lines stored with major == current_major
     and minor > current_minor must succeed.

 (2) Forward compatible: switching to a newer kernel,
     recovery of lines stored with major=current_major and
     minor < minor must handle the data format differences
     gracefully(i.e. initialize new data structures to default values).

If we detect lines that have a different major number than
the current we must abort recovery. The user must manually
migrate the data in this case.

Previously the version stored in the emeta header was copied
from smeta, which has version 1, so we need to set the minor
version to 1.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29 17:29:09 -06:00
Javier González 5d201f0720 lightnvm: pblk: ignore high ecc errors on recovery
On recovery, do not stop L2P recovery if reads report high ECC error
as the data is still available.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Javier González a7689938ef lightnvm: pblk: use exact free block counter in RL
Until now, pblk's rate-limiter has used a heuristic to reserve space for
GC I/O given that the over-provision area was fixed.

In preparation for allowing to define the over-provision area on target
creation, define a dedicated free_block counter in the rate-limiter to
track the number of blocks being used for user data.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Hans Holmberg 06bc072b3f lightnvm: pblk: refactor emeta consistency check
Currently pblk_recov_get_lba list does two separate things:
it checks the consistency of the emeta and extracts the lba list.

This patch separates the consistency check to make the code easier
to read and to prepare for version checks of the line emeta
persistent data format version.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Javier González b1bcfda105 lightnvm: pblk: compress and reorder helper functions
Through time, we have generated some redundant helper functions.
Refactor them to eliminate redundant and unnecessary code. Also, reorder
them to improve readability

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Matias Bjørling fae7fae407 lightnvm: make geometry structures 2.0 ready
Prepare for the 2.0 revision by adapting the geometry
structures to coexist with the 1.2 revision.

Signed-off-by: Matias Bjørling <m@bjorling.me>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05 08:50:12 -07:00
Javier González 1a94b2d484 lightnvm: implement generic path for sync I/O
Implement a generic path for sending sync I/O on LightNVM. This allows
to reuse the standard synchronous path trough blk_execute_rq(), instead
of implementing a wait_for_completion on the target side (e.g., pblk).

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Hans Holmberg 75610cd974 lightnvm: pblk: consider bad sectors in emeta during recovery
When recovering lines we need to consider that bad blocks in a line
affect the emeta area size.

Previously it was assumed that the emeta area would grow by the
number of sectors per page * number of bad blocks in the line.

This assumption is not correct - the number of "extra" pages that are
consumed could be both smaller (depending on emeta size) and bigger
(depending on the placement of the bad blocks).

Fix this by calculating the emeta start by iterating backwards
through the line, skipping ppas that map to bad blocks.

Also fix the data types used for ppa indices/counts in
pblk_recov_l2p_from_emeta - we should use u64.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Hans Holmberg 92957091e9 lightnvm: pblk: recover partially written lines correctly
When recovering partially written lines, the valid sector
count must be decreased by the number of padded sectors
in the line.

Update line recovery to take all ADDR_EMPTY(padded) sectors
into account.

Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González 67bf26a322 lightnvm: pblk: refactor rqd alloc/free
Refactor the rqd allocation and free functions so that all I/O types can
use these helper functions.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González e2cddf2082 lightnvm: pblk: improve naming for internal req.
Each request type sent to the LightNVM subsystem requires different
metadata. Until now, we have tailored this metadata based on write, read
and erase commands. However, pblk uses different metadata for internal
writes that do not hit the write buffer. Instead of abusing the metadata
for reads, create a new request type - internal write to improve
code readability.

In the process, create internal values for each I/O type instead of
abusing the READ/WRITE macros, as suggested by Christoph.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González 55e836d401 lightnvm: pblk: put bio on bio completion
Simplify put bio by doing it on bio end_io instead of manually putting
it on the completion path.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González 2942f50fa3 lightnvm: pblk: remove checks on mempool alloc.
As part of the mempool audit on pblk, remove unnecessary mempool
allocation checks on mempools.

Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González e72ec1d31b lightnvm: pblk: do not use a mempool for line bitmaps
pblk holds two sector bitmaps: one to keep track of the mapped sectors
while the line is active and another one to keep track of the invalid
sectors. The latter is kept during the whole live of the line, until it
is recycled. Since we cannot guarantee forward progress for the mempool
in this case, get rid of the mempool and simply allocate memory through
kmalloc.

Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Rakesh Pandit c79819bc08 lightnvm: pblk: print incompatible line version correctly
Correct it by converting little endian to cpu endian and also define
a macro for line version so that maintenance is easy.

Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13 08:34:57 -06:00
Javier González 3eaa11e278 lightnvm: pblk: control I/O flow also on tear down
When removing a pblk instance, control the write I/O flow to the
controller as we do in the fast path.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-07 13:17:34 -06:00
Javier González ee8d5c1ad5 lightnvm: pblk: remove target using async. I/Os
When removing a pblk instance, pad the current line using asynchronous
I/O. This reduces the removal time from ~1 minute in the worst case to a
couple of seconds.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30 11:08:18 -06:00
Javier González 8224cbd80b lightnvm: pblk: use right metadata buffer for recovery
Fix bad metadata buffer assignations introduced when refactoring the
medatada write path.

Fixes: dd2a434373 lightnvm: pblk: sched. metadata on write thread
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30 11:08:18 -06:00
Javier González f417aa0bd8 lightnvm: pblk: fix bad le64 assignations
Use the right types and conversions on le64 variables. Reported by
sparse.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30 11:08:18 -06:00
Javier González 588726d3ec lightnvm: pblk: fail gracefully on irrec. error
Due to user writes being decoupled from media writes because of the need
of an intermediate write buffer, irrecoverable media write errors lead
to pblk stalling; user writes fill up the buffer and end up in an
infinite retry loop.

In order to let user writes fail gracefully, it is necessary for pblk to
keep track of its own internal state and prevent further writes from
being placed into the write buffer.

This patch implements a state machine to keep track of internal errors
and, in case of failure, fail further user writes in an standard way.
Depending on the type of error, pblk will do its best to persist
buffered writes (which are already acknowledged) and close down on a
graceful manner. This way, data might be recovered by re-instantiating
pblk. Such state machine paves out the way for a state-based FTL log.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González f9c101523d lightnvm: pblk: issue multiplane reads if possible
If a read request is sequential and its size aligns with a
multi-plane page size, use the multi-plane hint to process the I/O in
parallel in the controller.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González 0880a9aa2d lightnvm: pblk: delete redundant buffer pointer
After refactoring the metadata path, the backpointer controlling
synced I/Os in a line becomes unnecessary; metadata is scheduled
on the write thread, thus we know when the end of the line is reached
and act on it directly.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González dd2a434373 lightnvm: pblk: sched. metadata on write thread
At the moment, line metadata is persisted on a separate work queue, that
is kicked each time that a line is closed. The assumption when designing
this was that freeing the write thread from creating a new write request
was better than the potential impact of writes colliding on the media
(user I/O and metadata I/O). Experimentation has proven that this
assumption is wrong; collision can cause up to 25% of bandwidth and
introduce long tail latencies on the write thread, which potentially
cause user write threads to spend more time spinning to get a free entry
on the write buffer.

This patch moves the metadata logic to the write thread. When a line is
closed, remaining metadata is written in memory and is placed on a
metadata queue. The write thread then takes the metadata corresponding
to the previous line, creates the write request and schedules it to
minimize collisions on the media. Using this approach, we see that we
can saturate the media's bandwidth, which helps reducing both write
latencies and the spinning time for user writer threads.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:39 -06:00
Javier González 084ec9ba07 lightnvm: pblk: rename read request pool
Read requests allocate some extra memory to store its per I/O context.
Instead of requiring yet another memory pool for other type of requests,
generalize this context allocation (and change naming accordingly).

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:27:13 -06:00
Javier González caa69fa560 lightnvm: pblk: spare double cpu_to_le64 calc.
Spare a double calculation on the fast write path.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:24:53 -06:00
Dan Carpenter 2a79efd833 lightnvm: fix some WARN() messages
WARN_ON() takes a condition, not an error message.  I slightly tweaked
some conditions so hopefully it's more clear.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 10:06:34 -06:00
Javier González a4bd217b43 lightnvm: physical block device (pblk) target
This patch introduces pblk, a host-side translation layer for
Open-Channel SSDs to expose them like block devices. The translation
layer allows data placement decisions, and I/O scheduling to be
managed by the host, enabling users to optimize the SSD for their
specific workloads.

An open-channel SSD has a set of LUNs (parallel units) and a
collection of blocks. Each block can be read in any order, but
writes must be sequential. Writes may also fail, and if a block
requires it, must also be reset before new writes can be
applied.

To manage the constraints, pblk maintains a logical to
physical address (L2P) table,  write cache, garbage
collection logic, recovery scheme, and logic to rate-limit
user I/Os versus garbage collection I/Os.

The L2P table is fully-associative and manages sectors at a
4KB granularity. Pblk stores the L2P table in two places, in
the out-of-band area of the media and on the last page of a
line. In the cause of a power failure, pblk will perform a
scan to recover the L2P table.

The user data is organized into lines. A line is data
striped across blocks and LUNs. The lines enable the host to
reduce the amount of metadata to maintain besides the user
data and makes it easier to implement RAID or erasure coding
in the future.

pblk implements multi-tenant support and can be instantiated
multiple times on the same drive. Each instance owns a
portion of the SSD - both regarding I/O bandwidth and
capacity - providing I/O isolation for each case.

Finally, pblk also exposes a sysfs interface that allows
user-space to peek into the internals of pblk. The interface
is available at /dev/block/*/pblk/ where * is the block
device name exposed.

This work also contains contributions from:
  Matias Bjørling <matias@cnexlabs.com>
  Simon A. F. Lund <slund@cnexlabs.com>
  Young Tack Jin <youngtack.jin@gmail.com>
  Huaicheng Li <huaicheng@cs.uchicago.edu>

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 10:06:33 -06:00