Граф коммитов

1007 Коммитов

Автор SHA1 Сообщение Дата
Laurent Vivier ed75e8d580 [PATCH] UML Support - Ptrace: adds the host SYSEMU support, for UML and general usage
Jeff Dike <jdike@addtoit.com>,
      Paolo 'Blaisorblade' Giarrusso <blaisorblade_spam@yahoo.it>,
      Bodo Stroesser <bstroesser@fujitsu-siemens.com>

Adds a new ptrace(2) mode, called PTRACE_SYSEMU, resembling PTRACE_SYSCALL
except that the kernel does not execute the requested syscall; this is useful
to improve performance for virtual environments, like UML, which want to run
the syscall on their own.

In fact, using PTRACE_SYSCALL means stopping child execution twice, on entry
and on exit, and each time you also have two context switches; with SYSEMU you
avoid the 2nd stop and so save two context switches per syscall.

Also, some architectures don't have support in the host for changing the
syscall number via ptrace(), which is currently needed to skip syscall
execution (UML turns any syscall into getpid() to avoid it being executed on
the host).  Fixing that is hard, while SYSEMU is easier to implement.

* This version of the patch includes some suggestions of Jeff Dike to avoid
  adding any instructions to the syscall fast path, plus some other little
  changes, by myself, to make it work even when the syscall is executed with
  SYSENTER (but I'm unsure about them). It has been widely tested for quite a
  lot of time.

* Various fixed were included to handle the various switches between
  various states, i.e. when for instance a syscall entry is traced with one of
  PT_SYSCALL / _SYSEMU / _SINGLESTEP and another one is used on exit.
  Basically, this is done by remembering which one of them was used even after
  the call to ptrace_notify().

* We're combining TIF_SYSCALL_EMU with TIF_SYSCALL_TRACE or TIF_SINGLESTEP
  to make do_syscall_trace() notice that the current syscall was started with
  SYSEMU on entry, so that no notification ought to be done in the exit path;
  this is a bit of a hack, so this problem is solved in another way in next
  patches.

* Also, the effects of the patch:
"Ptrace - i386: fix Syscall Audit interaction with singlestep"
are cancelled; they are restored back in the last patch of this series.

Detailed descriptions of the patches doing this kind of processing follow (but
I've already summed everything up).

* Fix behaviour when changing interception kind #1.

  In do_syscall_trace(), we check the status of the TIF_SYSCALL_EMU flag
  only after doing the debugger notification; but the debugger might have
  changed the status of this flag because he continued execution with
  PTRACE_SYSCALL, so this is wrong.  This patch fixes it by saving the flag
  status before calling ptrace_notify().

* Fix behaviour when changing interception kind #2:
  avoid intercepting syscall on return when using SYSCALL again.

  A guest process switching from using PTRACE_SYSEMU to PTRACE_SYSCALL
  crashes.

  The problem is in arch/i386/kernel/entry.S.  The current SYSEMU patch
  inhibits the syscall-handler to be called, but does not prevent
  do_syscall_trace() to be called after this for syscall completion
  interception.

  The appended patch fixes this.  It reuses the flag TIF_SYSCALL_EMU to
  remember "we come from PTRACE_SYSEMU and now are in PTRACE_SYSCALL", since
  the flag is unused in the depicted situation.

* Fix behaviour when changing interception kind #3:
  avoid intercepting syscall on return when using SINGLESTEP.

  When testing 2.6.9 and the skas3.v6 patch, with my latest patch and had
  problems with singlestepping on UML in SKAS with SYSEMU.  It looped
  receiving SIGTRAPs without moving forward.  EIP of the traced process was
  the same for all SIGTRAPs.

What's missing is to handle switching from PTRACE_SYSCALL_EMU to
PTRACE_SINGLESTEP in a way very similar to what is done for the change from
PTRACE_SYSCALL_EMU to PTRACE_SYSCALL_TRACE.

I.e., after calling ptrace(PTRACE_SYSEMU), on the return path, the debugger is
notified and then wake ups the process; the syscall is executed (or skipped,
when do_syscall_trace() returns 0, i.e.  when using PTRACE_SYSEMU), and
do_syscall_trace() is called again.  Since we are on the return path of a
SYSEMU'd syscall, if the wake up is performed through ptrace(PTRACE_SYSCALL),
we must still avoid notifying the parent of the syscall exit.  Now, this
behaviour is extended even to resuming with PTRACE_SINGLESTEP.

Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05 00:06:20 -07:00
Hugh Dickins 3b6bfcdb11 [PATCH] lower VM_DONTCOPY total_vm
dup_mmap of a VM_DONTCOPY vma forgot to lower the child's total_vm.  (But
no way does this account for the recent report of total_vm seen too low.)

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-12 16:00:58 -07:00
Jens Axboe 22e2c507c3 [PATCH] Update cfq io scheduler to time sliced design
This updates the CFQ io scheduler to the new time sliced design (cfq
v3).  It provides full process fairness, while giving excellent
aggregate system throughput even for many competing processes.  It
supports io priorities, either inherited from the cpu nice value or set
directly with the ioprio_get/set syscalls.  The latter closely mimic
set/getpriority.

This import is based on my latest from -mm.

Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 14:33:29 -07:00
Nick Piggin 476d139c21 [PATCH] sched: consolidate sbe sbf
Consolidate balance-on-exec with balance-on-fork.  This is made easy by the
sched-domains RCU patches.

As well as the general goodness of code reduction, this allows the runqueues
to be unlocked during balance-on-fork.

schedstats is a problem.  Maybe just have balance-on-event instead of
distinguishing fork and exec?

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:44 -07:00
Hugh Dickins 45918e1a8b [PATCH] dup_mmap: update comment on new vma
Remove part of comment on linking new vma in dup_mmap: since anon_vma rmap
came in, try_to_unmap_one knows the vma without needing find_vma.  But add
a comment to note that here vma is inserted without mmap_sem.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:19 -07:00
Wolfgang Wander 1363c3cd86 [PATCH] Avoiding mmap fragmentation
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.

The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.

The problem is twofold:

  1) the free_area_cache is used to continue a search for memory where
     the last search ended.  Before the change new areas were always
     searched from the base address on.

     So now new small areas are cluttering holes of all sizes
     throughout the whole mmap-able region whereas before small holes
     tended to close holes near the base leaving holes far from the base
     large and available for larger requests.

  2) the free_area_cache also is set to the location of the last
     munmap-ed area so in scenarios where we allocate e.g.  five regions of
     1K each, then free regions 4 2 3 in this order the next request for 1K
     will be placed in the position of the old region 3, whereas before we
     appended it to the still active region 1, placing it at the location
     of the old region 2.  Before we had 1 free region of 2K, now we only
     get two free regions of 1K -> fragmentation.

The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache.  If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.

The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.

Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.

Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.

Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:16 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00