Having cpu_online_map change during assign_irq_vector can result
in some really nasty and weird things happening. The one that
bit me last time was accessing non existent per cpu memory for non
existent cpus.
This locking was removed in a sloppy x86_64 and x86_32 merge patch.
Guys can we please try and avoid subtly breaking x86 when we are
merging files together?
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Dump all the PIC, local APIC and I/O APIC information at the
fs_initcall() level, which is after ACPI (if used) has initialised PCI
information, making the point of invocation consistent across MP-table and
ACPI platforms. Remove explicit calls to print_IO_APIC() from elsewhere.
Make the interface of all the functions involved consistent between 32-bit
and 64-bit versions and make them all static by default by the means of a
New-and-Improved(TM) __apicdebuginit() macro.
Note that like print_IO_APIC() all these only output anything if
"apic=debug" has been passed to the kernel through the command line.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Chuck Ebbert <cebbert@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Following recent (and less so) issues with the 8254 timer when routed
through the I/O or local APIC, always report which configurations have
been tried and which one has been set up eventually. This is so that logs
posted by people for some other reason can be used as a cross-reference
when investigating any possible future problems.
The change unifies messages printed on 32-bit and 64-bit platforms and
adds trailing newlines (removes leading ones), so that proper log level
annotation can be used and any possible interspersed output will not cause
a mess.
I have chosen to use apic_printk(APIC_QUIET, ...) rather than printk(...)
so that the distinction of these messages is maintained making possible
future decisions about changes in this area easier. A change posted
separately making apic_verbosity unsigned removes any extra code that
would otherwise be generated as a result of this design decision.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use alternatives to select the workaround for the 11AP Pentium erratum
for the affected steppings on the fly rather than build time. Remove the
X86_GOOD_APIC configuration option and replace all the calls to
apic_write_around() with plain apic_write(), protecting accesses to the
ESR as appropriate due to the 3AP Pentium erratum. Remove
apic_read_around() and all its invocations altogether as not needed.
Remove apic_write_atomic() and all its implementing backends. The use of
ASM_OUTPUT2() is not strictly needed for input constraints, but I have
used it for readability's sake.
I had the feeling no one else was brave enough to do it, so I went ahead
and here it is. Verified by checking the generated assembly and tested
with both a 32-bit and a 64-bit configuration, also with the 11AP
"feature" forced on and verified with gdb on /proc/kcore to work as
expected (as an 11AP machines are quite hard to get hands on these days).
Some script complained about the use of "volatile", but apic_write() needs
it for the same reason and is effectively a replacement for writel(), so I
have disregarded it.
I am not sure what the policy wrt defconfig files is, they are generated
and there is risk of a conflict resulting from an unrelated change, so I
have left changes to them out. The option will get removed from them at
the next run.
Some testing with machines other than mine will be needed to avoid some
stupid mistake, but despite its volume, the change is not really that
intrusive, so I am fairly confident that because it works for me, it will
everywhere.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that IRQ2 is never made available to the I/O APIC, there is no need
to special-case it and mask as a workaround for broken systems. Actually,
because of the former, mask_IO_APIC_irq(2) is a no-op already.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
also remove GET_APIC_ID when read_apic_id is used.
need to apply after
[PATCH] x86: mach_apicdef.h need to include before smp.h
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is no such entity as ISA IRQ2. The ACPI spec does not make it
explicitly clear, but does not preclude it either -- all it says is ISA
legacy interrupts are identity mapped by default (subject to overrides),
but it does not state whether IRQ2 exists or not. As a result if there is
no IRQ0 override, then IRQ2 is normally initialised as an ISA interrupt,
which implies an edge-triggered line, which is unmasked by default as this
is what we do for edge-triggered I/O APIC interrupts so as not to miss an
edge.
To the best of my knowledge it is useless, as IRQ2 has not been in use
since the PC/AT as back then it was taken by the 8259A cascade interrupt
to the slave, with the line position in the slot rerouted to newly-created
IRQ9. No device could thus make use of this line with the pair of 8259A
chips. Now in theory INTIN2 of the I/O APIC may be usable, but the
interrupt of the device wired to it would not be available in the PIC mode
at all, so I seriously doubt if anybody decided to reuse it for a regular
device.
However there are two common uses of INTIN2. One is for IRQ0, with an
ACPI interrupt override (or its equivalent in the MP table). But in this
case IRQ2 is gone entirely with INTIN0 left vacant. The other one is for
an 8959A ExtINTA cascade. In this case IRQ0 goes to INTIN0 and if ACPI is
used INTIN2 is assumed to be IRQ2 (there is no override and ACPI has no
way to report ExtINTA interrupts). This is where a problem happens.
The problem is INTIN2 is configured as a native APIC interrupt, with a
vector assigned and the mask cleared. And the line may indeed get active
and inject interrupts if the master 8959A has its timer interrupt enabled
(it might happen for other interrupts too, but they are normally masked in
the process of rerouting them to the I/O APIC). There are two cases where
it will happen:
* When the I/O APIC NMI watchdog is enabled. This is actually a misnomer
as the watchdog pulses are delivered through the 8259A to the LINT0
inputs of all the local APICs in the system. The implication is the
output of the master 8259A goes high and low repeatedly, signalling
interrupts to INTIN2 which is enabled too!
[The origin of the name is I think for a brief period during the
development we had a capability in our code to configure the watchdog to
use an I/O APIC input; that would be INTIN2 in this scenario.]
* When the native route of IRQ0 via INTIN0 fails for whatever reason -- as
it happens with the system considered here. In this scenario the timer
pulse is delivered through the 8259A to LINT0 input of the local APIC of
the bootstrap processor, quite similarly to how is done for the watchdog
described above. The result is, again, INTIN2 receives these pulses
too. Rafael's system used to escape this scenario, because an incorrect
IRQ0 override would occupy INTIN2 and prevent it from being unmasked.
My conclusion is IRQ2 should be excluded from configuration in all the
cases and the current exception for ACPI systems should be lifted. The
reason being the exception not only being useless, but harmful as well.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Unlike the 32-bit one, the 64-bit variation of the LVT0 setup code for
the "8259A Virtual Wire" through the local APIC timer configuration does
not fully configure the relevant irq_chip structure. Instead it relies on
the preceding I/O APIC code to have set it up, which does not happen if
the I/O APIC variants have not been tried.
The patch includes corresponding changes to the 32-bit variation too
which make them both the same, barring a small syntactic difference
involving sequence of functions in the source. That should work as an aid
with the upcoming merge.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
IRQ0 is edge-triggered, but the "8259A Virtual Wire" through the local
APIC configuration in the 32-bit version uses the "fasteoi" handler
suitable for level-triggered APIC interrupt. Rewrite code so that the
"edge" handler is used. The 64-bit version uses different code and is
unaffected.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The problems are that, with the ACPI vs timer overring issue _fixed_,
after using the box for some time (between several seconds and 1 hour, at
random) processes get very high CPU loads (once I've got X using 107% of
the CPU, for example) and the system becomes unresponsive, as though there
were interrupts lost or something similar.
Andreas Herrman reproduced similar problems:
> Ok, now I've reproduced the stability problem.
> - Using tip/master,
> - reverting e38502eb8aa82314d5ab0eba45f50e6790dadd88 and
> - applying your patch from this posting
> http://marc.info/?l=linux-kernel&m=121539354224562&w=4
>
> Starting X, firefox, gimp, tuxpaint and doing some drawing in tuxpaint
> results in a slow system. Drawing is almost not possible anymore --
> Selections of new colors, cursors etc. is performed with huge delay
> if it's performed at all.
>
> BTW, the code sets up timer IRQ as Virtual Wire IRQ:
>
> Jul 8 14:57:58 kodscha IO-APIC (apicid-pin) 2-22, 2-23 not connected.
> Jul 8 14:57:58 kodscha ..TIMER: vector=0x30 apic1=0 pin1=2 apic2=-1 pin2=-1
> Jul 8 14:57:58 kodscha ...trying to set up timer as Virtual Wire IRQ... works.
>
> and both INT0 and INT2 of IOAPIC are masked:
>
> Jul 8 14:57:58 kodscha NR Dst Mask Trig IRR Pol Stat Dmod Deli Vect:
> Jul 8 14:57:58 kodscha 00 000 1 0 0 0 0 0 0 00
> Jul 8 14:57:58 kodscha 01 003 0 0 0 0 0 1 1 31
> Jul 8 14:57:58 kodscha 02 003 1 0 0 0 0 0 0 30
>
> I've also seen strange CPU utilization -- with syslog-ng:
>
> top - 15:33:06 up 35 min, 4 users, load average: 1.70, 0.68, 0.37
> Tasks: 64 total, 4 running, 60 sleeping, 0 stopped, 0 zombie
> Cpu0 : 0.0%us,100.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
> Cpu1 : 6.4%us, 87.2%sy, 0.0%ni, 5.8%id, 0.0%wa, 0.6%hi, 0.0%si, 0.0%st
> Mem: 895384k total, 283568k used, 611816k free, 35492k buffers
> Swap: 1959920k total, 0k used, 1959920k free, 163044k cached
>
> PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
> 4632 root 20 0 17216 800 580 S 104 0.1 0:34.22 syslog-ng
> 28505 root 20 0 205m 11m 4024 S 6 1.3 0:21.16 X
> 28518 root 20 0 56292 5652 4492 S 1 0.6 0:01.80 fluxbox
> 1 root 20 0 3724 608 508 S 0 0.1 0:00.36 init
>
> So far I have no clue why C1E-idle in conjunction with virtual wire
> mode causes this strange behaviour.
>
> ... and I start to think about the root cause of all this.
>
> I've performed similar tests under X with the IRQ0/INT0 configuration and
> I did not see above symptoms.
So lets fall back to the IRQ0/INT0 configuration on this box.
This basically restores the dont-use-the-lapic-timer exception mechanism
that was unconditional on this box prior commit 8750bf5 ("x86: add C1E
aware idle function").
Signed-off-by: Ingo Molnar <mingo@elte.hu>
instead of calling it from trap_init()
also move init ioapic mapping out of apic_32.c
so 32 bit do same as 64 bit
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We create a version of it for i386, and then take the CONFIG_X86_64
ifdef out of the game. We could create a __setup_vector_irq for i386,
but it would incur in an unnecessary lock taking. Moreover, it is better
practice to only export setup_vector_irq anyway.
Signed-off-by: Glauber Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Not sure but maybe it is better to use NMI_DISABLED,
will take a look. But for now this patch is not change
anything in logic so it will not hurt/broke the kernel.
For most cases nmi_watchdog assignment is by one of NMI_*
macro so I think there it make sense too.
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some systems incorrectly report the ExtINTA pin of the I/O APIC as the
genuine target of the timer interrupt. Here is a change that copies timer
pin information found to the other pin if one has been found only. This
way both a direct and a through-8259A route is tested with the pin letting
these problematic systems work well enough. If no timer pin information
has been found for the I/O APIC, then local APIC variations are tried
only, similarly to what is done without the change (except without the
misleading messages).
Obviously if we try the first-chance path without being told by the BIOS
to do so, we should not complain either, so do not print the message in
this case.
The 64-bit variation should be updated with a call to
replace_pin_at_irq() which can be done with the upcoming merge. Since
add_pin_to_irq() is now always called in the first-chance path, the
condition to require it in the second-chance path no longer happens.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Keep the timer interrupt line masked when reconfiguring its interrupt
redirection entry in the I/O APIC.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Unmask the timer interrupt line set up in the through-8259A mode
explicitly after setup_timer_IRQ0_pin() has set up the I/O APIC interrupt
redirection entry to let the two operations be unbound from each other.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename setup_ExtINT_IRQ0_pin() to setup_timer_IRQ0_pin() to better
reflect the upcoming role of a function setting up a (semi-)arbitrary I/O
APIC pin appropriately for the 8254 timer. By "appropriate" the following
settings are meant: edge-triggered, active-high, all the other settings
per-architecture. Adjust comments to reflect code appropriately. No
functional changes.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The LINT0 line of the local APIC is masked in the LVT0 entry in
check_timer() before this function is ever called. Removed the
redundant unmasking for better control.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For a better control the masking and unmasking of the timer interrupt
line in the 8259A operating in the 'Virtual Wire' mode has been moved out
of setup_ExtINT_IRQ0_pin() now, so remove the redundant calls from the
function.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the through-8259A mode is used for the timer, the call to
set_irq_handler() will register a NULL handler name, resulting in
"IO-APIC-<NULL>" reported. Fix by calling ioapic_register_intr() as done
for all the other I/O APIC interrupts.
The 64-bit variation calls set_irq_chip_and_handler_name() here
needlessly and should get fixed with the upcoming merge.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The local APIC interrupt handler gets registered with
set_irq_chip_and_handler_name(), which results in
"local-APIC-edge-fasteoi" reported as the name of the handler. Fix by
removing the type of the handler left over from before the generic
handlers were introduced.
The 64-bit variation should get fixed with the upcoming merge.
NB It should really use the "edge" handler and not the "fasteoi" one,
but that's a separate issue.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is no point in keeping the 8259A enabled if the I/O APIC NMI
watchdog has failed and the 8259A is not used to pass through regular
timer interrupts. This fixes problems with some systems where some logic
gets confused.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Disable the 8259A acting in the "virtual wire" mode to keep the interrupt
line inactive while fiddling with local APIC interrupt vector registers
associated with its destination inputs. To be on the safe side,
especially concerning flipping the trigger mode.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Disable the 8259A when routing of the timer interrupt through the chip to
the local APIC of the primary processor has failed.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the "disable_8254_timer" and "enable_8254_timer" kernel
parameters. Now that AEOI acknowledgements are no longer needed for
correct timer operation, the 8259A can be kept disabled unconditionally
unless interrupts, either timer or watchdog ones, are actually passed
through it.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The code that used to be in do_slow_gettimeoffset() that relied on the
IRR bit of the master 8259A PIC for IRQ0 to check the state of the output
timer 0 of the PIT is no longer there. As a result, there is no need to
use the POLL command to acknowledge the timer interrupt in the "8259A
Virtual Wire", except for the NMI watchdog when the i82489DX APIC is used
(this is because this particular APIC treats NMIs as level-triggered and
keeping the input asserted would keep motherboard NMI sources held off for
too long). Remove the unneeded bits and adjust comments accordingly.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's not even passed on to smp_call_function() anymore, since that
was removed. So kill it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This reverts commit 6e908947b4.
Németh Márton reported:
| there is a problem in 2.6.26-rc3 which was not there in case of
| 2.6.25: the CPU wakes up ~90,000 times per sec instead of ~60 per sec.
|
| I also "git bisected" the problem, the result is:
|
| 6e908947b4 is first bad commit
| commit 6e908947b4
| Author: Ingo Molnar <mingo@elte.hu>
| Date: Fri Mar 21 14:32:36 2008 +0100
|
| x86: fix ioapic bug again
the original problem is fixed by Maciej W. Rozycki in the tip/x86/apic
branch (confirmed by Márton), but those changes are too intrusive for
v2.6.26 so we'll go for the less intrusive (repeated) revert now.
Reported-and-bisected-by: Németh Márton <nm127@freemail.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
... so it could fall back to normal numa and we'd reduce the impact of the
NUMAQ subarch.
NUMAQ depends on GENERICARCH
also decouple genericarch numa from acpi.
also make it fall back to bigsmp if apicid > 8.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>