Let's continue introducing the generic ECC engine abstraction in the
NAND subsystem by instantiating a first ECC engine: the software
BCH one.
While at it, make a very tidy ecc_sw_bch_init() function and move all
the sanity checks and user input management in
nand_ecc_sw_bch_init_ctx(). This second helper will be called from the
raw RAND core.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-10-miquel.raynal@bootlin.com
This code is meant to be reused by the SPI-NAND core. Now that the
driver has been cleaned and reorganized, use a generic ECC engine
object to store the driver's data instead of accessing members of the
nand_chip structure.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-9-miquel.raynal@bootlin.com
These functions must be usable by the main NAND core, so their names
must be technology-agnostic as well as the parameters. Hence, we pass
a generic nand_device instead of a raw nand_chip structure.
As it seems that changing the raw NAND functions to always pass a
generic NAND device is a lost of time, we prefer to create dedicated
raw NAND wrappers that will be useful in the near future to do the
translation.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-8-miquel.raynal@bootlin.com
The NAND BCH control structure has nothing to do outside of this
driver, all users of the nand_bch_init/free() functions just save it
to chip->ecc.priv so do it in this driver directly and return a
regular error code instead.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-5-miquel.raynal@bootlin.com