Some calls to crc functions used useful #defines,
others used awkward offsetof() constructs.
Switch them all to #define to make things a bit cleaner.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we made all inode updates transactional, we no longer needed
the log recovery detection for inodes being newer on disk than the
transaction being replayed - it was redundant as replay of the log
would always result in the latest version of the inode would be on
disk. It was redundant, but left in place because it wasn't
considered to be a problem.
However, with the new "don't read inodes on create" optimisation,
flushiter has come back to bite us. Essentially, the optimisation
made always initialises flushiter to zero in the create transaction,
and so if we then crash and run recovery and the inode already on
disk has a non-zero flushiter it will skip recovery of that inode.
As a result, log recovery does the wrong thing and we end up with a
corrupt filesystem.
Because we have to support old kernel to new kernel upgrades, we
can't just get rid of the flushiter support in log recovery as we
might be upgrading from a kernel that doesn't have fully transactional
inode updates. Unfortunately, for v4 superblocks there is no way to
guarantee that log recovery knows about this fact.
We cannot add a new inode format flag to say it's a "special inode
create" because it won't be understood by older kernels and so
recovery could do the wrong thing on downgrade. We cannot specially
detect the combination of zero mode/non-zero flushiter on disk to
non-zero mode, zero flushiter in the log item during recovery
because wrapping of the flushiter can result in false detection.
Hence that makes this "don't use flushiter" optimisation limited to
a disk format that guarantees that we don't need it. And that means
the only fix here is to limit the "no read IO on create"
optimisation to version 5 superblocks....
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit e60896d8f2)
XFS_BROOT_SIZE_ADJ is an undocumented macro which accounts for
the difference in size between the on-disk and in-core btree
root. It's much clearer to just use the newly-added
XFS_BMAP_BMDR_SPACE macro which gives us the on-disk size
directly.
In one case, we must test that the if_broot exists before
applying the macro, however.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new inode version with a larger core. The primary objective is
to allow for a crc of the inode, and location information (uuid and ino)
to verify it was written in the right place. We also extend it by:
a creation time (for Samba);
a changecount (for NFSv4);
a flush sequence (in LSN format for recovery);
an additional inode flags field; and
some additional padding.
These additional fields are not implemented yet, but already laid
out in the structure.
[dchinner@redhat.com] Added LSN and flags field, some factoring and rework to
capture all the necessary information in the crc calculation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support for larger btree blocks that contains a CRC32C checksum,
a filesystem uuid and block number for detecting filesystem
consistency and out of place writes.
[dchinner@redhat.com] Also include an owner field to allow reverse
mappings to be implemented for improved repairability and a LSN
field to so that log recovery can easily determine the last
modification that made it to disk for each buffer.
[dchinner@redhat.com] Add buffer log format flags to indicate the
type of buffer to recovery so that we don't have to do blind magic
number tests to determine what the buffer is.
[dchinner@redhat.com] Modified to fit into the verifier structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a version argument to XFS_LITINO so that it can return different values
depending on the inode version. This is required for the upcoming v3 inodes
with a larger fixed layout dinode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There should be "XFS_DFORK_DPTR, XFS_DFORK_APTR, and XFS_DFORK_PTR" instead
of "XFS_DFORK_PTR, XFS_DFORK_DPTR, and XFS_DFORK_PTR".
Signed-off-by: Chen Baozi <baozich@gmail.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove the definition and usages of the macro XFS_BUF_PTR.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
This patch adds support for 32bit project quota identifiers.
On disk format is backward compatible with 16bit projid numbers. projid
on disk is now kept in two 16bit values - di_projid_lo (which holds the
same position as old 16bit projid value) and new di_projid_hi (takes
existing padding) and converts from/to 32bit value on the fly.
xfs_admin (for existing fs), mkfs.xfs (for new fs) needs to be used
to enable PROJID32BIT support.
Signed-off-by: Arkadiusz Miśkiewicz <arekm@maven.pl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
With the upcoming v3 inodes the inode data/attr area size needs to be
calculated for each specific inode, so we can't cache it in the superblock
anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Felix Blyakher <felixb@sgi.com>
These names don't add any value at all over just using the numerical
values.
(First sent on October 9th)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Now that we have a separate xfs_icdinode_t for the in-core inode which
gets logged there is no need anymore for the xfs_dinode vs xfs_dinode_core
split - the fact that part of the structure gets logged through the inode
log item and a small part not can better be described in a comment.
All sizeof operations on the dinode_core either really wanted the
icdinode and are switched to that one, or had already added the size
of the agi unlinked list pointer. Later both will be replaced with
helpers once we get the larger CRC-enabled dinode.
Removing the data and attribute fork unions also has the advantage that
xfs_dinode.h doesn't need to pull in every header under the sun.
While we're at it also add some more comments describing the dinode
structure.
(First sent on October 7th)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
xfs_ialloc_log_di is only used to log the full inode core + di_next_unlinked.
That means all the offset magic is not nessecary and we can simply use
xfs_trans_log_buf directly. Also add a comment describing what we should do
here instead.
(First sent on October 7th)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
structures.
Always use the generic xfs_btree_block type instead of the short / long
structures. Add XFS_BTREE_SBLOCK_LEN / XFS_BTREE_LBLOCK_LEN defines for
the length of a short / long form block. The rationale for this is that we
will grow more btree block header variants to support CRCs and other RAS
information, and always accessing them through the same datatype with
unions for the short / long form pointers makes implementing this much
easier.
SGI-PV: 988146
SGI-Modid: xfs-linux-melb:xfs-kern:32300a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Clean up the way the maximum and minimum records for the btree blocks are
calculated. For the alloc and inobt btrees all the values are
pre-calculated in xfs_mount_common, and we switch the current loop around
the ugly generic macros that use cpp token pasting to generate type names
to two small helpers in normal C code. For the bmbt and bmdr trees these
helpers also exist, but can be called during runtime, too. Here we also
kill various macros dealing with them and inline the logic into the
get_minrecs / get_maxrecs / get_dmaxrecs methods in xfs_bmap_btree.c.
Note that all these new helpers take an xfs_mount * argument which will be
needed to determine the size of a btree block once we add support for
extended btree blocks with CRCs and other RAS information.
SGI-PV: 988146
SGI-Modid: xfs-linux-melb:xfs-kern:32292a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Currently XFS_IFORK_* and XFS_DFORK* are implemented by means of
XFS_CFORK* macros. But given that XFS_IFORK_* operates on an xfs_inode
that embedds and xfs_icdinode_core and XFS_DFORK_* operates on an
xfs_dinode that embedds a xfs_dinode_core one will have to do endian
swapping while the other doesn't. Instead of having the current mess with
the CFORK macros that have byteswapping and non-byteswapping version
(which are inconsistantly named while we're at it) just define each family
of the macros to stand by itself and simplify the whole matter.
A few direct references to the CFORK variants were cleaned up to use IFORK
or DFORK to make this possible.
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30163a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Use XFS_IS_REALTIME_INODE in more places, and #define it to 0 if
CONFIG_XFS_RT is off. This should be safe because mount checks in
xfs_rtmount_init:
so if we get mounted w/o CONFIG_XFS_RT, no realtime inodes should be
encountered after that.
Defining XFS_IS_REALTIME_INODE to 0 saves a bit of stack space,
presumeably gcc can optimize around the various "if (0)" type checks:
xfs_alloc_file_space -8 xfs_bmap_adjacent -16 xfs_bmapi -8
xfs_bmap_rtalloc -16 xfs_bunmapi -28 xfs_free_file_space -64 xfs_imap +8
<-- ? hmm. xfs_iomap_write_direct -12 xfs_qm_dqusage_adjust -4
xfs_qm_vop_chown_reserve -4
SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30014a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Biggest bit is duplicating the dinode structure so we have one annotated for
native endianess and one for disk endianess. The other significant change
is that xfs_xlate_dinode_core is split into one helper per direction to
allow for proper annotations, everything else is trivial.
As a sidenode splitting out the incore dinode means we can move it into
xfs_inode.h in a later patch and severely improving on the include hell in
xfs.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29476a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.
When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.
This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.
The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.
Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).
Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
well. Also provides a mechanism for inheriting this property from the
parent directory for new files.
SGI-PV: 945264
SGI-Modid: xfs-linux-melb:xfs-kern:24367a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!