- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes it possible to build the CAN Identifier into the kernel, even
if the CAN support is build as a module.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Can be used to match packets against netfilter ip sets created via ipset(8).
skb->sk_iif is used as 'incoming interface', skb->dev is 'outgoing interface'.
Since ipset is usually called from netfilter, the ematch
initializes a fake xt_action_param, pulls the ip header into the
linear area and also sets skb->data to the IP header (otherwise
matching Layer 4 set types doesn't work).
Tested-by: Mr Dash Four <mr.dash.four@googlemail.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This ematch makes it possible to classify CAN frames (AF_CAN) according
to their identifiers. This functionality can not be easily achieved with
existing classifiers, such as u32, because CAN identifier is always stored
in native endianness, whereas u32 expects Network byte order.
Signed-off-by: Rostislav Lisovy <lisovy@gmail.com>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
An implementation of CoDel AQM, from Kathleen Nichols and Van Jacobson.
http://queue.acm.org/detail.cfm?id=2209336
This AQM main input is no longer queue size in bytes or packets, but the
delay packets stay in (FIFO) queue.
As we don't have infinite memory, we still can drop packets in enqueue()
in case of massive load, but mean of CoDel is to drop packets in
dequeue(), using a control law based on two simple parameters :
target : target sojourn time (default 5ms)
interval : width of moving time window (default 100ms)
Based on initial work from Dave Taht.
Refactored to help future codel inclusion as a plugin for other linux
qdisc (FQ_CODEL, ...), like RED.
include/net/codel.h contains codel algorithm as close as possible than
Kathleen reference.
net/sched/sch_codel.c contains the linux qdisc specific glue.
Separate structures permit a memory efficient implementation of fq_codel
(to be sent as a separate work) : Each flow has its own struct
codel_vars.
timestamps are taken at enqueue() time with 1024 ns precision, allowing
a range of 2199 seconds in queue, and 100Gb links support. iproute2 uses
usec as base unit.
Selected packets are dropped, unless ECN is enabled and packets can get
ECN mark instead.
Tested from 2Mb to 10Gb speeds with no particular problems, on ixgbe and
tg3 drivers (BQL enabled).
Usage: tc qdisc ... codel [ limit PACKETS ] [ target TIME ]
[ interval TIME ] [ ecn ]
qdisc codel 10: parent 1:1 limit 2000p target 3.0ms interval 60.0ms ecn
Sent 13347099587 bytes 8815805 pkt (dropped 0, overlimits 0 requeues 0)
rate 202365Kbit 16708pps backlog 113550b 75p requeues 0
count 116 lastcount 98 ldelay 4.3ms dropping drop_next 816us
maxpacket 1514 ecn_mark 84399 drop_overlimit 0
CoDel must be seen as a base module, and should be used keeping in mind
there is still a FIFO queue. So a typical setup will probably need a
hierarchy of several qdiscs and packet classifiers to be able to meet
whatever constraints a user might have.
One possible example would be to use fq_codel, which combines Fair
Queueing and CoDel, in replacement of sfq / sfq_red.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Dave Taht <dave.taht@bufferbloat.net>
Cc: Kathleen Nichols <nichols@pollere.com>
Cc: Van Jacobson <van@pollere.net>
Cc: Tom Herbert <therbert@google.com>
Cc: Matt Mathis <mattmathis@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The qdisc supports two operations - plug and unplug. When the
qdisc receives a plug command via netlink request, packets arriving
henceforth are buffered until a corresponding unplug command is received.
Depending on the type of unplug command, the queue can be unplugged
indefinitely or selectively.
This qdisc can be used to implement output buffering, an essential
functionality required for consistent recovery in checkpoint based
fault-tolerance systems. Output buffering enables speculative execution
by allowing generated network traffic to be rolled back. It is used to
provide network protection for Xen Guests in the Remus high availability
project, available as part of Xen.
This module is generic enough to be used by any other system that wishes
to add speculative execution and output buffering to its applications.
This module was originally available in the linux 2.6.32 PV-OPS tree,
used as dom0 for Xen.
For more information, please refer to http://nss.cs.ubc.ca/remus/
and http://wiki.xensource.com/xenwiki/Remus
Changes in V3:
* Removed debug output (printk) on queue overflow
* Added TCQ_PLUG_RELEASE_INDEFINITE - that allows the user to
use this qdisc, for simple plug/unplug operations.
* Use of packet counts instead of pointers to keep track of
the buffers in the queue.
Signed-off-by: Shriram Rajagopalan <rshriram@cs.ubc.ca>
Signed-off-by: Brendan Cully <brendan@cs.ubc.ca>
[author of the code in the linux 2.6.32 pvops tree]
Signed-off-by: David S. Miller <davem@davemloft.net>
IP_ROUTE_CLASSID depends on INET and NET_CLS_ROUTE4 selects
IP_ROUTE_CLASSID, but when INET is not enabled, this kconfig warning
is produced, so fix it by making NET_CLS_ROUTE4 depend on INET.
warning: (NET_CLS_ROUTE4) selects IP_ROUTE_CLASSID which has unmet direct dependencies (NET && INET)
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is an implementation of the Quick Fair Queue scheduler developed
by Fabio Checconi. The same algorithm is already implemented in ipfw
in FreeBSD. Fabio had an earlier version developed on Linux, I just
cleaned it up. Thanks to Eric Dumazet for testing this under load.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is the Stochastic Fair Blue scheduler, based on work from :
W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: A New Class of Active Queue
Management Algorithms. U. Michigan CSE-TR-387-99, April 1999.
http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
This implementation is based on work done by Juliusz Chroboczek
General SFB algorithm can be found in figure 14, page 15:
B[l][n] : L x N array of bins (L levels, N bins per level)
enqueue()
Calculate hash function values h{0}, h{1}, .. h{L-1}
Update bins at each level
for i = 0 to L - 1
if (B[i][h{i}].qlen > bin_size)
B[i][h{i}].p_mark += p_increment;
else if (B[i][h{i}].qlen == 0)
B[i][h{i}].p_mark -= p_decrement;
p_min = min(B[0][h{0}].p_mark ... B[L-1][h{L-1}].p_mark);
if (p_min == 1.0)
ratelimit();
else
mark/drop with probabilty p_min;
I did the adaptation of Juliusz code to meet current kernel standards,
and various changes to address previous comments :
http://thread.gmane.org/gmane.linux.network/90225http://thread.gmane.org/gmane.linux.network/90375
Default flow classifier is the rxhash introduced by RPS in 2.6.35, but
we can use an external flow classifier if wanted.
tc qdisc add dev $DEV parent 1:11 handle 11: \
est 0.5sec 2sec sfb limit 128
tc filter add dev $DEV protocol ip parent 11: handle 3 \
flow hash keys dst divisor 1024
Notes:
1) SFB default child qdisc is pfifo_fast. It can be changed by another
qdisc but a child qdisc MUST not drop a packet previously queued. This
is because SFB needs to handle a dequeued packet in order to maintain
its virtual queue states. pfifo_head_drop or CHOKe should not be used.
2) ECN is enabled by default, unlike RED/CHOKe/GRED
With help from Patrick McHardy & Andi Kleen
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Juliusz Chroboczek <Juliusz.Chroboczek@pps.jussieu.fr>
CC: Stephen Hemminger <shemminger@vyatta.com>
CC: Patrick McHardy <kaber@trash.net>
CC: Andi Kleen <andi@firstfloor.org>
CC: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
CHOKe ("CHOose and Kill" or "CHOose and Keep") is an alternative
packet scheduler based on the Random Exponential Drop (RED) algorithm.
The core idea is:
For every packet arrival:
Calculate Qave
if (Qave < minth)
Queue the new packet
else
Select randomly a packet from the queue
if (both packets from same flow)
then Drop both the packets
else if (Qave > maxth)
Drop packet
else
Admit packet with proability p (same as RED)
See also:
Rong Pan, Balaji Prabhakar, Konstantinos Psounis, "CHOKe: a stateless active
queue management scheme for approximating fair bandwidth allocation",
Proceeding of INFOCOM'2000, March 2000.
Help from:
Eric Dumazet <eric.dumazet@gmail.com>
Patrick McHardy <kaber@trash.net>
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements a mqprio queueing discipline that by default creates
a pfifo_fast qdisc per tx queue and provides the needed configuration
interface.
Using the mqprio qdisc the number of tcs currently in use along
with the range of queues alloted to each class can be configured. By
default skbs are mapped to traffic classes using the skb priority.
This mapping is configurable.
Configurable parameters,
struct tc_mqprio_qopt {
__u8 num_tc;
__u8 prio_tc_map[TC_BITMASK + 1];
__u8 hw;
__u16 count[TC_MAX_QUEUE];
__u16 offset[TC_MAX_QUEUE];
};
Here the count/offset pairing give the queue alignment and the
prio_tc_map gives the mapping from skb->priority to tc.
The hw bit determines if the hardware should configure the count
and offset values. If the hardware bit is set then the operation
will fail if the hardware does not implement the ndo_setup_tc
operation. This is to avoid undetermined states where the hardware
may or may not control the queue mapping. Also minimal bounds
checking is done on the count/offset to verify a queue does not
exceed num_tx_queues and that queue ranges do not overlap. Otherwise
it is left to user policy or hardware configuration to create
useful mappings.
It is expected that hardware QOS schemes can be implemented by
creating appropriate mappings of queues in ndo_tc_setup().
One expected use case is drivers will use the ndo_setup_tc to map
queue ranges onto 802.1Q traffic classes. This provides a generic
mechanism to map network traffic onto these traffic classes and
removes the need for lower layer drivers to know specifics about
traffic types.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix dependencies of netfilter realm match: it depends on NET_CLS_ROUTE,
which itself depends on NET_SCHED; this dependency is missing from netfilter.
Since matching on realms is also useful without having NET_SCHED enabled and
the option really only controls whether the tclassid member is included in
route and dst entries, rename the config option to IP_ROUTE_CLASSID and move
it outside of traffic scheduling context to get rid of the NET_SCHED dependeny.
Reported-by: Vladis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Some of the documentation refers to web pages under
the domain `osdl.org'. However, `osdl.org' now
redirects to `linuxfoundation.org'.
Rather than rely on redirections, this patch updates
the addresses appropriately; for the most part, only
documentation that is meant to be current has been
updated.
The patch should be pretty quick to scan and check;
each new web-page url was gotten by trying out the
original URL in a browser and then simply copying the
the redirected URL (formatting as necessary).
There is some conflict as to which one of these domain
names is preferred:
linuxfoundation.org
linux-foundation.org
So, I wrote:
info@linuxfoundation.org
and got this reply:
Message-ID: <4CE17EE6.9040807@linuxfoundation.org>
Date: Mon, 15 Nov 2010 10:41:42 -0800
From: David Ames <david@linuxfoundation.org>
...
linuxfoundation.org is preferred. The canonical name for our web site is
www.linuxfoundation.org. Our list site is actually
lists.linux-foundation.org.
Regarding email linuxfoundation.org is preferred there are a few people
who choose to use linux-foundation.org for their own reasons.
Consequently, I used `linuxfoundation.org' for web pages and
`lists.linux-foundation.org' for mailing-list web pages and email addresses;
the only personal email address I updated from `@osdl.org' was that of
Andrew Morton, who prefers `linux-foundation.org' according `git log'.
Signed-off-by: Michael Witten <mfwitten@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
net/sched: add ACT_CSUM action to update packets checksums
ACT_CSUM can be called just after ACT_PEDIT in order to re-compute some
altered checksums in IPv4 and IPv6 packets. The following checksums are
supported by this patch:
- IPv4: IPv4 header, ICMP, IGMP, TCP, UDP & UDPLite
- IPv6: ICMPv6, TCP, UDP & UDPLite
It's possible to request in the same action to update different kind of
checksums, if the packets flow mix TCP, UDP and UDPLite, ...
An example of usage is done in the associated iproute2 patch.
Version 3 changes:
- remove useless goto instructions
- improve IPv6 hop options decoding
Version 2 changes:
- coding style correction
- remove useless arguments of some functions
- use stack in tcf_csum_dump()
- add tcf_csum_skb_nextlayer() to factor code
Signed-off-by: Gregoire Baron <baronchon@n7mm.org>
Acked-by: jamal <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allows the net_cls cgroup subsystem to be compiled as a module
This patch modifies net/sched/cls_cgroup.c to allow the net_cls subsystem
to be optionally compiled as a module instead of builtin. The
cgroup_subsys struct is moved around a bit to allow the subsys_id to be
either declared as a compile-time constant by the cgroup_subsys.h include
in cgroup.h, or, if it's a module, initialized within the struct by
cgroup_load_subsys.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The action modules have been prefixed with 'act_', but the Kconfig
description was not changed.
Signed-off-by: Jan Luebbe <jluebbe@debian.org>
Acked-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
cls_cgroup can't be compiled as a module, since it's not supported by
cgroup.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add classful DRR scheduler as a more flexible replacement for SFQ.
The main difference to the algorithm described in "Efficient Fair Queueing
using Deficit Round Robin" is that this implementation doesn't drop packets
from the longest queue on overrun because its classful and limits are
handled by each individual child qdisc.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The classifier should cover the most common use case and will work
without any special configuration.
The principle of the classifier is to directly access the
task_struct via get_current(). In order for this to work,
classification requests from softirqs must be ignored. This is
not a problem because the vast majority of packets in softirq
context are not assigned to a task anyway. For this to work, a
mechanism is needed to trace softirq context.
This repost goes back to the method of relying on the number of
nested bh disable calls for the sake of not adding too much
complexity and the option to come up with something more reliable
if actually needed.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
This new action will have the ability to change the priority and/or
queue_mapping fields on an sk_buff.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is intended to add a qdisc to support the new tx multiqueue
architecture by providing a band for each hardware queue. By doing
this it is possible to support a different qdisc per physical hardware
queue.
This qdisc uses the skb->queue_mapping to select which band to place
the traffic onto. It then uses a round robin w/ a check to see if the
subqueue is stopped to determine which band to dequeue the packet from.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit d62733c8e4
([SCHED]: Qdisc changes and sch_rr added for multiqueue)
added a NET_SCH_RR option that was unused since the code
went unconditionally into sch_prio.
Reported-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add new "flow" classifier, which is meant to extend the SFQ hashing
capabilities without hard-coding new hash functions and also allows
deterministic mappings of keys to classes, replacing some out of tree
iptables patches like IPCLASSIFY (maps IPs to classes), IPMARK (maps
IPs to marks, with fw filters to classes), ...
Some examples:
- Classic SFQ hash:
tc filter add ... flow hash \
keys src,dst,proto,proto-src,proto-dst divisor 1024
- Classic SFQ hash, but using information from conntrack to work properly in
combination with NAT:
tc filter add ... flow hash \
keys nfct-src,nfct-dst,proto,nfct-proto-src,nfct-proto-dst divisor 1024
- Map destination IPs of 192.168.0.0/24 to classids 1-257:
tc filter add ... flow map \
key dst addend -192.168.0.0 divisor 256
- alternatively:
tc filter add ... flow map \
key dst and 0xff
- similar, but reverse ordered:
tc filter add ... flow map \
key dst and 0xff xor 0xff
Perturbation is currently not supported because we can't reliable kill the
timer on destruction.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the old policer code is gone, TC actions are needed for policing.
The ingress qdisc can get packets directly from netif_receive_skb()
in case TC actions are enabled or through netfilter otherwise, but
since without TC actions there is no policer the only thing it actually
does is count packets.
Remove the netfilter support and always require TC actions.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Acked-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
The code is already gone for about half a year, the config option
has been kept around to select the replacement options for easier
upgrades. This seems long enough, people upgrading from older
kernels will have to reconfigure a lot anyway.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of complaining at scheduler initialization time, check the
dependencies in Kconfig.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Acked-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
Kill the defines again, convert to the new checksum helper names and
remove the dependency of NET_ACT_NAT on NETFILTER.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert "QoS and/or fair queueing" to menuconfig.
This makes it easy for someone to disable all sub-options with
one config symbol.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Stateless NAT is useful in controlled environments where restrictions are
placed on through traffic such that we don't need connection tracking to
correctly NAT protocol-specific data.
In particular, this is of interest when the number of flows or the number
of addresses being NATed is large, or if connection tracking information
has to be replicated and where it is not practical to do so.
Previously we had stateless NAT functionality which was integrated into
the IPv4 routing subsystem. This was a great solution as long as the NAT
worked on a subnet to subnet basis such that the number of NAT rules was
relatively small. The reason is that for SNAT the routing based system
had to perform a linear scan through the rules.
If the number of rules is large then major renovations would have take
place in the routing subsystem to make this practical.
For the time being, the least intrusive way of achieving this is to use
the u32 classifier written by Alexey Kuznetsov along with the actions
infrastructure implemented by Jamal Hadi Salim.
The following patch is an attempt at this problem by creating a new nat
action that can be invoked from u32 hash tables which would allow large
number of stateless NAT rules that can be used/updated in constant time.
The actual NAT code is mostly based on the previous stateless NAT code
written by Alexey. In future we might be able to utilise the protocol
NAT code from netfilter to improve support for other protocols.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The NET_CLS_ACT option is now a full replacement for NET_CLS_POLICE,
remove the old code. The config option will be kept around to select
the equivalent NET_CLS_ACT options for a short time to allow easier
upgrades.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The generic estimator is always built in anways and all the config options
does is prevent including a minimal amount of code for setting it up.
Additionally the option is already automatically selected for most cases.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the new sch_rr qdisc for multiqueue network device support. Allow
sch_prio and sch_rr to be compiled with or without multiqueue hardware
support.
sch_rr is part of sch_prio, and is referenced from MODULE_ALIAS. This
was done since sch_prio and sch_rr only differ in their dequeue
routine.
Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Get rid of the manual clock source selection mess and use ktime. Also
use a scalar representation, which allows to clean up pkt_sched.h a bit
more and results in less ktime_to_ns() calls in most cases.
The PSCHED_US2JIFFIE/PSCHED_JIFFIE2US macros are implemented quite
inefficient by this patch, following patches will convert all qdiscs
to hrtimers and get rid of them entirely.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on patch by Patrick McHardy.
Add a new option, NET_SCH_FIFO, which provides a simple fifo qdisc
without requiring CONFIG_NET_SCHED.
The d80211 stack needs a generic fifo qdisc for WME. At present it
uses net/d80211/fifo_qdisc.c which is functionally equivalent to
sch_fifo.c. This patch will allow the d80211 stack to remove
net/d80211/fifo_qdisc.c and use sch_fifo.c instead.
Signed-off-by: David Kimdon <david.kimdon@devicescape.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
nfmark is being used in various subsystems and has become
the defacto mark field for all kinds of packets. Therefore
it makes sense to rename it to `mark' and remove the
dependency on CONFIG_NETFILTER.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
This option should IMHO no longer depend on EXPERIMENTAL.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
ACKed-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
The default of using jiffies is very bad and results in
underutilization except with very low bandwidth.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
On Thu, 17 Nov 2005, David Gmez wrote:
> I found out that if i select NET_CLS_ROUTE4, save my changes and exit
> menuconfig, execute again make menuconfig and go to QoS options, then the new
> available options are visible. So menuconfig has some problem refreshing
> contents :?
No, they were there before too, but you have to go up one level to see
them.
It's better in 2.6.15-rc1-git5, but the menu structure is still a little
messed up, the patch below properly indents all menu entries.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make "QoS and/or fair queueing" have its own menu, it's too big to be
inlined into "Network options". Remove the obsolete NET_QOS option.
Automatically select NET_CLS if needed. Do the same for NET_ESTIMATOR
but allow it to be selected manually for statistical purposes. Add
comments to separate queueing from classification. Fix dependencies
and ordering of classifiers. Improve descriptions/help texts and
remove outdated pieces.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
Opterons with frequency scaling have fully unsynchronized TSCs
running at different frequencies, so using TSCs there is not a good idea.
Also some other x86 boxes have this problem. gettimeofday should be good
enough, so just disable it.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move the protocol specific config options out to the specific protocols.
With this change net/Kconfig now starts to become readable and serve as a
good basis for further re-structuring.
The menu structure is left almost intact, except that indention is
fixed in most cases. Most visible are the INET changes where several
"depends on INET" are replaced with a single ifdef INET / endif pair.
Several new files were created to accomplish this change - they are
small but serve the purpose that config options are now distributed
out where they belongs.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Do not present these confusing new options to the user
unless he picked some facility that makes use of it,
such as NET_EMATCH_TEXT.
Signed-off-by: David S. Miller <davem@davemloft.net>