Граф коммитов

389 Коммитов

Автор SHA1 Сообщение Дата
Mel Gorman d9c2340052 Do not depend on MAX_ORDER when grouping pages by mobility
Currently mobility grouping works at the MAX_ORDER_NR_PAGES level.  This makes
sense for the majority of users where this is also the huge page size.
However, on platforms like ia64 where the huge page size is runtime
configurable it is desirable to group at a lower order.  On x86_64 and
occasionally on x86, the hugepage size may not always be MAX_ORDER_NR_PAGES.

This patch groups pages together based on the value of HUGETLB_PAGE_ORDER.  It
uses a compile-time constant if possible and a variable where the huge page
size is runtime configurable.

It is assumed that grouping should be done at the lowest sensible order and
that the user would not want to override this.  If this is not true,
page_block order could be forced to a variable initialised via a boot-time
kernel parameter.

One potential issue with this patch is that IA64 now parses hugepagesz with
early_param() instead of __setup().  __setup() is called after the memory
allocator has been initialised and the pageblock bitmaps already setup.  In
tests on one IA64 there did not seem to be any problem with using
early_param() and in fact may be more correct as it guarantees the parameter
is handled before the parsing of hugepages=.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman d100313fd6 Fix calculation in move_freepages_block for counting pages
move_freepages_block() returns the number of blocks moved.  This value is used
to determine if a block of pages should be stolen for the exclusive use of a
migrate type or not.  However, the value returned is being used correctly.
This patch fixes the calculation to return the number of base pages that have
been moved.

This should be considered a fix to the patch
move-free-pages-between-lists-on-steal.patch

Credit to Andy Whitcroft for spotting the problem.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman 64c5e135bf don't group high order atomic allocations
Grouping high-order atomic allocations together was intended to allow
bursty users of atomic allocations to work such as e1000 in situations
where their preallocated buffers were depleted.  This did not work in at
least one case with a wireless network adapter needing order-1 allocations
frequently.  To resolve that, the free pages used for min_free_kbytes were
moved to separate contiguous blocks with the patch
bias-the-location-of-pages-freed-for-min_free_kbytes-in-the-same-max_order_nr_pages-blocks.

It is felt that keeping the free pages in the same contiguous blocks should
be sufficient for bursty short-lived high-order atomic allocations to
succeed, maybe even with the e1000.  Even if there is a failure, increasing
the value of min_free_kbytes will free pages as contiguous bloks in
contrast to the standard buddy allocator which makes no attempt to keep the
minimum number of free pages contiguous.

This patch backs out grouping high order atomic allocations together to
determine if it is really needed or not.  If a new report comes in about
high-order atomic allocations failing, the feature can be reintroduced to
determine if it fixes the problem or not.  As a side-effect, this patch
reduces by 1 the number of bits required to track the mobility type of
pages within a MAX_ORDER_NR_PAGES block.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman ac0e5b7a6b remove PAGE_GROUP_BY_MOBILITY
Grouping pages by mobility can be disabled at compile-time. This was
considered undesirable by a number of people. However, in the current stack of
patches, it is not a simple case of just dropping the configurable patch as it
would cause merge conflicts.  This patch backs out the configuration option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman 56fd56b868 Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block.  When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free.  This allows the occasional high atomic allocation to
succeed up until the point the blocks are split.  In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears.  Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.

On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available.  A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator.  This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.

A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.

This patch addresses the problem on the desktop machine booted with
mem=256mb.  It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes.  These
blocks are only fallen back to when there is no other free pages.  Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type.  The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.

This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages.  In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.

This effect has been observed on the test machine.  min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE.  min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.

This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together.  It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not.  If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher.  Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.

Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.

[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman 46dafbca2b Be more agressive about stealing when MIGRATE_RECLAIMABLE allocations fallback
MIGRATE_RECLAIMABLE allocations tend to be very bursty in nature like when
updatedb starts.  It is likely this will occur in situations where MAX_ORDER
blocks of pages are not free.  This means that updatedb can scatter
MIGRATE_RECLAIMABLE pages throughout the address space.  This patch is more
agressive about stealing blocks of pages for MIGRATE_RECLAIMABLE.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman 5adc5be7cd Bias the placement of kernel pages at lower PFNs
This patch chooses blocks with lower PFNs when placing kernel allocations.
This is particularly important during fallback in low memory situations to
stop unmovable pages being placed throughout the entire address space.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman 9ef9acb05a Do not group pages by mobility type on low memory systems
Grouping pages by mobility can only successfully operate when there are more
MAX_ORDER_NR_PAGES areas than mobility types.  When there are insufficient
areas, fallbacks cannot be avoided.  This has noticeable performance impacts
on machines with small amounts of memory in comparison to MAX_ORDER_NR_PAGES.
For example, on IA64 with a configuration including huge pages spans 1GiB with
MAX_ORDER_NR_PAGES so would need at least 4GiB of RAM before grouping pages by
mobility would be useful.  In comparison, an x86 would need 16MB.

This patch checks the size of vm_total_pages in build_all_zonelists(). If
there are not enough areas,  mobility is effectivly disabled by considering
all allocations as the same type (UNMOVABLE).  This is achived via a
__read_mostly flag.

With this patch, performance is comparable to disabling grouping pages
by mobility at compile-time on a test machine with insufficient memory.
With this patch, it is reasonable to get rid of grouping pages by mobility
a compile-time option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman e010487dbe Group high-order atomic allocations
In rare cases, the kernel needs to allocate a high-order block of pages
without sleeping.  For example, this is the case with e1000 cards configured
to use jumbo frames.  Migrating or reclaiming pages in this situation is not
an option.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_HIGHATOMIC type are exactly what they sound
like.  Care is taken that pages of other migrate types do not use the same
blocks as high-order atomic allocations.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman e12ba74d8f Group short-lived and reclaimable kernel allocations
This patch marks a number of allocations that are either short-lived such as
network buffers or are reclaimable such as inode allocations.  When something
like updatedb is called, long-lived and unmovable kernel allocations tend to
be spread throughout the address space which increases fragmentation.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_RECLAIMABLE type is for allocations that can be
reclaimed on demand, but not moved.  i.e.  they can be migrated by deleting
them and re-reading the information from elsewhere.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman c361be55b3 Move free pages between lists on steal
When a fallback occurs, there will be free pages for one allocation type
stored on the list for another.  When a large steal occurs, this patch will
move all the free pages within one list to the other.

[y-goto@jp.fujitsu.com: fix BUG_ON check at move_freepages()]
[apw@shadowen.org: Move to using pfn_valid_within()]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andy Whitcroft <andyw@uk.ibm.com>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman e2c55dc87f Drain per-cpu lists when high-order allocations fail
Per-cpu pages can accidentally cause fragmentation because they are free, but
pinned pages in an otherwise contiguous block.  When this patch is applied,
the per-cpu caches are drained after the direct-reclaim is entered if the
requested order is greater than 0.  It simply reuses the code used by suspend
and hotplug.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman b92a6edd4b Add a configure option to group pages by mobility
The grouping mechanism has some memory overhead and a more complex allocation
path.  This patch allows the strategy to be disabled for small memory systems
or if it is known the workload is suffering because of the strategy.  It also
acts to show where the page groupings strategy interacts with the standard
buddy allocator.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman 535131e692 Choose pages from the per-cpu list based on migration type
The freelists for each migrate type can slowly become polluted due to the
per-cpu list.  Consider what happens when the following happens

1. A 2^(MAX_ORDER-1) list is reserved for __GFP_MOVABLE pages
2. An order-0 page is allocated from the newly reserved block
3. The page is freed and placed on the per-cpu list
4. alloc_page() is called with GFP_KERNEL as the gfp_mask
5. The per-cpu list is used to satisfy the allocation

This results in a kernel page is in the middle of a migratable region. This
patch prevents this leak occuring by storing the MIGRATE_ type of the page in
page->private. On allocate, a page will only be returned of the desired type,
else more pages will be allocated. This may temporarily allow a per-cpu list
to go over the pcp->high limit but it'll be corrected on the next free. Care
is taken to preserve the hotness of pages recently freed.

The additional code is not measurably slower for the workloads we've tested.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman b2a0ac8875 Split the free lists for movable and unmovable allocations
This patch adds the core of the fragmentation reduction strategy.  It works by
grouping pages together based on their ability to migrate or be reclaimed.
Basically, it works by breaking the list in zone->free_area list into
MIGRATE_TYPES number of lists.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman 835c134ec4 Add a bitmap that is used to track flags affecting a block of pages
Here is the latest revision of the anti-fragmentation patches.  Of particular
note in this version is special treatment of high-order atomic allocations.
Care is taken to group them together and avoid grouping pages of other types
near them.  Artifical tests imply that it works.  I'm trying to get the
hardware together that would allow setting up of a "real" test.  If anyone
already has a setup and test that can trigger the atomic-allocation problem,
I'd appreciate a test of these patches and a report.  The second major change
is that these patches will apply cleanly with patches that implement
anti-fragmentation through zones.

kernbench shows effectively no performance difference varying between -0.2%
and +2% on a variety of test machines.  Success rates for huge page allocation
are dramatically increased.  For example, on a ppc64 machine, the vanilla
kernel was only able to allocate 1% of memory as a hugepage and this was due
to a single hugepage reserved as min_free_kbytes.  With these patches applied,
17% was allocatable as superpages.  With reclaim-related fixes from Andy
Whitcroft, it was 40% and further reclaim-related improvements should increase
this further.

Changelog Since V28
o Group high-order atomic allocations together
o It is no longer required to set min_free_kbytes to 10% of memory. A value
  of 16384 in most cases will be sufficient
o Now applied with zone-based anti-fragmentation
o Fix incorrect VM_BUG_ON within buffered_rmqueue()
o Reorder the stack so later patches do not back out work from earlier patches
o Fix bug were journal pages were being treated as movable
o Bias placement of non-movable pages to lower PFNs
o More agressive clustering of reclaimable pages in reactions to workloads
  like updatedb that flood the size of inode caches

Changelog Since V27

o Renamed anti-fragmentation to Page Clustering. Anti-fragmentation was giving
  the mistaken impression that it was the 100% solution for high order
  allocations. Instead, it greatly increases the chances high-order
  allocations will succeed and lays the foundation for defragmentation and
  memory hot-remove to work properly
o Redefine page groupings based on ability to migrate or reclaim instead of
  basing on reclaimability alone
o Get rid of spurious inits
o Per-cpu lists are no longer split up per-type. Instead the per-cpu list is
  searched for a page of the appropriate type
o Added more explanation commentary
o Fix up bug in pageblock code where bitmap was used before being initalised

Changelog Since V26
o Fix double init of lists in setup_pageset

Changelog Since V25
o Fix loop order of for_each_rclmtype_order so that order of loop matches args
o gfpflags_to_rclmtype uses gfp_t instead of unsigned long
o Rename get_pageblock_type() to get_page_rclmtype()
o Fix alignment problem in move_freepages()
o Add mechanism for assigning flags to blocks of pages instead of page->flags
o On fallback, do not examine the preferred list of free pages a second time

The purpose of these patches is to reduce external fragmentation by grouping
pages of related types together.  When pages are migrated (or reclaimed under
memory pressure), large contiguous pages will be freed.

This patch works by categorising allocations by their ability to migrate;

Movable - The pages may be moved with the page migration mechanism. These are
	generally userspace pages.

Reclaimable - These are allocations for some kernel caches that are
	reclaimable or allocations that are known to be very short-lived.

Unmovable - These are pages that are allocated by the kernel that
	are not trivially reclaimed. For example, the memory allocated for a
	loaded module would be in this category. By default, allocations are
	considered to be of this type

HighAtomic - These are high-order allocations belonging to callers that
	cannot sleep or perform any IO. In practice, this is restricted to
	jumbo frame allocation for network receive. It is assumed that the
	allocations are short-lived

Instead of having one MAX_ORDER-sized array of free lists in struct free_area,
there is one for each type of reclaimability.  Once a 2^MAX_ORDER block of
pages is split for a type of allocation, it is added to the free-lists for
that type, in effect reserving it.  Hence, over time, pages of the different
types can be clustered together.

When the preferred freelists are expired, the largest possible block is taken
from an alternative list.  Buddies that are split from that large block are
placed on the preferred allocation-type freelists to mitigate fragmentation.

This implementation gives best-effort for low fragmentation in all zones.
Ideally, min_free_kbytes needs to be set to a value equal to 4 * (1 <<
(MAX_ORDER-1)) pages in most cases.  This would be 16384 on x86 and x86_64 for
example.

Our tests show that about 60-70% of physical memory can be allocated on a
desktop after a few days uptime.  In benchmarks and stress tests, we are
finding that 80% of memory is available as contiguous blocks at the end of the
test.  To compare, a standard kernel was getting < 1% of memory as large pages
on a desktop and about 8-12% of memory as large pages at the end of stress
tests.

Following this email are 12 patches that implement thie page grouping feature.
 The first patch introduces a mechanism for storing flags related to a whole
block of pages.  Then allocations are split between movable and all other
allocations.  Following that are patches to deal with per-cpu pages and make
the mechanism configurable.  The next patch moves free pages between lists
when partially allocated blocks are used for pages of another migrate type.
The second last patch groups reclaimable kernel allocations such as inode
caches together.  The final patch related to groupings keeps high-order atomic
allocations.

The last two patches are more concerned with control of fragmentation.  The
second last patch biases placement of non-movable allocations towards the
start of memory.  This is with a view of supporting memory hot-remove of DIMMs
with higher PFNs in the future.  The biasing could be enforced a lot heavier
but it would cost.  The last patch agressively clusters reclaimable pages like
inode caches together.

The fragmentation reduction strategy needs to track if pages within a block
can be moved or reclaimed so that pages are freed to the appropriate list.
This patch adds a bitmap for flags affecting a whole a MAX_ORDER block of
pages.

In non-SPARSEMEM configurations, the bitmap is stored in the struct zone and
allocated during initialisation.  SPARSEMEM statically allocates the bitmap in
a struct mem_section so that bitmaps do not have to be resized during memory
hotadd.  This wastes a small amount of memory per unused section (usually
sizeof(unsigned long)) but the complexity of dynamically allocating the memory
is quite high.

Additional credit to Andy Whitcroft who reviewed up an earlier implementation
of the mechanism an suggested how to make it a *lot* cleaner.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Lee Schermerhorn 37b07e4163 memoryless nodes: fixup uses of node_online_map in generic code
Here's a cut at fixing up uses of the online node map in generic code.

mm/shmem.c:shmem_parse_mpol()

	Ensure nodelist is subset of nodes with memory.
	Use node_states[N_HIGH_MEMORY] as default for missing
	nodelist for interleave policy.

mm/shmem.c:shmem_fill_super()

	initialize policy_nodes to node_states[N_HIGH_MEMORY]

mm/page-writeback.c:highmem_dirtyable_memory()

	sum over nodes with memory

mm/page_alloc.c:zlc_setup()

	allowednodes - use nodes with memory.

mm/page_alloc.c:default_zonelist_order()

	average over nodes with memory.

mm/page_alloc.c:find_next_best_node()

	skip nodes w/o memory.
	N_HIGH_MEMORY state mask may not be initialized at this time,
	unless we want to depend on early_calculate_totalpages() [see
	below].  Will ZONE_MOVABLE ever be configurable?

mm/page_alloc.c:find_zone_movable_pfns_for_nodes()

	spread kernelcore over nodes with memory.

	This required calling early_calculate_totalpages()
	unconditionally, and populating N_HIGH_MEMORY node
	state therein from nodes in the early_node_map[].
	If we can depend on this, we can eliminate the
	population of N_HIGH_MEMORY mask from __build_all_zonelists()
	and use the N_HIGH_MEMORY mask in find_next_best_node().

mm/mempolicy.c:mpol_check_policy()

	Ensure nodes specified for policy are subset of
	nodes with memory.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Christoph Lameter 523b945855 Memoryless nodes: Fix GFP_THISNODE behavior
GFP_THISNODE checks that the zone selected is within the pgdat (node) of the
first zone of a nodelist.  That only works if the node has memory.  A
memoryless node will have its first node on another pgdat (node).

GFP_THISNODE currently will return simply memory on the first pgdat.  Thus it
is returning memory on other nodes.  GFP_THISNODE should fail if there is no
local memory on a node.

Add a new set of zonelists for each node that only contain the nodes that
belong to the zones itself so that no fallback is possible.

Then modify gfp_type to pickup the right zone based on the presence of
__GFP_THISNODE.

Drop the existing GFP_THISNODE checks from the page_allocators hot path.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Christoph Lameter 633c0666b5 Memoryless nodes: drop one memoryless node boot warning
get_pfn_range_for_nid() is called multiple times for each node at boot time.
Each time, it will warn about nodes with no memory, resulting in boot messages
like:

        Node 0 active with no memory
        Node 0 active with no memory
        Node 0 active with no memory
        Node 0 active with no memory
        Node 0 active with no memory
        Node 0 active with no memory
        On node 0 totalpages: 0
        Node 0 active with no memory
        Node 0 active with no memory
          DMA zone: 0 pages used for memmap
        Node 0 active with no memory
        Node 0 active with no memory
          Normal zone: 0 pages used for memmap
        Node 0 active with no memory
        Node 0 active with no memory
          Movable zone: 0 pages used for memmap

and so on for each memoryless node.

We already have the "On node N totalpages: ..." and other related messages, so
drop the "Node N active with no memory" warnings.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Christoph Lameter 37c0708dbe Memoryless nodes: Add N_CPU node state
We need the check for a node with cpu in zone reclaim.  Zone reclaim will not
allow remote zone reclaim if a node has a cpu.

[Lee.Schermerhorn@hp.com: Move setup of N_CPU node state mask]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter 7ea1530ab3 Memoryless nodes: introduce mask of nodes with memory
It is necessary to know if nodes have memory since we have recently begun to
add support for memoryless nodes.  For that purpose we introduce a two new
node states: N_HIGH_MEMORY and N_NORMAL_MEMORY.

A node has its bit in N_HIGH_MEMORY set if it has any memory regardless of the
type of mmemory.  If a node has memory then it has at least one zone defined
in its pgdat structure that is located in the pgdat itself.

A node has its bit in N_NORMAL_MEMORY set if it has a lower zone than
ZONE_HIGHMEM.  This means it is possible to allocate memory that is not
subject to kmap.

N_HIGH_MEMORY and N_NORMAL_MEMORY can then be used in various places to insure
that we do the right thing when we encounter a memoryless node.

[akpm@linux-foundation.org: build fix]
[Lee.Schermerhorn@hp.com: update N_HIGH_MEMORY node state for memory hotadd]
[y-goto@jp.fujitsu.com: Fix memory hotplug + sparsemem build]
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Christoph Lameter 1380891071 Memoryless nodes: Generic management of nodemasks for various purposes
Why do we need to support memoryless nodes?

KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:

> For fujitsu, problem is called "empty" node.
>
> When ACPI's SRAT table includes "possible nodes", ia64 bootstrap(acpi_numa_init)
> creates nodes, which includes no memory, no cpu.
>
> I tried to remove empty-node in past, but that was denied.
> It was because we can hot-add cpu to the empty node.
> (node-hotplug triggered by cpu is not implemented now. and it will be ugly.)
>
>
> For HP, (Lee can comment on this later), they have memory-less-node.
> As far as I hear, HP's machine can have following configration.
>
> (example)
> Node0: CPU0   memory AAA MB
> Node1: CPU1   memory AAA MB
> Node2: CPU2   memory AAA MB
> Node3: CPU3   memory AAA MB
> Node4: Memory XXX GB
>
> AAA is very small value (below 16MB)  and will be omitted by ia64 bootstrap.
> After boot, only Node 4 has valid memory (but have no cpu.)
>
> Maybe this is memory-interleave by firmware config.

Christoph Lameter <clameter@sgi.com> wrote:

> Future SGI platforms (actually also current one can have but nothing like
> that is deployed to my knowledge) have nodes with only cpus. Current SGI
> platforms have nodes with just I/O that we so far cannot manage in the
> core. So the arch code maps them to the nearest memory node.

Lee Schermerhorn <Lee.Schermerhorn@hp.com> wrote:

> For the HP platforms, we can configure each cell with from 0% to 100%
> "cell local memory".  When we configure with <100% CLM, the "missing
> percentages" are interleaved by hardware on a cache-line granularity to
> improve bandwidth at the expense of latency for numa-challenged
> applications [and OSes, but not our problem ;-)].  When we boot Linux on
> such a config, all of the real nodes have no memory--it all resides in a
> single interleaved pseudo-node.
>
> When we boot Linux on a 100% CLM configuration [== NUMA], we still have
> the interleaved pseudo-node.  It contains a few hundred MB stolen from
> the real nodes to contain the DMA zone.  [Interleaved memory resides at
> phys addr 0].  The memoryless-nodes patches, along with the zoneorder
> patches, support this config as well.
>
> Also, when we boot a NUMA config with the "mem=" command line,
> specifying less memory than actually exists, Linux takes the excluded
> memory "off the top" rather than distributing it across the nodes.  This
> can result in memoryless nodes, as well.
>

This patch:

Preparation for memoryless node patches.

Provide a generic way to keep nodemasks describing various characteristics of
NUMA nodes.

Remove the node_online_map and the node_possible map and realize the same
functionality using two nodes stats: N_POSSIBLE and N_ONLINE.

[Lee.Schermerhorn@hp.com: Initialize N_*_MEMORY and N_CPU masks for non-NUMA config]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:58 -07:00
Jesper Juhl 8691f3a72f mm: no need to cast vmalloc() return value in zone_wait_table_init()
vmalloc() returns a void pointer, so there's no need to cast its
return value in mm/page_alloc.c::zone_wait_table_init().

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:54 -07:00
Andrew Morton 6419168813 process_zones(): fix recovery code
Don't try to free memory which we didn't allocate.

Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-31 01:42:22 -07:00
Mel Gorman b377fd3982 Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE
The NUMA layer only supports NUMA policies for the highest zone.  When
ZONE_MOVABLE is configured with kernelcore=, the the highest zone becomes
ZONE_MOVABLE.  The result is that policies are only applied to allocations
like anonymous pages and page cache allocated from ZONE_MOVABLE when the
zone is used.

This patch applies policies to the two highest zones when the highest zone
is ZONE_MOVABLE.  As ZONE_MOVABLE consists of pages from the highest "real"
zone, it's always functionally equivalent.

The patch has been tested on a variety of machines both NUMA and non-NUMA
covering x86, x86_64 and ppc64.  No abnormal results were seen in
kernbench, tbench, dbench or hackbench.  It passes regression tests from
the numactl package with and without kernelcore= once numactl tests are
patched to wait for vmstat counters to update.

akpm: this is the nasty hack to fix NUMA mempolicies in the presence of
ZONE_MOVABLE and kernelcore= in 2.6.23.  Christoph says "For .24 either merge
the mobility or get the other solution that Mel is working on.  That solution
would only use a single zonelist per node and filter on the fly.  That may
help performance and also help to make memory policies work better."

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Tested-by:  Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:47 -07:00
Mel Gorman a8bbf72ab9 Do not trigger OOM-killer for high-order allocation failures
out_of_memory() may be called when an allocation is failing and the direct
reclaim is not making any progress.  This does not take into account the
requested order of the allocation.  If the request if for an order larger
than PAGE_ALLOC_COSTLY_ORDER, it is reasonable to fail the allocation
because the kernel makes no guarantees about those allocations succeeding.

This false OOM situation can occur if a user is trying to grow the hugepage
pool in a script like;

#!/bin/bash
REQUIRED=$1
echo 1 > /proc/sys/vm/hugepages_treat_as_movable
echo $REQUIRED > /proc/sys/vm/nr_hugepages
ACTUAL=`cat /proc/sys/vm/nr_hugepages`
while [ $REQUIRED -ne $ACTUAL ]; do
	echo Huge page pool at $ACTUAL growing to $REQUIRED
	echo $REQUIRED > /proc/sys/vm/nr_hugepages
	ACTUAL=`cat /proc/sys/vm/nr_hugepages`
	sleep 1
done

This is a reasonable scenario when ZONE_MOVABLE is in use but triggers OOM
easily on 2.6.23-rc1. This patch will fail an allocation for an order above
PAGE_ALLOC_COSTLY_ORDER instead of killing processes and retrying.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-31 15:39:36 -07:00
Rafael J. Wysocki 296699de6b Introduce CONFIG_SUSPEND for suspend-to-Ram and standby
Introduce CONFIG_SUSPEND representing the ability to enter system sleep
states, such as the ACPI S3 state, and allow the user to choose SUSPEND
and HIBERNATION independently of each other.

Make HOTPLUG_CPU be selected automatically if SUSPEND or HIBERNATION has
been chosen and the kernel is intended for SMP systems.

Also, introduce CONFIG_PM_SLEEP which is automatically selected if
CONFIG_SUSPEND or CONFIG_HIBERNATION is set and use it to select the
code needed for both suspend and hibernation.

The top-level power management headers and the ACPI code related to
suspend and hibernation are modified to use the new definitions (the
changes in drivers/acpi/sleep/main.c are, mostly, moving code to reduce
the number of ifdefs).

There are many other files in which CONFIG_PM can be replaced with
CONFIG_PM_SLEEP or even with CONFIG_SUSPEND, but they can be updated in
the future.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-29 16:45:38 -07:00
Mel Gorman b5445f956e Allow nodes to exist that only contain ZONE_MOVABLE
With the introduction of kernelcore=, a configurable zone is created on
request.  In some cases, this value will be small enough that some nodes
contain only ZONE_MOVABLE.  On some NUMA configurations when this occurs,
arch-independent zone-sizing will get the size of the memory holes within
the node incorrect.  The value of present_pages goes negative and the boot
fails.

This patch fixes the bug in the calculation of the size of the hole.  The
test case is to boot test a NUMA machine with a low value of kernelcore=
before and after the patch is applied.  While this bug exists in early
kernel it cannot be triggered in practice.

This patch has been boot-tested on a variety machines with and without
kernelcore= set.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-26 11:35:19 -07:00
Paul Mundt e228929bc2 mm: fix memory hotplug oops from ZONE_MOVABLE changes.
zone_movable_pfn is presently marked as __initdata and referenced from
adjust_zone_range_for_zone_movable(), which in turn is referenced by
zone_spanned_pages_in_node().  Both of these are __meminit annotated.  When
memory hotplug is enabled, this will oops on a hot-add, due to
zone_movable_pfn having been freed.

__meminitdata annotation gives the desired behaviour.

This will only impact platforms that enable both memory hotplug
and ARCH_POPULATES_NODE_MAP.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-20 08:44:19 -07:00
Fengguang Wu fe3cba17c4 mm: share PG_readahead and PG_reclaim
Share the same page flag bit for PG_readahead and PG_reclaim.

One is used only on file reads, another is only for emergency writes.  One
is used mostly for fresh/young pages, another is for old pages.

Combinations of possible interactions are:

a) clear PG_reclaim => implicit clear of PG_readahead
	it will delay an asynchronous readahead into a synchronous one
	it actually does _good_ for readahead:
		the pages will be reclaimed soon, it's readahead thrashing!
		in this case, synchronous readahead makes more sense.

b) clear PG_readahead => implicit clear of PG_reclaim
	one(and only one) page will not be reclaimed in time
	it can be avoided by checking PageWriteback(page) in readahead first

c) set PG_reclaim => implicit set of PG_readahead
	will confuse readahead and make it restart the size rampup process
	it's a trivial problem, and can mostly be avoided by checking
	PageWriteback(page) first in readahead

d) set PG_readahead => implicit set of PG_reclaim
	PG_readahead will never be set on already cached pages.
	PG_reclaim will always be cleared on dirtying a page.
	so not a problem.

In summary,
	a)   we get better behavior
	b,d) possible interactions can be avoided
	c)   racy condition exists that might affect readahead, but the chance
	     is _really_ low, and the hurt on readahead is trivial.

Compound pages also use PG_reclaim, but for now they do not interact with
reclaim/readahead code.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu d77c2d7cc5 readahead: introduce PG_readahead
Introduce a new page flag: PG_readahead.

It acts as a look-ahead mark, which tells the page reader: Hey, it's time to
invoke the read-ahead logic.  For the sake of I/O pipelining, don't wait until
it runs out of cached pages!

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:43 -07:00
Meelap Shah c2f1a551de knfsd: nfsd4: vary maximum delegation limit based on RAM size
Our original NFSv4 delegation policy was to give out a read delegation on any
open when it was possible to.

Since the lifetime of a delegation isn't limited to that of an open, a client
may quite reasonably hang on to a delegation as long as it has the inode
cached.  This becomes an obvious problem the first time a client's inode cache
approaches the size of the server's total memory.

Our first quick solution was to add a hard-coded limit.  This patch makes a
mild incremental improvement by varying that limit according to the server's
total memory size, allowing at most 4 delegations per megabyte of RAM.

My quick back-of-the-envelope calculation finds that in the worst case (where
every delegation is for a different inode), a delegation could take about
1.5K, which would make the worst case usage about 6% of memory.  The new limit
works out to be about the same as the old on a 1-gig server.

[akpm@linux-foundation.org: Don't needlessly bloat vmlinux]
[akpm@linux-foundation.org: Make it right for highmem machines]
Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:07 -07:00
Andy Whitcroft 5ad333eb66 Lumpy Reclaim V4
When we are out of memory of a suitable size we enter reclaim.  The current
reclaim algorithm targets pages in LRU order, which is great for fairness at
order-0 but highly unsuitable if you desire pages at higher orders.  To get
pages of higher order we must shoot down a very high proportion of memory;
>95% in a lot of cases.

This patch set adds a lumpy reclaim algorithm to the allocator.  It targets
groups of pages at the specified order anchored at the end of the active and
inactive lists.  This encourages groups of pages at the requested orders to
move from active to inactive, and active to free lists.  This behaviour is
only triggered out of direct reclaim when higher order pages have been
requested.

This patch set is particularly effective when utilised with an
anti-fragmentation scheme which groups pages of similar reclaimability
together.

This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms
the foundation.  Credit to Mel Gorman for sanitity checking.

Mel said:

  The patches have an application with hugepage pool resizing.

  When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can
  be resized with greater reliability.  Testing on a desktop machine with 2GB
  of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own
  was very slow as the success rate was quite low.  Without lumpy-reclaim,
  each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages.
  With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical.

[akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup]
[bunk@stusta.de: static declarations for internal functions]
[a.p.zijlstra@chello.nl: initial lumpy V2 implementation]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Mel Gorman 7e63efef85 Add a movablecore= parameter for sizing ZONE_MOVABLE
This patch adds a new parameter for sizing ZONE_MOVABLE called
movablecore=.  While kernelcore= is used to specify the minimum amount of
memory that must be available for all allocation types, movablecore= is
used to specify the minimum amount of memory that is used for migratable
allocations.  The amount of memory used for migratable allocations
determines how large the huge page pool could be dynamically resized to at
runtime for example.

How movablecore is actually handled is that the total number of pages in
the system is calculated and a value is set for kernelcore that is

kernelcore == totalpages - movablecore

Both kernelcore= and movablecore= can be safely specified at the same time.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Mel Gorman ed7ed36517 handle kernelcore=: generic
This patch adds the kernelcore= parameter for x86.

Once all patches are applied, a new command-line parameter exist and a new
sysctl.  This patch adds the necessary documentation.

From: Yasunori Goto <y-goto@jp.fujitsu.com>

  When "kernelcore" boot option is specified, kernel can't boot up on ia64
  because of an infinite loop.  In addition, the parsing code can be handled
  in an architecture-independent manner.

  This patch uses common code to handle the kernelcore= parameter.  It is
  only available to architectures that support arch-independent zone-sizing
  (i.e.  define CONFIG_ARCH_POPULATES_NODE_MAP).  Other architectures will
  ignore the boot parameter.

[bunk@stusta.de: make cmdline_parse_kernelcore() static]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Mel Gorman 2a1e274acf Create the ZONE_MOVABLE zone
The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE
that is only usable by allocations that specify both __GFP_HIGHMEM and
__GFP_MOVABLE.  This has the effect of keeping all non-movable pages within a
single memory partition while allowing movable allocations to be satisfied
from either partition.  The patches may be applied with the list-based
anti-fragmentation patches that groups pages together based on mobility.

The size of the zone is determined by a kernelcore= parameter specified at
boot-time.  This specifies how much memory is usable by non-movable
allocations and the remainder is used for ZONE_MOVABLE.  Any range of pages
within ZONE_MOVABLE can be released by migrating the pages or by reclaiming.

When selecting a zone to take pages from for ZONE_MOVABLE, there are two
things to consider.  First, only memory from the highest populated zone is
used for ZONE_MOVABLE.  On the x86, this is probably going to be ZONE_HIGHMEM
but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64.  Second,
the amount of memory usable by the kernel will be spread evenly throughout
NUMA nodes where possible.  If the nodes are not of equal size, the amount of
memory usable by the kernel on some nodes may be greater than others.

By default, the zone is not as useful for hugetlb allocations because they are
pinned and non-migratable (currently at least).  A sysctl is provided that
allows huge pages to be allocated from that zone.  This means that the huge
page pool can be resized to the size of ZONE_MOVABLE during the lifetime of
the system assuming that pages are not mlocked.  Despite huge pages being
non-movable, we do not introduce additional external fragmentation of note as
huge pages are always the largest contiguous block we care about.

Credit goes to Andy Whitcroft for catching a large variety of problems during
review of the patches.

This patch creates an additional zone, ZONE_MOVABLE.  This zone is only usable
by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE.  Hot-added
memory continues to be placed in their existing destination as there is no
mechanism to redirect them to a specific zone.

[y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code]
[akpm@linux-foundation.org: various fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Akinobu Mita 54114994f4 fault-injection: add min-order parameter to fail_page_alloc
Limiting smaller allocation failures by fault injection helps to find real
possible bugs.  Because higher order allocations are likely to fail and
zero-order allocations are not likely to fail.

This patch adds min-order parameter to fail_page_alloc.  It specifies the
minimum page allocation order to be injected failures.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:45 -07:00
Dan Aloni b49ad484c5 mm/page_alloc.c: lower printk severity
Signed-off-by: Dan Aloni <da-x@monatomic.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:36 -07:00
Paul Mundt 6ea6e6887d mm: more __meminit annotations
Currently zone_spanned_pages_in_node() and zone_absent_pages_in_node() are
non-static for ARCH_POPULATES_NODE_MAP and static otherwise.  However, only
the non-static versions are __meminit annotated, despite only being called
from __meminit functions in either case.

zone_init_free_lists() is currently non-static and not __meminit annotated
either, despite only being called once in the entire tree by
init_currently_empty_zone(), which too is __meminit.  So make it static and
properly annotated.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:36 -07:00
Jan Beulich 98011f569e mm: fix improper .init-type section references
.. which modpost started warning about.

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:36 -07:00
Eric Dumazet 1037b83bd0 MM: alloc_large_system_hash() can free some memory for non power-of-two bucketsize
alloc_large_system_hash() is called at boot time to allocate space for
several large hash tables.

Lately, TCP hash table was changed and its bucketsize is not a power-of-two
anymore.

On most setups, alloc_large_system_hash() allocates one big page (order >
0) with __get_free_pages(GFP_ATOMIC, order).  This single high_order page
has a power-of-two size, bigger than the needed size.

We can free all pages that wont be used by the hash table.

On a 1GB i386 machine, this patch saves 128 KB of LOWMEM memory.

TCP established hash table entries: 32768 (order: 6, 393216 bytes)

Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:35 -07:00
KAMEZAWA Hiroyuki f0c0b2b808 change zonelist order: zonelist order selection logic
Make zonelist creation policy selectable from sysctl/boot option v6.

This patch makes NUMA's zonelist (of pgdat) order selectable.
Available order are Default(automatic)/ Node-based / Zone-based.

[Default Order]
The kernel selects Node-based or Zone-based order automatically.

[Node-based Order]
This policy treats the locality of memory as the most important parameter.
Zonelist order is created by each zone's locality. This means lower zones
(ex. ZONE_DMA) can be used before higher zone (ex. ZONE_NORMAL) exhausion.
IOW. ZONE_DMA will be in the middle of zonelist.
current 2.6.21 kernel uses this.

Pros.
 * A user can expect local memory as much as possible.
Cons.
 * lower zone will be exhansted before higher zone. This may cause OOM_KILL.

Maybe suitable if ZONE_DMA is relatively big and you never see OOM_KILL
because of ZONE_DMA exhaution and you need the best locality.

(example)
assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL.

*node(0)'s memory allocation order:

 node(0)'s NORMAL -> node(0)'s DMA -> node(1)'s NORMAL.

*node(1)'s memory allocation order:

 node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA.

[Zone-based order]
This policy treats the zone type as the most important parameter.
Zonelist order is created by zone-type order. This means lower zone
never be used bofere higher zone exhaustion.
IOW. ZONE_DMA will be always at the tail of zonelist.

Pros.
 * OOM_KILL(bacause of lower zone) occurs only if the whole zones are exhausted.
Cons.
 * memory locality may not be best.

(example)
assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL.

*node(0)'s memory allocation order:

 node(0)'s NORMAL -> node(1)'s NORMAL -> node(0)'s DMA.

*node(1)'s memory allocation order:

 node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA.

bootoption "numa_zonelist_order=" and proc/sysctl is supporetd.

command:
%echo N > /proc/sys/vm/numa_zonelist_order

Will rebuild zonelist in Node-based order.

command:
%echo Z > /proc/sys/vm/numa_zonelist_order

Will rebuild zonelist in Zone-based order.

Thanks to Lee Schermerhorn, he gives me much help and codes.

[Lee.Schermerhorn@hp.com: add check_highest_zone to build_zonelists_in_zone_order]
[akpm@linux-foundation.org: build fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "jesse.barnes@intel.com" <jesse.barnes@intel.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:35 -07:00
Paul Mundt d09c6b8094 mm: Fix memory/cpu hotplug section mismatch and oops.
When building with memory hotplug enabled and cpu hotplug disabled, we
end up with the following section mismatch:

WARNING: mm/built-in.o(.text+0x4e58): Section mismatch: reference to
.init.text: (between 'free_area_init_node' and '__build_all_zonelists')

This happens as a result of:

        -> free_area_init_node()
          -> free_area_init_core()
            -> zone_pcp_init() <-- all __meminit up to this point
              -> zone_batchsize() <-- marked as __cpuinit                     fo

This happens because CONFIG_HOTPLUG_CPU=n sets __cpuinit to __init, but
CONFIG_MEMORY_HOTPLUG=y unsets __meminit.

Changing zone_batchsize() to __devinit fixes this.

__devinit is the only thing that is common between CONFIG_HOTPLUG_CPU=y and
CONFIG_MEMORY_HOTPLUG=y. In the long run, perhaps this should be moved to
another section identifier completely. Without this, memory hot-add
of offline nodes (via hotadd_new_pgdat()) will oops if CPU hotplug is
not also enabled.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

--

 mm/page_alloc.c |    2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
2007-06-15 16:18:08 -07:00
Roman Zippel 12d810c1b8 m68k: discontinuous memory support
Fix support for discontinuous memory

Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-31 07:58:14 -07:00
Miklos Szeredi 418508c132 fix unused setup_nr_node_ids
mm/page_alloc.c:931: warning: 'setup_nr_node_ids' defined but not used

This is now the only (!) compiler warning I get in my UML build :)

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-23 20:14:13 -07:00
Sam Ravnborg 577a32f620 mm: fix section mismatch warnings
modpost had two cases hardcoded for mm/
Shift over to __init_refok and kill the
hardcoded function names in modpost.

This has the drawback that the functions
will always be kept no matter configuration.
With previous code the function were placed in
init section if configuration allowed it.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2007-05-19 09:11:58 +02:00
Stephen Rothwell 6f076f5dd9 early_pfn_to_nid needs to be __meminit
Since it is referenced by memmap_init_zone (which is __meminit) via the
early_pfn_in_nid macro when CONFIG_NODES_SPAN_OTHER_NODES is set (which
basically means PowerPC 64).

This removes a section mismatch warning in those circumstances.

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-10 09:26:52 -07:00
Christoph Lameter 4037d45220 Move remote node draining out of slab allocators
Currently the slab allocators contain callbacks into the page allocator to
perform the draining of pagesets on remote nodes.  This requires SLUB to have
a whole subsystem in order to be compatible with SLAB.  Moving node draining
out of the slab allocators avoids a section of code in SLUB.

Move the node draining so that is is done when the vm statistics are updated.
At that point we are already touching all the cachelines with the pagesets of
a processor.

Add a expire counter there.  If we have to update per zone or global vm
statistics then assume that the pageset will require subsequent draining.

The expire counter will be decremented on each vm stats update pass until it
reaches zero.  Then we will drain one batch from the pageset.  The draining
will cause vm counter updates which will then cause another expiration until
the pcp is empty.  So we will drain a batch every 3 seconds.

Note that remote node draining is a somewhat esoteric feature that is required
on large NUMA systems because otherwise significant portions of system memory
can become trapped in pcp queues.  The number of pcp is determined by the
number of processors and nodes in a system.  A system with 4 processors and 2
nodes has 8 pcps which is okay.  But a system with 1024 processors and 512
nodes has 512k pcps with a high potential for large amount of memory being
caught in them.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:56 -07:00
Rafael J. Wysocki 8bb7844286 Add suspend-related notifications for CPU hotplug
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress.  This
patch introduces such notifications and causes them to be used during
suspend and resume transitions.  It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).

[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 12:30:56 -07:00
Yasunori Goto 72280ede31 Add white list into modpost.c for memory hotplug code and ia64's machvec section
This patch is add white list into modpost.c for some functions and
ia64's section to fix section mismatchs.

  sparse_index_alloc() and zone_wait_table_init() calls bootmem allocator
  at boot time, and kmalloc/vmalloc at hotplug time. If config
  memory hotplug is on, there are references of bootmem allocater(init text)
  from them (normal text). This is cause of section mismatch.

  Bootmem is called by many functions and it must be
  used only at boot time. I think __init of them should keep for
  section mismatch check. So, I would like to register sparse_index_alloc()
  and zone_wait_table_init() into white list.

  In addition, ia64's .machvec section is function table of some platform
  dependent code. It is mixture of .init.text and normal text. These
  reference of __init functions are valid too.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:14:57 -07:00
Yasunori Goto a3142c8e1d Fix section mismatch of memory hotplug related code.
This is to fix many section mismatches of code related to memory hotplug.
I checked compile with memory hotplug on/off on ia64 and x86-64 box.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:14:57 -07:00
Rafael J. Wysocki 7be9823491 swsusp: use inline functions for changing page flags
Replace direct invocations of SetPageNosave(), SetPageNosaveFree() etc.  with
calls to inline functions that can be changed in subsequent patches without
modifying the code calling them.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:58 -07:00
Christoph Lameter 6d7779538f mm: optimize compound_head() by avoiding a shared page flag
The patch adds PageTail(page) and PageHead(page) to check if a page is the
head or the tail of a compound page.  This is done by masking the two bits
describing the state of a compound page and then comparing them.  So one
comparision and a branch instead of two bit checks and two branches.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:53 -07:00
Christoph Lameter d85f33855c Make page->private usable in compound pages
If we add a new flag so that we can distinguish between the first page and the
tail pages then we can avoid to use page->private in the first page.
page->private == page for the first page, so there is no real information in
there.

Freeing up page->private makes the use of compound pages more transparent.
They become more usable like real pages.  Right now we have to be careful f.e.
 if we are going beyond PAGE_SIZE allocations in the slab on i386 because we
can then no longer use the private field.  This is one of the issues that
cause us not to support debugging for page size slabs in SLAB.

Having page->private available for SLUB would allow more meta information in
the page struct.  I can probably avoid the 16 bit ints that I have in there
right now.

Also if page->private is available then a compound page may be equipped with
buffer heads.  This may free up the way for filesystems to support larger
blocks than page size.

We add PageTail as an alias of PageReclaim.  Compound pages cannot currently
be reclaimed.  Because of the alias one needs to check PageCompound first.

The RFC for the this approach was discussed at
http://marc.info/?t=117574302800001&r=1&w=2

[nacc@us.ibm.com: fix hugetlbfs]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:53 -07:00
Mel Gorman 3b1d92c565 Do not disable interrupts when reading min_free_kbytes
The sysctl handler for min_free_kbytes calls setup_per_zone_pages_min() on
read or write.  This function iterates through every zone and calls
spin_lock_irqsave() on the zone LRU lock.  When reading min_free_kbytes,
this is a total waste of time that disables interrupts on the local
processor.  It might even be noticable machines with large numbers of zones
if a process started constantly reading min_free_kbytes.

This patch only calls setup_per_zone_pages_min() only on write. Tested on
an x86 laptop and it did the right thing.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:53 -07:00
Andy Whitcroft 14e0729841 add pfn_valid_within helper for sub-MAX_ORDER hole detection
Generally we work under the assumption that memory the mem_map array is
contigious and valid out to MAX_ORDER_NR_PAGES block of pages, ie.  that if we
have validated any page within this MAX_ORDER_NR_PAGES block we need not check
any other.  This is not true when CONFIG_HOLES_IN_ZONE is set and we must
check each and every reference we make from a pfn.

Add a pfn_valid_within() helper which should be used when scanning pages
within a MAX_ORDER_NR_PAGES block when we have already checked the validility
of the block normally with pfn_valid().  This can then be optimised away when
we do not have holes within a MAX_ORDER_NR_PAGES block of pages.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:52 -07:00
Christoph Lameter 476f35348e Safer nr_node_ids and nr_node_ids determination and initial values
The nr_cpu_ids value is currently only calculated in smp_init.  However, it
may be needed before (SLUB needs it on kmem_cache_init!) and other kernel
components may also want to allocate dynamically sized per cpu array before
smp_init.  So move the determination of possible cpus into sched_init()
where we already loop over all possible cpus early in boot.

Also initialize both nr_node_ids and nr_cpu_ids with the highest value they
could take.  If we have accidental users before these values are determined
then the current valud of 0 may cause too small per cpu and per node arrays
to be allocated.  If it is set to the maximum possible then we only waste
some memory for early boot users.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:51 -07:00
Nick Piggin 5409bae07a [PATCH] Rename PG_checked to PG_owner_priv_1
Rename PG_checked to PG_owner_priv_1 to reflect its availablilty as a
private flag for use by the owner/allocator of the page.  In the case of
pagecache pages (which might be considered to be owned by the mm),
filesystems may use the flag.

Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-01 14:53:37 -08:00
Christoph Lameter 8ef8286689 [PATCH] slab: reduce size of alien cache to cover only possible nodes
The alien cache is a per cpu per node array allocated for every slab on the
system.  Currently we size this array for all nodes that the kernel does
support.  For IA64 this is 1024 nodes.  So we allocate an array with 1024
objects even if we only boot a system with 4 nodes.

This patch uses "nr_node_ids" to determine the number of possible nodes
supported by a hardware configuration and only allocates an alien cache
sized for possible nodes.

The initialization of nr_node_ids occurred too late relative to the bootstrap
of the slab allocator and so I moved the setup_nr_node_ids() into
free_area_init_nodes().

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-20 17:10:13 -08:00
Christoph Lameter 74c7aa8b85 [PATCH] Replace highest_possible_node_id() with nr_node_ids
highest_possible_node_id() is currently used to calculate the last possible
node idso that the network subsystem can figure out how to size per node
arrays.

I think having the ability to determine the maximum amount of nodes in a
system at runtime is useful but then we should name this entry
correspondingly, it should return the number of node_ids, and the the value
needs to be setup only once on bootup.  The node_possible_map does not
change after bootup.

This patch introduces nr_node_ids and replaces the use of
highest_possible_node_id().  nr_node_ids is calculated on bootup when the
page allocators pagesets are initialized.

[deweerdt@free.fr: fix oops]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Frederik Deweerdt <frederik.deweerdt@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-20 17:10:13 -08:00
Christoph Lameter 4b51d66989 [PATCH] optional ZONE_DMA: optional ZONE_DMA in the VM
Make ZONE_DMA optional in core code.

- ifdef all code for ZONE_DMA and related definitions following the example
  for ZONE_DMA32 and ZONE_HIGHMEM.

- Without ZONE_DMA, ZONE_HIGHMEM and ZONE_DMA32 we get to a ZONES_SHIFT of
  0.

- Modify the VM statistics to work correctly without a DMA zone.

- Modify slab to not create DMA slabs if there is no ZONE_DMA.

[akpm@osdl.org: cleanup]
[jdike@addtoit.com: build fix]
[apw@shadowen.org: Simplify calculation of the number of bits we need for ZONES_SHIFT]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter 6267276f3f [PATCH] optional ZONE_DMA: deal with cases of ZONE_DMA meaning the first zone
This patchset follows up on the earlier work in Andrew's tree to reduce the
number of zones.  The patches allow to go to a minimum of 2 zones.  This one
allows also to make ZONE_DMA optional and therefore the number of zones can be
reduced to one.

ZONE_DMA is usually used for ISA DMA devices.  There are a number of reasons
why we would not want to have ZONE_DMA

1. Some arches do not need ZONE_DMA at all.

2. With the advent of IOMMUs DMA zones are no longer needed.
   The necessity of DMA zones may drastically be reduced
   in the future. This patchset allows a compilation of
   a kernel without that overhead.

3. Devices that require ISA DMA get rare these days. All
   my systems do not have any need for ISA DMA.

4. The presence of an additional zone unecessarily complicates
   VM operations because it must be scanned and balancing
   logic must operate on its.

5. With only ZONE_NORMAL one can reach the situation where
   we have only one zone. This will allow the unrolling of many
   loops in the VM and allows the optimization of varous
   code paths in the VM.

6. Having only a single zone in a NUMA system results in a
   1-1 correspondence between nodes and zones. Various additional
   optimizations to critical VM paths become possible.

Many systems today can operate just fine with a single zone.  If you look at
what is in ZONE_DMA then one usually sees that nothing uses it.  The DMA slabs
are empty (Some arches use ZONE_DMA instead of ZONE_NORMAL, then ZONE_NORMAL
will be empty instead).

On all of my systems (i386, x86_64, ia64) ZONE_DMA is completely empty.  Why
constantly look at an empty zone in /proc/zoneinfo and empty slab in
/proc/slabinfo?  Non i386 also frequently have no need for ZONE_DMA and zones
stay empty.

The patchset was tested on i386 (UP / SMP), x86_64 (UP, NUMA) and ia64 (NUMA).

The RFC posted earlier (see
http://marc.theaimsgroup.com/?l=linux-kernel&m=115231723513008&w=2) had lots
of #ifdefs in them.  An effort has been made to minize the number of #ifdefs
and make this as compact as possible.  The job was made much easier by the
ongoing efforts of others to extract common arch specific functionality.

I have been running this for awhile now on my desktop and finally Linux is
using all my available RAM instead of leaving the 16MB in ZONE_DMA untouched:

christoph@pentium940:~$ cat /proc/zoneinfo
Node 0, zone   Normal
  pages free     4435
        min      1448
        low      1810
        high     2172
        active   241786
        inactive 210170
        scanned  0 (a: 0 i: 0)
        spanned  524224
        present  524224
    nr_anon_pages 61680
    nr_mapped    14271
    nr_file_pages 390264
    nr_slab_reclaimable 27564
    nr_slab_unreclaimable 1793
    nr_page_table_pages 449
    nr_dirty     39
    nr_writeback 0
    nr_unstable  0
    nr_bounce    0
    cpu: 0 pcp: 0
              count: 156
              high:  186
              batch: 31
    cpu: 0 pcp: 1
              count: 9
              high:  62
              batch: 15
  vm stats threshold: 20
    cpu: 1 pcp: 0
              count: 177
              high:  186
              batch: 31
    cpu: 1 pcp: 1
              count: 12
              high:  62
              batch: 15
  vm stats threshold: 20
  all_unreclaimable: 0
  prev_priority:     12
  temp_priority:     12
  start_pfn:         0

This patch:

In two places in the VM we use ZONE_DMA to refer to the first zone.  If
ZONE_DMA is optional then other zones may be first.  So simply replace
ZONE_DMA with zone 0.

This also fixes ZONETABLE_PGSHIFT.  If we have only a single zone then
ZONES_PGSHIFT may become 0 because there is no need anymore to encode the zone
number related to a pgdat.  However, we still need a zonetable to index all
the zones for each node if this is a NUMA system.  Therefore define
ZONETABLE_SHIFT unconditionally as the offset of the ZONE field in page flags.

[apw@shadowen.org: fix mismerge]
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter 65e458d43d [PATCH] Drop get_zone_counts()
Values are available via ZVC sums.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter 9195481d2f [PATCH] Drop nr_free_pages_pgdat()
Function is unnecessary now.  We can use the summing features of the ZVCs to
get the values we need.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter 9617729941 [PATCH] Drop free_pages()
nr_free_pages is now a simple access to a global variable.  Make it a macro
instead of a function.

The nr_free_pages now requires vmstat.h to be included.  There is one
occurrence in power management where we need to add the include.  Directly
refrer to global_page_state() there to clarify why the #include was added.

[akpm@osdl.org: arm build fix]
[akpm@osdl.org: sparc64 build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Christoph Lameter d23ad42324 [PATCH] Use ZVC for free_pages
This is again simplifies some of the VM counter calculations through the use
of the ZVC consolidated counters.

[michal.k.k.piotrowski@gmail.com: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Michal Piotrowski <michal.k.k.piotrowski@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Christoph Lameter c878538598 [PATCH] Use ZVC for inactive and active counts
The determination of the dirty ratio to determine writeback behavior is
currently based on the number of total pages on the system.

However, not all pages in the system may be dirtied.  Thus the ratio is always
too low and can never reach 100%.  The ratio may be particularly skewed if
large hugepage allocations, slab allocations or device driver buffers make
large sections of memory not available anymore.  In that case we may get into
a situation in which f.e.  the background writeback ratio of 40% cannot be
reached anymore which leads to undesired writeback behavior.

This patchset fixes that issue by determining the ratio based on the actual
pages that may potentially be dirty.  These are the pages on the active and
the inactive list plus free pages.

The problem with those counts has so far been that it is expensive to
calculate these because counts from multiple nodes and multiple zones will
have to be summed up.  This patchset makes these counters ZVC counters.  This
means that a current sum per zone, per node and for the whole system is always
available via global variables and not expensive anymore to calculate.

The patchset results in some other good side effects:

- Removal of the various functions that sum up free, active and inactive
  page counts

- Cleanup of the functions that display information via the proc filesystem.

This patch:

The use of a ZVC for nr_inactive and nr_active allows a simplification of some
counter operations.  More ZVC functionality is used for sums etc in the
following patches.

[akpm@osdl.org: UP build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Mel Gorman a6af2bc3d5 [PATCH] Avoid excessive sorting of early_node_map[]
find_min_pfn_for_node() and find_min_pfn_with_active_regions() sort
early_node_map[] on every call.  This is an excessive amount of sorting and
that can be avoided.  This patch always searches the whole early_node_map[]
in find_min_pfn_for_node() instead of returning the first value found.  The
map is then only sorted once when required.  Successfully boot tested on a
number of machines.

[akpm@osdl.org: cleanup]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:17 -08:00
Andrew Morton a25700a53f [PATCH] mm: show bounce pages in oom killer output
Also split that long line up - people like to send us wordwrapped oom-kill
traces.

Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-09 09:25:47 -08:00
Linus Torvalds 6fd6b17c6d Revert "[PATCH] mm: micro optimise zone_watermark_ok"
This reverts commit e80ee884ae.

Pawel Sikora had a boot-time oops due to it - because the sign change
invalidates the following comparisons, since 'free_pages' can be
negative.

The micro-optimization just isn't worth it.

Bisected-by: Pawel Sikora <pluto@agmk.net>
Acked-by: Andrew Morton <akpm@osdl.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-01-31 16:46:40 -08:00
Dave Hansen a2f3aa0257 [PATCH] Fix sparsemem on Cell
Fix an oops experienced on the Cell architecture when init-time functions,
early_*(), are called at runtime.  It alters the call paths to make sure
that the callers explicitly say whether the call is being made on behalf of
a hotplug even, or happening at boot-time.

It has been compile tested on ppc64, ia64, s390, i386 and x86_64.

Acked-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-11 18:18:20 -08:00
Christoph Lameter f2e12bb272 [PATCH] Check for populated zone in __drain_pages
Both process_zones() and drain_node_pages() check for populated zones
before touching pagesets.  However, __drain_pages does not do so,

This may result in a NULL pointer dereference for pagesets in unpopulated
zones if a NUMA setup is combined with cpu hotplug.

Initially the unpopulated zone has the pcp pointers pointing to the boot
pagesets.  Since the zone is not populated the boot pageset pointers will
not be changed during page allocator and slab bootstrap.

If a cpu is later brought down (first call to __drain_pages()) then the pcp
pointers for cpus in unpopulated zones are set to NULL since __drain_pages
does not first check for an unpopulated zone.

If the cpu is then brought up again then we call process_zones() which will
ignore the unpopulated zone.  So the pageset pointers will still be NULL.

If the cpu is then again brought down then __drain_pages will attempt to
drain pages by following the NULL pageset pointer for unpopulated zones.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-05 23:55:29 -08:00
Paul Mundt 9ab37b8f21 [PATCH] Sanely size hash tables when using large base pages
At the moment the inode/dentry cache hash tables (common by way of
alloc_large_system_hash()) are incorrectly sized by their respective
detection logic when we attempt to use large base pages on systems with
little memory.

This results in odd behaviour when using a 64kB PAGE_SIZE, such as:

Dentry cache hash table entries: 8192 (order: -1, 32768 bytes)
Inode-cache hash table entries: 4096 (order: -2, 16384 bytes)

The mount cache hash table is seemingly the only one that gets this right
by directly taking PAGE_SIZE in to account.

The following patch attempts to catch the bogus values and round it up to
at least 0-order.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-05 23:55:23 -08:00
Paul Jackson 02a0e53d82 [PATCH] cpuset: rework cpuset_zone_allowed api
Elaborate the API for calling cpuset_zone_allowed(), so that users have to
explicitly choose between the two variants:

  cpuset_zone_allowed_hardwall()
  cpuset_zone_allowed_softwall()

Until now, whether or not you got the hardwall flavor depended solely on
whether or not you or'd in the __GFP_HARDWALL gfp flag to the gfp_mask
argument.

If you didn't specify __GFP_HARDWALL, you implicitly got the softwall
version.

Unfortunately, this meant that users would end up with the softwall version
without thinking about it.  Since only the softwall version might sleep,
this led to bugs with possible sleeping in interrupt context on more than
one occassion.

The hardwall version requires that the current tasks mems_allowed allows
the node of the specified zone (or that you're in interrupt or that
__GFP_THISNODE is set or that you're on a one cpuset system.)

The softwall version, depending on the gfp_mask, might allow a node if it
was allowed in the nearest enclusing cpuset marked mem_exclusive (which
requires taking the cpuset lock 'callback_mutex' to evaluate.)

This patch removes the cpuset_zone_allowed() call, and forces the caller to
explicitly choose between the hardwall and the softwall case.

If the caller wants the gfp_mask to determine this choice, they should (1)
be sure they can sleep or that __GFP_HARDWALL is set, and (2) invoke the
cpuset_zone_allowed_softwall() routine.

This adds another 100 or 200 bytes to the kernel text space, due to the few
lines of nearly duplicate code at the top of both cpuset_zone_allowed_*
routines.  It should save a few instructions executed for the calls that
turned into calls of cpuset_zone_allowed_hardwall, thanks to not having to
set (before the call) then check (within the call) the __GFP_HARDWALL flag.

For the most critical call, from get_page_from_freelist(), the same
instructions are executed as before -- the old cpuset_zone_allowed()
routine it used to call is the same code as the
cpuset_zone_allowed_softwall() routine that it calls now.

Not a perfect win, but seems worth it, to reduce this chance of hitting a
sleeping with irq off complaint again.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13 09:05:49 -08:00
Don Mullis 6b1b60f41e [PATCH] fault-injection: defaults likely to please a new user
Assign defaults most likely to please a new user:
 1) generate some logging output
    (verbose=2)
 2) avoid injecting failures likely to lock up UI
    (ignore_gfp_wait=1, ignore_gfp_highmem=1)

Signed-off-by: Don Mullis <dwm@meer.net>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:29:03 -08:00
Akinobu Mita 933e312e73 [PATCH] fault-injection capability for alloc_pages()
This patch provides fault-injection capability for alloc_pages()

Boot option:

fail_page_alloc=<interval>,<probability>,<space>,<times>

	<interval> -- specifies the interval of failures.

	<probability> -- specifies how often it should fail in percent.

	<space> -- specifies the size of free space where memory can be
		   allocated safely in pages.

	<times> -- specifies how many times failures may happen at most.

Debugfs:

/debug/fail_page_alloc/interval
/debug/fail_page_alloc/probability
/debug/fail_page_alloc/specifies
/debug/fail_page_alloc/times
/debug/fail_page_alloc/ignore-gfp-highmem
/debug/fail_page_alloc/ignore-gfp-wait

Example:

	fail_page_alloc=10,100,0,-1

The page allocation (alloc_pages(), ...) fails once per 10 times.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:29:02 -08:00
David Howells f0d1b0b30d [PATCH] LOG2: Implement a general integer log2 facility in the kernel
This facility provides three entry points:

	ilog2()		Log base 2 of unsigned long
	ilog2_u32()	Log base 2 of u32
	ilog2_u64()	Log base 2 of u64

These facilities can either be used inside functions on dynamic data:

	int do_something(long q)
	{
		...;
		y = ilog2(x)
		...;
	}

Or can be used to statically initialise global variables with constant values:

	unsigned n = ilog2(27);

When performing static initialisation, the compiler will report "error:
initializer element is not constant" if asked to take a log of zero or of
something not reducible to a constant.  They treat negative numbers as
unsigned.

When not dealing with a constant, they fall back to using fls() which permits
them to use arch-specific log calculation instructions - such as BSR on
x86/x86_64 or SCAN on FRV - if available.

[akpm@osdl.org: MMC fix]
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David Howells <dhowells@redhat.com>
Cc: Wojtek Kaniewski <wojtekka@toxygen.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:28:51 -08:00
Helge Deller 15ad7cdcfd [PATCH] struct seq_operations and struct file_operations constification
- move some file_operations structs into the .rodata section

 - move static strings from policy_types[] array into the .rodata section

 - fix generic seq_operations usages, so that those structs may be defined
   as "const" as well

[akpm@osdl.org: couple of fixes]
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:46 -08:00
Ingo Molnar 0231606785 [PATCH] hotplug CPU: clean up hotcpu_notifier() use
There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn,
prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus
generating compiler warnings of unused symbols, hence forcing people to add
#ifdefs.

the compiler can skip truly unused functions just fine:

    text    data     bss     dec     hex filename
 1624412  728710 3674856 6027978  5bfaca vmlinux.before
 1624412  728710 3674856 6027978  5bfaca vmlinux.after

[akpm@osdl.org: topology.c fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:39 -08:00
Andrew Morton 0490366432 [PATCH] remove HASH_HIGHMEM
It has no users and it's doubtful that we'll need it again.

Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:37 -08:00
Andy Whitcroft 33f2ef89f8 [PATCH] mm: make compound page destructor handling explicit
Currently we we use the lru head link of the second page of a compound page
to hold its destructor.  This was ok when it was purely an internal
implmentation detail.  However, hugetlbfs overrides this destructor
violating the layering.  Abstract this out as explicit calls, also
introduce a type for the callback function allowing them to be type
checked.  For each callback we pre-declare the function, causing a type
error on definition rather than on use elsewhere.

[akpm@osdl.org: cleanups]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:25 -08:00
Christoph Lameter 952f3b51be [PATCH] GFP_THISNODE must not trigger global reclaim
The intent of GFP_THISNODE is to make sure that an allocation occurs on a
particular node.  If this is not possible then NULL needs to be returned so
that the caller can choose what to do next on its own (the slab allocator
depends on that).

However, GFP_THISNODE currently triggers reclaim before returning a failure
(GFP_THISNODE means GFP_NORETRY is set).  If we have over allocated a node
then we will currently do some reclaim before returning NULL.  The caller
may want memory from other nodes before reclaim should be triggered.  (If
the caller wants reclaim then he can directly use __GFP_THISNODE instead).

There is no flag to avoid reclaim in the page allocator and adding yet
another GFP_xx flag would be difficult given that we are out of available
flags.

So just compare and see if all bits for GFP_THISNODE (__GFP_THISNODE,
__GFP_NORETRY and __GFP_NOWARN) are set.  If so then we return NULL before
waking up kswapd.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:25 -08:00
Andy Whitcroft ce421c799b [PATCH] mm: cleanup indentation on switch for CPU operations
These patches introduced new switch statements which are indented contrary
to the concensus in mm/*.c.  Fix them up to match that concensus.

    [PATCH] node local per-cpu-pages
    [PATCH] ZVC: Scale thresholds depending on the size of the system
    commit e7c8d5c995
    commit df9ecaba3f

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:23 -08:00
Andy Whitcroft 25ba77c141 [PATCH] numa node ids are int, page_to_nid and zone_to_nid should return int
NUMA node ids are passed as either int or unsigned int almost exclusivly
page_to_nid and zone_to_nid both return unsigned long.  This is a throw
back to when page_to_nid was a #define and was thus exposing the real type
of the page flags field.

In addition to fixing up the definitions of page_to_nid and zone_to_nid I
audited the users of these functions identifying the following incorrect
uses:

1) mm/page_alloc.c show_node() -- printk dumping the node id,
2) include/asm-ia64/pgalloc.h pgtable_quicklist_free() -- comparison
   against numa_node_id() which returns an int from cpu_to_node(), and
3) mm/mpolicy.c check_pte_range -- used as an index in node_isset which
   uses bit_set which in generic code takes an int.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:23 -08:00
Christoph Lameter bc4ba393c0 [PATCH] drain_node_page(): Drain pages in batch units
drain_node_pages() currently drains the complete pageset of all pages.  If
there are a large number of pages in the queues then we may hold off
interrupts for too long.

Duplicate the method used in free_hot_cold_page.  Only drain pcp->batch
pages at one time.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:23 -08:00
Kirill Korotaev b43a57bb4d [PATCH] OOM can panic due to processes stuck in __alloc_pages()
OOM can panic due to the processes stuck in __alloc_pages() doing infinite
rebalance loop while no memory can be reclaimed.  OOM killer tries to kill
some processes, but unfortunetaly, rebalance label was moved by someone
below the TIF_MEMDIE check, so buddy allocator doesn't see that process is
OOM-killed and it can simply fail the allocation :/

Observed in reality on RHEL4(2.6.9)+OpenVZ kernel when a user doing some
memory allocation tricks triggered OOM panic.

Signed-off-by: Denis Lunev <den@sw.ru>
Signed-off-by: Kirill Korotaev <dev@openvz.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:22 -08:00
Nick Piggin cc10250907 [PATCH] mm: add arch_alloc_page
Add an arch_alloc_page to match arch_free_page.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:21 -08:00
Paul Jackson 9276b1bc96 [PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.

Remembers the zones in a zonelist that were short of free memory in the
last second.  And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)

Recent changes:

    This differs in a significant way from a similar patch that I
    posted a week ago.  Now, instead of having a nodemask_t of
    recently full nodes, I have a bitmask of recently full zones.
    This solves a problem that last weeks patch had, which on
    systems with multiple zones per node (such as DMA zone) would
    take seeing any of these zones full as meaning that all zones
    on that node were full.

    Also I changed names - from "zonelist faster" to "zonelist cache",
    as that seemed to better convey what we're doing here - caching
    some of the key zonelist state (for faster access.)

    See below for some performance benchmark results.  After all that
    discussion with David on why I didn't need them, I went and got
    some ;).  I wanted to verify that I had not hurt the normal case
    of memory allocation noticeably.  At least for my one little
    microbenchmark, I found (1) the normal case wasn't affected, and
    (2) workloads that forced scanning across multiple nodes for
    memory improved up to 10% fewer System CPU cycles and lower
    elapsed clock time ('sys' and 'real').  Good.  See details, below.

    I didn't have the logic in get_page_from_freelist() for various
    full nodes and zone reclaim failures correct.  That should be
    fixed up now - notice the new goto labels zonelist_scan,
    this_zone_full, and try_next_zone, in get_page_from_freelist().

There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:

 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
    have seen real customer loads where the cost to scan the zonelist
    was a problem, due to many nodes being full of memory before
    we got to a node we could use.  Or at least, I think we have.
    This was related to me by another engineer, based on experiences
    from some time past.  So this is not guaranteed.  Most likely, though.

    The following approach should help such real numa systems just as
    much as it helps fake numa systems, or any combination thereof.

 2) The effort to distinguish fake from real numa, using node_distance,
    so that we could cache a fake numa node and optimize choosing
    it over equivalent distance fake nodes, while continuing to
    properly scan all real nodes in distance order, was going to
    require a nasty blob of zonelist and node distance munging.

    The following approach has no new dependency on node distances or
    zone sorting.

See comment in the patch below for a description of what it actually does.

Technical details of note (or controversy):

 - See the use of "zlc_active" and "did_zlc_setup" below, to delay
   adding any work for this new mechanism until we've looked at the
   first zone in zonelist.  I figured the odds of the first zone
   having the memory we needed were high enough that we should just
   look there, first, then get fancy only if we need to keep looking.

 - Some odd hackery was needed to add items to struct zonelist, while
   not tripping up the custom zonelists built by the mm/mempolicy.c
   code for MPOL_BIND.  My usual wordy comments below explain this.
   Search for "MPOL_BIND".

 - Some per-node data in the struct zonelist is now modified frequently,
   with no locking.  Multiple CPU cores on a node could hit and mangle
   this data.  The theory is that this is just performance hint data,
   and the memory allocator will work just fine despite any such mangling.
   The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
   (a bitmask) and 'last_full_zap' (unsigned long jiffies).  It should
   all be self correcting after at most a one second delay.

 - This still does a linear scan of the same lengths as before.  All
   I've optimized is making the scan faster, not algorithmically
   shorter.  It is now able to scan a compact array of 'unsigned
   short' in the case of many full nodes, so one cache line should
   cover quite a few nodes, rather than each node hitting another
   one or two new and distinct cache lines.

 - If both Andi and Nick don't find this too complicated, I will be
   (pleasantly) flabbergasted.

 - I removed the comment claiming we only use one cachline's worth of
   zonelist.  We seem, at least in the fake numa case, to have put the
   lie to that claim.

 - I pay no attention to the various watermarks and such in this performance
   hint.  A node could be marked full for one watermark, and then skipped
   over when searching for a page using a different watermark.  I think
   that's actually quite ok, as it will tend to slightly increase the
   spreading of memory over other nodes, away from a memory stressed node.

===============

Performance - some benchmark results and analysis:

This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.

Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.)  System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.

Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added.  The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.

      number     2.6.18-mm3	   zonelist-cache    delta (< 0 good)	percent
 GBs    N  	------------	   --------------    ----------------	systime
 mem threads   sys user  real	  sys  user  real     sys  user  real	 better
  12	 1     153   24   177	  151	 24   176      -2     0    -1	   1%
  12	19	99   22     8	   99	 22	8	0     0     0	   0%
  12	37     111   25     6	  112	 25	6	1     0     0	  -0%
  12	55     115   25     5	  110	 23	5      -5    -2     0	   4%
  38	 1     502   74   576	  497	 73   570      -5    -1    -6	   0%
  38	19     426   78    48	  373	 76    39     -53    -2    -9	  12%
  38	37     544   83    36	  547	 82    36	3    -1     0	  -0%
  38	55     501   77    23	  511	 80    24      10     3     1	  -1%
  64	 1     917  125  1042	  890	124  1014     -27    -1   -28	   2%
  64	19    1118  138   119	  965	141   103    -153     3   -16	  13%
  64	37    1202  151    94	 1136	150    81     -66    -1   -13	   5%
  64	55    1118  141    61	 1072	140    58     -46    -1    -3	   4%
  90	 1    1342  177  1519	 1275	174  1450     -67    -3   -69	   4%
  90	19    2392  199   192	 2116	189   176    -276   -10   -16	  11%
  90	37    3313  238   175	 2972	225   145    -341   -13   -30	  10%
  90	55    1948  210   104	 1843	213   100    -105     3    -4	   5%

Notes:
 1) This test ran a memory hog program that started a specified number N of
    threads, and had each thread allocate and touch 1/N'th of
    the total memory to be used in the test run in a single loop,
    writing a constant word to memory, one store every 4096 bytes.
    Watching this test during some earlier trial runs, I would see
    each of these threads sit down on one CPU and stay there, for
    the remainder of the pass, a different CPU for each thread.

 2) The 'real' column is not comparable to the 'sys' or 'user' columns.
    The 'real' column is seconds wall clock time elapsed, from beginning
    to end of that test pass.  The 'sys' and 'user' columns are total
    CPU seconds spent on that test pass.  For a 19 thread test run,
    for example, the sum of 'sys' and 'user' could be up to 19 times the
    number of 'real' elapsed wall clock seconds.

 3) Tests were run on a fresh, single-user boot, to minimize the amount
    of memory already in use at the start of the test, and to minimize
    the amount of background activity that might interfere.

 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.

 5) Notice that the 'real' time gets large for the single thread runs, even
    though the measured 'sys' and 'user' times are modest.  I'm not sure what
    that means - probably something to do with it being slow for one thread to
    be accessing memory along ways away.  Perhaps the fake numa system, running
    ostensibly the same workload, would not show this substantial degradation
    of 'real' time for one thread on many nodes -- lets hope not.

 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
    ran quite efficiently, as one might expect.  Each pair of threads needed
    to allocate and touch the memory on the node the two threads shared, a
    pleasantly parallizable workload.

 7) The intermediate thread count passes, when asking for alot of memory forcing
    them to go to a few neighboring nodes, improved the most with this zonelist
    caching patch.

Conclusions:
 * This zonelist cache patch probably makes little difference one way or the
   other for most workloads on real numa hardware, if those workloads avoid
   heavy off node allocations.
 * For memory intensive workloads requiring substantial off-node allocations
   on real numa hardware, this patch improves both kernel and elapsed timings
   up to ten per-cent.
 * For fake numa systems, I'm optimistic, but will have to leave that up to
   Rohit Seth to actually test (once I get him a 2.6.18 backport.)

Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:20 -08:00
Christoph Lameter 89689ae7f9 [PATCH] Get rid of zone_table[]
The zone table is mostly not needed.  If we have a node in the page flags
then we can get to the zone via NODE_DATA() which is much more likely to be
already in the cpu cache.

In case of SMP and UP NODE_DATA() is a constant pointer which allows us to
access an exact replica of zonetable in the node_zones field.  In all of
the above cases there will be no need at all for the zone table.

The only remaining case is if in a NUMA system the node numbers do not fit
into the page flags.  In that case we make sparse generate a table that
maps sections to nodes and use that table to to figure out the node number.
 This table is sized to fit in a single cache line for the known 32 bit
NUMA platform which makes it very likely that the information can be
obtained without a cache miss.

For sparsemem the zone table seems to be have been fairly large based on
the maximum possible number of sections and the number of zones per node.
There is some memory saving by removing zone_table.  The main benefit is to
reduce the cache foootprint of the VM from the frequent lookups of zones.
Plus it simplifies the page allocator.

[akpm@osdl.org: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:20 -08:00
Paul Jackson 0798e5193c [PATCH] memory page alloc minor cleanups
- s/freeliest/freelist/ spelling fix

- Check for NULL *z zone seems useless - even if it could happen, so
  what?  Perhaps we should have a check later on if we are faced with an
  allocation request that is not allowed to fail - shouldn't that be a
  serious kernel error, passing an empty zonelist with a mandate to not
  fail?

- Initializing 'z' to zonelist->zones can wait until after the first
  get_page_from_freelist() fails; we only use 'z' in the wakeup_kswapd()
  loop, so let's initialize 'z' there, in a 'for' loop.  Seems clearer.

- Remove superfluous braces around a break

- Fix a couple errant spaces

- Adjust indentation on the cpuset_zone_allowed() check, to match the
  lines just before it -- seems easier to read in this case.

- Add another set of braces to the zone_watermark_ok logic

From: Paul Jackson <pj@sgi.com>

  Backout one item from a previous "memory page_alloc minor cleanups" patch.
   Until and unless we are certain that no one can ever pass an empty zonelist
  to __alloc_pages(), this check for an empty zonelist (or some BUG
  equivalent) is essential.  The code in get_page_from_freelist() blow ups if
  passed an empty zonelist.

Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:20 -08:00
Mel Gorman 1abbfb412b [PATCH] x86_64: fix bad page state in process 'swapper'
find_min_pfn_for_node() and find_min_pfn_with_active_regions() both
depend on a sorted early_node_map[].  However, sort_node_map() is being
called after fin_min_pfn_with_active_regions() in
free_area_init_nodes().

In most cases, this is ok, but on at least one x86_64, the SRAT table
caused the E820 ranges to be registered out of order.  This gave the
wrong values for the min PFN range resulting in some pages not being
initialised.

This patch sorts the early_node_map in find_min_pfn_for_node().  It has
been boot tested on x86, x86_64, ppc64 and ia64.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-23 09:30:38 -08:00
nkalmala 941c7105dc [PATCH] mm: un-needed add-store operation wastes a few bytes
Un-needed add-store operation wastes a few bytes.
8 bytes wasted with -O2, on a ppc.

Signed-off-by: nkalmala <nkalmala@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 12:27:56 -08:00
Mel Gorman 0c6cb97463 [PATCH] Calculation fix for memory holes beyong the end of physical memory
absent_pages_in_range() made the assumption that users of the
arch-independent zone-sizing API would not care about holes beyound the end
of physical memory.  This was not the case and was "fixed" in a patch
called "Account for holes that are outside the range of physical memory".
However, when given a range that started before a hole in "real" memory and
ended beyond the end of memory, it would get the result wrong.  The bug is
in mainline but a patch is below.

It has been tested successfully on a number of machines and architectures.
Additional credit to Keith Mannthey for discovering the problem, helping
identify the correct fix and confirming it Worked For Him.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: keith mannthey <kmannth@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-28 11:30:55 -07:00
Martin Bligh 3bb1a852ab [PATCH] vmscan: Fix temp_priority race
The temp_priority field in zone is racy, as we can walk through a reclaim
path, and just before we copy it into prev_priority, it can be overwritten
(say with DEF_PRIORITY) by another reclaimer.

The same bug is contained in both try_to_free_pages and balance_pgdat, but
it is fixed slightly differently.  In balance_pgdat, we keep a separate
priority record per zone in a local array.  In try_to_free_pages there is
no need to do this, as the priority level is the same for all zones that we
reclaim from.

Impact of this bug is that temp_priority is copied into prev_priority, and
setting this artificially high causes reclaimers to set distress
artificially low.  They then fail to reclaim mapped pages, when they are,
in fact, under severe memory pressure (their priority may be as low as 0).
This causes the OOM killer to fire incorrectly.

From: Andrew Morton <akpm@osdl.org>

__zone_reclaim() isn't modifying zone->prev_priority.  But zone->prev_priority
is used in the decision whether or not to bring mapped pages onto the inactive
list.  Hence there's a risk here that __zone_reclaim() will fail because
zone->prev_priority ir large (ie: low urgency) and lots of mapped pages end up
stuck on the active list.

Fix that up by decreasing (ie making more urgent) zone->prev_priority as
__zone_reclaim() scans the zone's pages.

This bug perhaps explains why ZONE_RECLAIM_PRIORITY was created.  It should be
possible to remove that now, and to just start out at DEF_PRIORITY?

Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-28 11:30:50 -07:00
Andy Whitcroft 7516795739 [PATCH] Reintroduce NODES_SPAN_OTHER_NODES for powerpc
Reintroduce NODES_SPAN_OTHER_NODES for powerpc

Revert "[PATCH] Remove SPAN_OTHER_NODES config definition"
    This reverts commit f62859bb68.
Revert "[PATCH] mm: remove arch independent NODES_SPAN_OTHER_NODES"
    This reverts commit a94b3ab7ea.

Also update the comments to indicate that this is still required
and where its used.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Kravetz <kravetz@us.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-21 13:35:06 -07:00
Andrew Morton 6220ec7844 [PATCH] highest_possible_node_id() linkage fix
Qooting Adrian:

- net/sunrpc/svc.c uses highest_possible_node_id()

- include/linux/nodemask.h says highest_possible_node_id() is
  out-of-line #if MAX_NUMNODES > 1

- the out-of-line highest_possible_node_id() is in lib/cpumask.c

- lib/Makefile: lib-$(CONFIG_SMP) += cpumask.o
  CONFIG_ARCH_DISCONTIGMEM_ENABLE=y, CONFIG_SMP=n, CONFIG_SUNRPC=y

-> highest_possible_node_id() is used in net/sunrpc/svc.c
   CONFIG_NODES_SHIFT defined and > 0

-> include/linux/numa.h: MAX_NUMNODES > 1

-> compile error

The bug is not present on architectures where ARCH_DISCONTIGMEM_ENABLE
depends on NUMA (but m32r isn't the only affected architecture).

So move the function into page_alloc.c

Cc: Adrian Bunk <bunk@stusta.de>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-20 10:26:43 -07:00
Andrew Morton 3fcfab16c5 [PATCH] separate bdi congestion functions from queue congestion functions
Separate out the concept of "queue congestion" from "backing-dev congestion".
Congestion is a backing-dev concept, not a queue concept.

The blk_* congestion functions are retained, as wrappers around the core
backing-dev congestion functions.

This proper layering is needed so that NFS can cleanly use the congestion
functions, and so that CONFIG_BLOCK=n actually links.

Cc: "Thomas Maier" <balagi@justmail.de>
Cc: "Jens Axboe" <jens.axboe@oracle.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Howells <dhowells@redhat.com>
Cc: Peter Osterlund <petero2@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-20 10:26:35 -07:00
Nick Piggin 9858db504c [PATCH] mm: locks_freed fix
Move the lock debug checks below the page reserved checks.  Also, having
debug_check_no_locks_freed in kernel_map_pages is wrong.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:19 -07:00
Nick Piggin dafb13673c [PATCH] mm: arch_free_page fix
After the PG_reserved check was added, arch_free_page was being called in the
wrong place (it could be called for a page we don't actually want to free).
Fix that.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:19 -07:00
Mel Gorman b888132b0f [PATCH] mm: remove memmap_zone_idx()
memmap_zone_idx() is not used anymore.  It was required by an earlier
version of
account-for-memmap-and-optionally-the-kernel-image-as-holes.patch but not
any more.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:14 -07:00
Randy Dunlap 88ca3b94e8 [PATCH] page_alloc: fix kernel-doc and func. declaration
Fix kernel-doc and function declaration (missing "void") in
mm/page_alloc.c.

Add mm/page_alloc.c to kernel-api.tmpl in DocBook.

mm/page_alloc.c:2589:38: warning: non-ANSI function declaration of function 'remove_all_active_ranges'

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 07:55:12 -07:00
Nick Piggin e80ee884ae [PATCH] mm: micro optimise zone_watermark_ok
Having min be a signed quantity means gcc can't turn high latency divides
into shifts.  There happen to be two such divides for GFP_ATOMIC (ie.
networking, ie.  important) allocations, one of which depends on the other.
 Fixing this makes code smaller as a bonus.

Shame on somebody (probably me).

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 07:55:12 -07:00
Randy Dunlap 423b41d773 [PATCH] mm/page_alloc: use NULL instead of 0 for ptr
Use NULL instead of 0 for pointer value, eliminate sparse warnings.

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:13 -07:00
Christoph Lameter 66a550308b [PATCH] Do not allocate pagesets for unpopulated zones.
We do not need to allocate pagesets for unpopulated zones.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:13 -07:00
Christoph Lameter d5f541ed6e [PATCH] Add node to zone for the NUMA case
Add the node in order to optimize zone_to_nid.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:13 -07:00
Christoph Lameter 08e0f6a970 [PATCH] Add NUMA_BUILD definition in kernel.h to avoid #ifdef CONFIG_NUMA
The NUMA_BUILD constant is always available and will be set to 1 on
NUMA_BUILDs.  That way checks valid only under CONFIG_NUMA can easily be done
without #ifdef CONFIG_NUMA

F.e.

if (NUMA_BUILD && <numa_condition>) {
...
}

[akpm: not a thing we'd normally do, but CONFIG_NUMA is special: it is
 causing ifdef explosion in core kernel, so let's see if this is a comfortable
 way in whcih to control that]

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:12 -07:00
Jes Sorensen c72419138f [PATCH] Condense output of show_free_areas()
On larger systems, the amount of output dumped on the console when you do
SysRq-M is beyond insane.  This patch is trying to reduce it somewhat as
even with the smaller NUMA systems that have hit the desktop this seems to
be a fair thing to do.

The philosophy I have taken is as follows:
 1) If a zone is empty, don't tell, we don't need yet another line
    telling us so. The information is available since one can look up
    the fact how many zones were initialized in the first place.
 2) Put as much information on a line is possible, if it can be done
    in one line, rahter than two, then do it in one. I tried to format
    the temperature stuff for easy reading.

Change show_free_areas() to not print lines for empty zones.  If no zone
output is printed, the zone is empty.  This reduces the number of lines
dumped to the console in sysrq on a large system by several thousand lines.

Change the zone temperature printouts to use one line per CPU instead of
two lines (one hot, one cold).  On a 1024 CPU, 1024 node system, this
reduces the console output by over a million lines of output.

While this is a bigger problem on large NUMA systems, it is also applicable
to smaller desktop sized and mid range NUMA systems.

Old format:

Mem-info:
Node 0 DMA per-cpu:
cpu 0 hot: high 42, batch 7 used:24
cpu 0 cold: high 14, batch 3 used:1
cpu 1 hot: high 42, batch 7 used:34
cpu 1 cold: high 14, batch 3 used:0
cpu 2 hot: high 42, batch 7 used:0
cpu 2 cold: high 14, batch 3 used:0
cpu 3 hot: high 42, batch 7 used:0
cpu 3 cold: high 14, batch 3 used:0
cpu 4 hot: high 42, batch 7 used:0
cpu 4 cold: high 14, batch 3 used:0
cpu 5 hot: high 42, batch 7 used:0
cpu 5 cold: high 14, batch 3 used:0
cpu 6 hot: high 42, batch 7 used:0
cpu 6 cold: high 14, batch 3 used:0
cpu 7 hot: high 42, batch 7 used:0
cpu 7 cold: high 14, batch 3 used:0
Node 0 DMA32 per-cpu: empty
Node 0 Normal per-cpu: empty
Node 0 HighMem per-cpu: empty
Node 1 DMA per-cpu:
[snip]
Free pages:     5410688kB (0kB HighMem)
Active:9536 inactive:4261 dirty:6 writeback:0 unstable:0 free:338168 slab:1931 mapped:1900 pagetables:208
Node 0 DMA free:1676304kB min:3264kB low:4080kB high:4896kB active:128048kB inactive:61568kB present:1970880kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 0 DMA32 free:0kB min:0kB low:0kB high:0kB active:0kB inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 0 Normal free:0kB min:0kB low:0kB high:0kB active:0kB inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 0 HighMem free:0kB min:512kB low:512kB high:512kB active:0kB inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 1 DMA free:1951728kB min:3280kB low:4096kB high:4912kB active:5632kB inactive:1504kB present:1982464kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
....

New format:

Mem-info:
Node 0 DMA per-cpu:
CPU    0: Hot: hi:   42, btch:   7 usd:  41   Cold: hi:   14, btch:   3 usd:   2
CPU    1: Hot: hi:   42, btch:   7 usd:  40   Cold: hi:   14, btch:   3 usd:   1
CPU    2: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
CPU    3: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
CPU    4: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
CPU    5: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
CPU    6: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
CPU    7: Hot: hi:   42, btch:   7 usd:   0   Cold: hi:   14, btch:   3 usd:   0
Node 1 DMA per-cpu:
[snip]
Free pages:     5411088kB (0kB HighMem)
Active:9558 inactive:4233 dirty:6 writeback:0 unstable:0 free:338193 slab:1942 mapped:1918 pagetables:208
Node 0 DMA free:1677648kB min:3264kB low:4080kB high:4896kB active:129296kB inactive:58864kB present:1970880kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 1 DMA free:1948448kB min:3280kB low:4096kB high:4912kB active:6864kB inactive:3536kB present:1982464kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0

Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:12 -07:00
Mel Gorman fb01439c5b [PATCH] Allow an arch to expand node boundaries
Arch-independent zone-sizing determines the size of a node
(pgdat->node_spanned_pages) based on the physical memory that was
registered by the architecture.  However, when
CONFIG_MEMORY_HOTPLUG_RESERVE is set, the architecture expects that the
spanned_pages will be much larger and that mem_map will be allocated that
is used lated on memory hot-add.

This patch allows an architecture that sets CONFIG_MEMORY_HOTPLUG_RESERVE
to call push_node_boundaries() which will set the node beginning and end to
at *least* the requested boundary.

Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:12 -07:00
Mel Gorman 9c7cd6877c [PATCH] Account for holes that are outside the range of physical memory
absent_pages_in_range() made the assumption that users of the API would not
care about holes beyound the end of physical memory.  This was not the
case.  This patch will account for ranges outside of physical memory as
holes correctly.

Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:11 -07:00
Mel Gorman 0e0b864e06 [PATCH] Account for memmap and optionally the kernel image as holes
The x86_64 code accounted for memmap and some portions of the the DMA zone as
holes.  This was because those areas would never be reclaimed and accounting
for them as memory affects min watermarks.  This patch will account for the
memmap as a memory hole.  Architectures may optionally use set_dma_reserve()
if they wish to account for a portion of memory in ZONE_DMA as a hole.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:11 -07:00
Mel Gorman c713216dee [PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located.  Once located, the code to calculate zone
sizes and holes in each architecture is very similar.  Some of this zone and
hole sizing code is difficult to read for no good reason.  This set of patches
eliminates the similar-looking architecture-specific code.

The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range().  When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones.  The zone sizes and holes are then calculated in an architecture
independent manner.

Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
	It adjusts the watermarks slightly

Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig.  Bob Picco has also tested and debugged on
IA64.  Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine.  These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.

There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.

The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy.  There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.

Additional credit;
	Dave Hansen for the initial suggestion and comments on early patches
	Andy Whitcroft for reviewing early versions and catching numerous
		errors
	Tony Luck for testing and debugging on IA64
	Bob Picco for fixing bugs related to pfn registration, reviewing a
		number of patch revisions, providing a number of suggestions
		on future direction and testing heavily
	Jack Steiner and Robin Holt for testing on IA64 and clarifying
		issues related to memory holes
	Yasunori for testing on IA64
	Andi Kleen for reviewing and feeding back about x86_64
	Christian Kujau for providing valuable information related to ACPI
		problems on x86_64 and testing potential fixes

This patch:

Define the structure to represent an active range of page frames within a node
in an architecture independent manner.  Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:11 -07:00
Rafael J. Wysocki f623f0db8e [PATCH] swsusp: Fix mark_free_pages
Clean up mm/page_alloc.c#mark_free_pages() and make it avoid clearing
PageNosaveFree for PageNosave pages.  This allows us to get rid of an ugly
hack in kernel/power/snapshot.c#copy_data_pages().

Additionally, the page-copying loop in copy_data_pages() is moved to an
inline function.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:59 -07:00
Christoph Lameter 89fa30242f [PATCH] NUMA: Add zone_to_nid function
There are many places where we need to determine the node of a zone.
Currently we use a difficult to read sequence of pointer dereferencing.
Put that into an inline function and use throughout VM.  Maybe we can find
a way to optimize the lookup in the future.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:52 -07:00
Christoph Lameter 0ff38490c8 [PATCH] zone_reclaim: dynamic slab reclaim
Currently one can enable slab reclaim by setting an explicit option in
/proc/sys/vm/zone_reclaim_mode.  Slab reclaim is then used as a final
option if the freeing of unmapped file backed pages is not enough to free
enough pages to allow a local allocation.

However, that means that the slab can grow excessively and that most memory
of a node may be used by slabs.  We have had a case where a machine with
46GB of memory was using 40-42GB for slab.  Zone reclaim was effective in
dealing with pagecache pages.  However, slab reclaim was only done during
global reclaim (which is a bit rare on NUMA systems).

This patch implements slab reclaim during zone reclaim.  Zone reclaim
occurs if there is a danger of an off node allocation.  At that point we

1. Shrink the per node page cache if the number of pagecache
   pages is more than min_unmapped_ratio percent of pages in a zone.

2. Shrink the slab cache if the number of the nodes reclaimable slab pages
   (patch depends on earlier one that implements that counter)
   are more than min_slab_ratio (a new /proc/sys/vm tunable).

The shrinking of the slab cache is a bit problematic since it is not node
specific.  So we simply calculate what point in the slab we want to reach
(current per node slab use minus the number of pages that neeed to be
allocated) and then repeately run the global reclaim until that is
unsuccessful or we have reached the limit.  I hope we will have zone based
slab reclaim at some point which will make that easier.

The default for the min_slab_ratio is 5%

Also remove the slab option from /proc/sys/vm/zone_reclaim_mode.

[akpm@osdl.org: cleanups]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:51 -07:00
Christoph Lameter 972d1a7b14 [PATCH] ZVC: Support NR_SLAB_RECLAIMABLE / NR_SLAB_UNRECLAIMABLE
Remove the atomic counter for slab_reclaim_pages and replace the counter
and NR_SLAB with two ZVC counter that account for unreclaimable and
reclaimable slab pages: NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE.

Change the check in vmscan.c to refer to to NR_SLAB_RECLAIMABLE.  The
intend seems to be to check for slab pages that could be freed.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:51 -07:00
Christoph Lameter 8417bba4b1 [PATCH] Replace min_unmapped_ratio by min_unmapped_pages in struct zone
*_pages is a better description of the role of the variable.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:51 -07:00
Christoph Lameter 39bbcb8f88 [PATCH] mm: do not check unpopulated zones for draining and counter updates
If a zone is unpopulated then we do not need to check for pages that are to
be drained and also not for vm counters that may need to be updated.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:51 -07:00
Christoph Lameter 006d22d9bb [PATCH] Optimize free_one_page
Free one_page currently adds the page to a fake list and calls
free_page_bulk.  Fee_page_bulk takes it off again and then calles
__free_one_page.

Make free_one_page go directly to __free_one_page.  Saves list on / off and
a temporary list in free_one_page for higher ordered pages.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:51 -07:00
Christoph Lameter 1192d52641 [PATCH] Cleanup: Add zone pointer to get_page_from_freelist
There are frequent references to *z in get_page_from_freelist.

Add an explicit zone variable that can be used in all these places.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:50 -07:00
Christoph Lameter 9b819d204c [PATCH] Add __GFP_THISNODE to avoid fallback to other nodes and ignore cpuset/memory policy restrictions
Add a new gfp flag __GFP_THISNODE to avoid fallback to other nodes.  This
flag is essential if a kernel component requires memory to be located on a
certain node.  It will be needed for alloc_pages_node() to force allocation
on the indicated node and for alloc_pages() to force allocation on the
current node.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:50 -07:00
Christoph Lameter 19655d3487 [PATCH] linearly index zone->node_zonelists[]
I wonder why we need this bitmask indexing into zone->node_zonelists[]?

We always start with the highest zone and then include all lower zones
if we build zonelists.

Are there really cases where we need allocation from ZONE_DMA or
ZONE_HIGHMEM but not ZONE_NORMAL? It seems that the current implementation
of highest_zone() makes that already impossible.

If we go linear on the index then gfp_zone() == highest_zone() and a lot
of definitions fall by the wayside.

We can now revert back to the use of gfp_zone() in mempolicy.c ;-)

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:47 -07:00
Christoph Lameter 2f6726e54a [PATCH] Apply type enum zone_type
After we have done this we can now do some typing cleanup.

The memory policy layer keeps a policy_zone that specifies
the zone that gets memory policies applied. This variable
can now be of type enum zone_type.

The check_highest_zone function and the build_zonelists funnctionm must
then also take a enum zone_type parameter.

Plus there are a number of loops over zones that also should use
zone_type.

We run into some troubles at some points with functions that need a
zone_type variable to become -1. Fix that up.

[pj@sgi.com: fix set_mempolicy() crash]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:47 -07:00
Christoph Lameter 4e4785bcf0 [PATCH] mempolicies: fix policy_zone check
There is a check in zonelist_policy that compares pieces of the bitmap
obtained from a gfp mask via GFP_ZONETYPES with a zone number in function
zonelist_policy().

The bitmap is an ORed mask of __GFP_DMA, __GFP_DMA32 and __GFP_HIGHMEM.
The policy_zone is a zone number with the possible values of ZONE_DMA,
ZONE_DMA32, ZONE_HIGHMEM and ZONE_NORMAL. These are two different domains
of values.

For some reason seemed to work before the zone reduction patchset (It
definitely works on SGI boxes since we just have one zone and the check
cannot fail).

With the zone reduction patchset this check definitely fails on systems
with two zones if the system actually has memory in both zones.

This is because ZONE_NORMAL is selected using no __GFP flag at
all and thus gfp_zone(gfpmask) == 0. ZONE_DMA is selected when __GFP_DMA
is set. __GFP_DMA is 0x01.  So gfp_zone(gfpmask) == 1.

policy_zone is set to ZONE_NORMAL (==1) if ZONE_NORMAL and ZONE_DMA are
populated.

For ZONE_NORMAL gfp_zone(<no _GFP_DMA>) yields 0 which is <
policy_zone(ZONE_NORMAL) and so policy is not applied to regular memory
allocations!

Instead gfp_zone(__GFP_DMA) == 1 which results in policy being applied
to DMA allocations!

What we realy want in that place is to establish the highest allowable
zone for a given gfp_mask. If the highest zone is higher or equal to the
policy_zone then memory policies need to be applied. We have such
a highest_zone() function in page_alloc.c.

So move the highest_zone() function from mm/page_alloc.c into
include/linux/gfp.h.  On the way we simplify the function and use the new
zone_type that was also introduced with the zone reduction patchset plus we
also specify the right type for the gfp flags parameter.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:47 -07:00
Christoph Lameter e53ef38d05 [PATCH] reduce MAX_NR_ZONES: make ZONE_HIGHMEM optional
Make ZONE_HIGHMEM optional

- ifdef out code and definitions related to CONFIG_HIGHMEM

- __GFP_HIGHMEM falls back to normal allocations if there is no
  ZONE_HIGHMEM

- GFP_ZONEMASK becomes 0x01 if there is no DMA32 and no HIGHMEM
  zone.

[jdike@addtoit.com: build fix]
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Christoph Lameter fb0e7942bd [PATCH] reduce MAX_NR_ZONES: make ZONE_DMA32 optional
Make ZONE_DMA32 optional

- Add #ifdefs around ZONE_DMA32 specific code and definitions.

- Add CONFIG_ZONE_DMA32 config option and use that for x86_64
  that alone needs this zone.

- Remove the use of CONFIG_DMA_IS_DMA32 and CONFIG_DMA_IS_NORMAL
  for ia64 and fix up the way per node ZVCs are calculated.

- Fall back to prior GFP_ZONEMASK of 0x03 if there is no
  DMA32 zone.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Christoph Lameter 2f1b624868 [PATCH] reduce MAX_NR_ZONES: use enum to define zones, reformat and comment
Use enum for zones and reformat zones dependent information

Add comments explaning the use of zones and add a zones_t type for zone
numbers.

Line up information that will be #ifdefd by the following patches.

[akpm@osdl.org: comment cleanups]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Christoph Lameter 98d2b0ebda [PATCH] reduce MAX_NR_ZONES: page allocator ZONE_HIGHMEM cleanup
page allocator ZONE_HIGHMEM fixups

1. We do not need to do an #ifdef in si_meminfo since both counters
   in use are zero if !CONFIG_HIGHMEM.

2. Add #ifdef in si_meminfo_node instead to avoid referencing zone
   information for ZONE_HIGHMEM if we do not have HIGHMEM
   (may not be there after the following patches).

3. Replace the use of ZONE_HIGHMEM with MAX_NR_ZONES in build_zonelists_node

4. build_zonelists_node: Remove BUG_ON for ZONE_HIGHMEM. Zone will
   be optional soon and thus BUG_ON cannot be triggered anymore.

5. init_free_area_core: Replace a use of ZONE_HIGHMEM with NR_MAX_ZONES.

[akpm@osdl.org: cleanups]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Christoph Lameter c1f60a5a41 [PATCH] reduce MAX_NR_ZONES: move HIGHMEM counters into highmem.c/.h
Move totalhigh_pages and nr_free_highpages() into highmem.c/.h

Move the totalhigh_pages definition into highmem.c/.h.  Move the
nr_free_highpages function into highmem.c

[yoichi_yuasa@tripeaks.co.jp: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Christoph Lameter 182e8e2373 [PATCH] reduce MAX_NR_ZONES: make display of highmem counters conditional on CONFIG_HIGHMEM
Do not display HIGHMEM memory sizes if CONFIG_HIGHMEM is not set.

Make HIGHMEM dependent texts and make display of highmem counters optional

Some texts are depending on CONFIG_HIGHMEM.

Remove those strings and remove the display of highmem counter values if
CONFIG_HIGHMEM is not set.

[akpm@osdl.org: remove some ifdefs]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:46 -07:00
Nick Piggin 725d704eca [PATCH] mm: VM_BUG_ON
Introduce a VM_BUG_ON, which is turned on with CONFIG_DEBUG_VM.  Use this
in the lightweight, inline refcounting functions; PageLRU and PageActive
checks in vmscan, because they're pretty well confined to vmscan.  And in
page allocate/free fastpaths which can be the hottest parts of the kernel
for kbuilds.

Unlike BUG_ON, VM_BUG_ON must not be used to execute statements with
side-effects, and should not be used outside core mm code.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:44 -07:00
David Rientjes f3ef9ead31 [PATCH] do not free non slab allocated per_cpu_pageset
Stops panic associated with attempting to free a non slab-allocated
per_cpu_pageset.

Signed-off-by: David Rientjes <rientjes@cs.washington.edu>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-25 17:38:36 -07:00
David S. Miller f034b5d4ef [XFRM]: Dynamic xfrm_state hash table sizing.
The grow algorithm is simple, we grow if:

1) we see a hash chain collision at insert, and
2) we haven't hit the hash size limit (currently 1*1024*1024 slots), and
3) the number of xfrm_state objects is > the current hash mask

All of this needs some tweaking.

Remove __initdata from "hashdist" so we can use it safely at run time.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-22 15:08:41 -07:00
Christoph Lameter 9614634fe6 [PATCH] ZVC/zone_reclaim: Leave 1% of unmapped pagecache pages for file I/O
It turns out that it is advantageous to leave a small portion of unmapped file
backed pages if all of a zone's pages (or almost all pages) are allocated and
so the page allocator has to go off-node.

This allows recently used file I/O buffers to stay on the node and
reduces the times that zone reclaim is invoked if file I/O occurs
when we run out of memory in a zone.

The problem is that zone reclaim runs too frequently when the page cache is
used for file I/O (read write and therefore unmapped pages!) alone and we have
almost all pages of the zone allocated.  Zone reclaim may remove 32 unmapped
pages.  File I/O will use these pages for the next read/write requests and the
unmapped pages increase.  After the zone has filled up again zone reclaim will
remove it again after only 32 pages.  This cycle is too inefficient and there
are potentially too many zone reclaim cycles.

With the 1% boundary we may still remove all unmapped pages for file I/O in
zone reclaim pass.  However.  it will take a large number of read and writes
to get back to 1% again where we trigger zone reclaim again.

The zone reclaim 2.6.16/17 does not show this behavior because we have a 30
second timeout.

[akpm@osdl.org: rename the /proc file and the variable]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:26:59 -07:00
Linus Torvalds 22a3e233ca Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
* git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial:
  Remove obsolete #include <linux/config.h>
  remove obsolete swsusp_encrypt
  arch/arm26/Kconfig typos
  Documentation/IPMI typos
  Kconfig: Typos in net/sched/Kconfig
  v9fs: do not include linux/version.h
  Documentation/DocBook/mtdnand.tmpl: typo fixes
  typo fixes: specfic -> specific
  typo fixes in Documentation/networking/pktgen.txt
  typo fixes: occuring -> occurring
  typo fixes: infomation -> information
  typo fixes: disadvantadge -> disadvantage
  typo fixes: aquire -> acquire
  typo fixes: mecanism -> mechanism
  typo fixes: bandwith -> bandwidth
  fix a typo in the RTC_CLASS help text
  smb is no longer maintained

Manually merged trivial conflict in arch/um/kernel/vmlinux.lds.S
2006-06-30 15:39:30 -07:00
Christoph Lameter f8891e5e1f [PATCH] Light weight event counters
The remaining counters in page_state after the zoned VM counter patches
have been applied are all just for show in /proc/vmstat.  They have no
essential function for the VM.

We use a simple increment of per cpu variables.  In order to avoid the most
severe races we disable preempt.  Preempt does not prevent the race between
an increment and an interrupt handler incrementing the same statistics
counter.  However, that race is exceedingly rare, we may only loose one
increment or so and there is no requirement (at least not in kernel) that
the vm event counters have to be accurate.

In the non preempt case this results in a simple increment for each
counter.  For many architectures this will be reduced by the compiler to a
single instruction.  This single instruction is atomic for i386 and x86_64.
 And therefore even the rare race condition in an interrupt is avoided for
both architectures in most cases.

The patchset also adds an off switch for embedded systems that allows a
building of linux kernels without these counters.

The implementation of these counters is through inline code that hopefully
results in only a single instruction increment instruction being emitted
(i386, x86_64) or in the increment being hidden though instruction
concurrency (EPIC architectures such as ia64 can get that done).

Benefits:
- VM event counter operations usually reduce to a single inline instruction
  on i386 and x86_64.
- No interrupt disable, only preempt disable for the preempt case.
  Preempt disable can also be avoided by moving the counter into a spinlock.
- Handling is similar to zoned VM counters.
- Simple and easily extendable.
- Can be omitted to reduce memory use for embedded use.

References:

RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2
RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2
local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2
V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2
V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2
V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:36 -07:00
Christoph Lameter ca889e6c45 [PATCH] Use Zoned VM Counters for NUMA statistics
The numa statistics are really event counters.  But they are per node and
so we have had special treatment for these counters through additional
fields on the pcp structure.  We can now use the per zone nature of the
zoned VM counters to realize these.

This will shrink the size of the pcp structure on NUMA systems.  We will
have some room to add additional per zone counters that will all still fit
in the same cacheline.

 Bits	Prior pcp size	  	Size after patch	We can add
 ------------------------------------------------------------------
 64	128 bytes (16 words)	80 bytes (10 words)	48
 32	 76 bytes (19 words)	56 bytes (14 words)	8 (64 byte cacheline)
							72 (128 byte)

Remove the special statistics for numa and replace them with zoned vm
counters.  This has the side effect that global sums of these events now
show up in /proc/vmstat.

Also take the opportunity to move the zone_statistics() function from
page_alloc.c into vmstat.c.

Discussions:
V2 http://marc.theaimsgroup.com/?t=115048227000002&r=1&w=2

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:36 -07:00
Christoph Lameter fd39fc8561 [PATCH] zoned vm counters: conversion of nr_unstable to per zone counter
Conversion of nr_unstable to a per zone counter

We need to do some special modifications to the nfs code since there are
multiple cases of disposition and we need to have a page ref for proper
accounting.

This converts the last critical page state of the VM and therefore we need to
remove several functions that were depending on GET_PAGE_STATE_LAST in order
to make the kernel compile again.  We are only left with event type counters
in page state.

[akpm@osdl.org: bugfixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:36 -07:00
Christoph Lameter ce866b34ae [PATCH] zoned vm counters: conversion of nr_writeback to per zone counter
Conversion of nr_writeback to per zone counter.

This removes the last page_state counter from arch/i386/mm/pgtable.c so we
drop the page_state from there.

[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:35 -07:00
Christoph Lameter b1e7a8fd85 [PATCH] zoned vm counters: conversion of nr_dirty to per zone counter
This makes nr_dirty a per zone counter.  Looping over all processors is
avoided during writeback state determination.

The counter aggregation for nr_dirty had to be undone in the NFS layer since
we summed up the page counts from multiple zones.  Someone more familiar with
NFS should probably review what I have done.

[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:35 -07:00
Christoph Lameter df849a1529 [PATCH] zoned vm counters: conversion of nr_pagetables to per zone counter
Conversion of nr_page_table_pages to a per zone counter

[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:35 -07:00
Christoph Lameter 9a865ffa34 [PATCH] zoned vm counters: conversion of nr_slab to per zone counter
- Allows reclaim to access counter without looping over processor counts.

- Allows accurate statistics on how many pages are used in a zone by
  the slab. This may become useful to balance slab allocations over
  various zones.

[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:35 -07:00
Christoph Lameter 347ce434d5 [PATCH] zoned vm counters: conversion of nr_pagecache to per zone counter
Currently a single atomic variable is used to establish the size of the page
cache in the whole machine.  The zoned VM counters have the same method of
implementation as the nr_pagecache code but also allow the determination of
the pagecache size per zone.

Remove the special implementation for nr_pagecache and make it a zoned counter
named NR_FILE_PAGES.

Updates of the page cache counters are always performed with interrupts off.
We can therefore use the __ variant here.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:34 -07:00
Christoph Lameter 65ba55f500 [PATCH] zoned vm counters: convert nr_mapped to per zone counter
nr_mapped is important because it allows a determination of how many pages of
a zone are not mapped, which would allow a more efficient means of determining
when we need to reclaim memory in a zone.

We take the nr_mapped field out of the page state structure and define a new
per zone counter named NR_FILE_MAPPED (the anonymous pages will be split off
from NR_MAPPED in the next patch).

We replace the use of nr_mapped in various kernel locations.  This avoids the
looping over all processors in try_to_free_pages(), writeback, reclaim (swap +
zone reclaim).

[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:34 -07:00
Christoph Lameter 2244b95a7b [PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation
Per zone counter infrastructure

The counters that we currently have for the VM are split per processor.  The
processor however has not much to do with the zone these pages belong to.  We
cannot tell f.e.  how many ZONE_DMA pages are dirty.

So we are blind to potentially inbalances in the usage of memory in various
zones.  F.e.  in a NUMA system we cannot tell how many pages are dirty on a
particular node.  If we knew then we could put measures into the VM to balance
the use of memory between different zones and different nodes in a NUMA
system.  For example it would be possible to limit the dirty pages per node so
that fast local memory is kept available even if a process is dirtying huge
amounts of pages.

Another example is zone reclaim.  We do not know how many unmapped pages exist
per zone.  So we just have to try to reclaim.  If it is not working then we
pause and try again later.  It would be better if we knew when it makes sense
to reclaim unmapped pages from a zone.  This patchset allows the determination
of the number of unmapped pages per zone.  We can remove the zone reclaim
interval with the counters introduced here.

Futhermore the ability to have various usage statistics available will allow
the development of new NUMA balancing algorithms that may be able to improve
the decision making in the scheduler of when to move a process to another node
and hopefully will also enable automatic page migration through a user space
program that can analyse the memory load distribution and then rebalance
memory use in order to increase performance.

The counter framework here implements differential counters for each processor
in struct zone.  The differential counters are consolidated when a threshold
is exceeded (like done in the current implementation for nr_pageache), when
slab reaping occurs or when a consolidation function is called.

Consolidation uses atomic operations and accumulates counters per zone in the
zone structure and also globally in the vm_stat array.  VM functions can
access the counts by simply indexing a global or zone specific array.

The arrangement of counters in an array also simplifies processing when output
has to be generated for /proc/*.

Counters can be updated by calling inc/dec_zone_page_state or
_inc/dec_zone_page_state analogous to *_page_state.  The second group of
functions can be called if it is known that interrupts are disabled.

Special optimized increment and decrement functions are provided.  These can
avoid certain checks and use increment or decrement instructions that an
architecture may provide.

We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can
do DMA to all memory and therefore ZONE_NORMAL will not be populated.  This is
only currently set for IA64 SGI SN2 and currently only affects
node_page_state().  In the best case node_page_state can be reduced to
retrieving a single counter for the one zone on the node.

[akpm@osdl.org: cleanups]
[akpm@osdl.org: export vm_stat[] for filesystems]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:34 -07:00
Christoph Lameter f6ac2354d7 [PATCH] zoned vm counters: create vmstat.c/.h from page_alloc.c/.h
NOTE: ZVC are *not* the lightweight event counters.  ZVCs are reliable whereas
event counters do not need to be.

Zone based VM statistics are necessary to be able to determine what the state
of memory in one zone is.  In a NUMA system this can be helpful for local
reclaim and other memory optimizations that may be able to shift VM load in
order to get more balanced memory use.

It is also useful to know how the computing load affects the memory
allocations on various zones.  This patchset allows the retrieval of that data
from userspace.

The patchset introduces a framework for counters that is a cross between the
existing page_stats --which are simply global counters split per cpu-- and the
approach of deferred incremental updates implemented for nr_pagecache.

Small per cpu 8 bit counters are added to struct zone.  If the counter exceeds
certain thresholds then the counters are accumulated in an array of
atomic_long in the zone and in a global array that sums up all zone values.
The small 8 bit counters are next to the per cpu page pointers and so they
will be in high in the cpu cache when pages are allocated and freed.

Access to VM counter information for a zone and for the whole machine is then
possible by simply indexing an array (Thanks to Nick Piggin for pointing out
that approach).  The access to the total number of pages of various types does
no longer require the summing up of all per cpu counters.

Benefits of this patchset right now:

- Ability for UP and SMP configuration to determine how memory
  is balanced between the DMA, NORMAL and HIGHMEM zones.

- loops over all processors are avoided in writeback and
  reclaim paths. We can avoid caching the writeback information
  because the needed information is directly accessible.

- Special handling for nr_pagecache removed.

- zone_reclaim_interval vanishes since VM stats can now determine
  when it is worth to do local reclaim.

- Fast inline per node page state determination.

- Accurate counters in /sys/devices/system/node/node*/meminfo. Current
  counters are counting simply which processor allocated a page somewhere
  and guestimate based on that. So the counters were not useful to show
  the actual distribution of page use on a specific zone.

- The swap_prefetch patch requires per node statistics in order to
  figure out when processors of a node can prefetch. This patch provides
  some of the needed numbers.

- Detailed VM counters available in more /proc and /sys status files.

References to earlier discussions:
V1 http://marc.theaimsgroup.com/?l=linux-kernel&m=113511649910826&w=2
V2 http://marc.theaimsgroup.com/?l=linux-kernel&m=114980851924230&w=2
V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115014697910351&w=2
V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767318740&w=2

Performance tests with AIM7 did not show any regressions.  Seems to be a tad
faster even.  Tested on ia64/NUMA.  Builds fine on i386, SMP / UP.  Includes
fixes for s390/arm/uml arch code.

This patch:

Move counter code from page_alloc.c/page-flags.h to vmstat.c/h.

Create vmstat.c/vmstat.h by separating the counter code and the proc
functions.

Move the vm_stat_text array before zoneinfo_show.

[akpm@osdl.org: s390 build fix]
[akpm@osdl.org: HOTPLUG_CPU build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 11:25:34 -07:00
Jörn Engel 6ab3d5624e Remove obsolete #include <linux/config.h>
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-30 19:25:36 +02:00
Ingo Molnar f9b8404cf8 [PATCH] pi-futex: introduce debug_check_no_locks_freed()
Add debug_check_no_locks_freed(), as a central inline to add
bad-lock-free-debugging functionality to.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:46 -07:00
Chandra Seetharaman 74b85f3790 [PATCH] cpu hotplug: make cpu_notifier related notifier blocks __cpuinit only
Make notifier_blocks associated with cpu_notifier as __cpuinitdata.

__cpuinitdata makes sure that the data is init time only unless
CONFIG_HOTPLUG_CPU is defined.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:41 -07:00
Chandra Seetharaman 9c7b216d23 [PATCH] cpu hotplug: revert init patch submitted for 2.6.17
In 2.6.17, there was a problem with cpu_notifiers and XFS.  I provided a
band-aid solution to solve that problem.  In the process, i undid all the
changes you both were making to ensure that these notifiers were available
only at init time (unless CONFIG_HOTPLUG_CPU is defined).

We deferred the real fix to 2.6.18.  Here is a set of patches that fixes the
XFS problem cleanly and makes the cpu notifiers available only at init time
(unless CONFIG_HOTPLUG_CPU is defined).

If CONFIG_HOTPLUG_CPU is defined then cpu notifiers are available at run
time.

This patch reverts the notifier_call changes made in 2.6.17

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:40 -07:00
Andreas Mohr d6e05edc59 spelling fixes
acquired (aquired)
contiguous (contigious)
successful (succesful, succesfull)
surprise (suprise)
whether (weather)
some other misspellings

Signed-off-by: Andreas Mohr <andi@lisas.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-26 18:35:02 +02:00