swap_ra_info() may leave ra_info untouched in non_swap_entry() case as
page table lock is not held. In this case, we have ra_info.nr_pte == 0
and it is meaningless to continue with swap cache readahead. Skip such
ops by init ra_info.win = 1.
[akpm@linux-foundation.org: clean up struct init]
Link: https://lkml.kernel.org/r/20201009133059.58407-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix some broken comments including typo, grammar error and wrong function
name.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200913095456.54873-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SWP_FS is used to make swap_{read,write}page() go through the filesystem,
and it's only used for swap files over NFS for now. Otherwise it will
directly submit IO to blockdev according to swapfile extents reported by
filesystems in advance.
As Matthew pointed out [1], SWP_FS naming is somewhat confusing, so let's
rename to SWP_FS_OPS.
[1] https://lore.kernel.org/r/20200820113448.GM17456@casper.infradead.org
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200822113019.11319-1-hsiangkao@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are only four callers remaining of find_get_entry().
get_shadow_from_swap_cache() only wants to see shadow entries and doesn't
care about which page is returned. Push the find_subpage() call into
find_lock_entry(), find_get_incore_page() and pagecache_get_page().
[willy@infradead.org: fix oops]
Link: https://lkml.kernel.org/r/20200914112738.GM6583@casper.infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-7-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Return head pages from find_*_entry", v2.
This patch series started out as part of the THP patch set, but it has
some nice effects along the way and it seems worth splitting it out and
submitting separately.
Currently find_get_entry() and find_lock_entry() return the page
corresponding to the requested index, but the first thing most callers do
is find the head page, which we just threw away. As part of auditing all
the callers, I found some misuses of the APIs and some plain
inefficiencies that I've fixed.
The diffstat is unflattering, but I added more kernel-doc and a new wrapper.
This patch (of 8);
Provide this functionality from the swap cache. It's useful for
more than just mincore().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20200910183318.20139-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_cache_info.* could be accessed concurrently as noticed by
KCSAN,
BUG: KCSAN: data-race in lookup_swap_cache / lookup_swap_cache
write to 0xffffffff85517318 of 8 bytes by task 94138 on cpu 101:
lookup_swap_cache+0x12e/0x460
lookup_swap_cache at mm/swap_state.c:322
do_swap_page+0x112/0xeb0
__handle_mm_fault+0xc7a/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
read to 0xffffffff85517318 of 8 bytes by task 91655 on cpu 100:
lookup_swap_cache+0x117/0x460
lookup_swap_cache at mm/swap_state.c:322
shmem_swapin_page+0xc7/0x9e0
shmem_getpage_gfp+0x2ca/0x16c0
shmem_fault+0xef/0x3c0
__do_fault+0x9e/0x220
do_fault+0x4a0/0x920
__handle_mm_fault+0xc69/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
Reported by Kernel Concurrency Sanitizer on:
CPU: 100 PID: 91655 Comm: systemd-journal Tainted: G W O L 5.5.0-next-20200204+ #6
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019
write to 0xffffffff8d717308 of 8 bytes by task 11365 on cpu 87:
__delete_from_swap_cache+0x681/0x8b0
__delete_from_swap_cache at mm/swap_state.c:178
read to 0xffffffff8d717308 of 8 bytes by task 11275 on cpu 53:
__delete_from_swap_cache+0x66e/0x8b0
__delete_from_swap_cache at mm/swap_state.c:178
Both the read and write are done as lockless. Since swap_cache_info.*
are only used to print out counter information, even if any of them
missed a few incremental due to data races, it will be harmless, so just
mark it as an intentional data race using the data_race() macro.
While at it, fix a checkpatch.pl warning,
WARNING: Single statement macros should not use a do {} while (0) loop
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Link: http://lkml.kernel.org/r/20200207003715.1578-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements workingset detection for anonymous LRU. All the
infrastructure is implemented by the previous patches so this patch just
activates the workingset detection by installing/retrieving the shadow
entry and adding refault calculation.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workingset detection for anonymous page will be implemented in the
following patch and it requires to store the shadow entries into the
swapcache. This patch implements an infrastructure to store the shadow
entry in the swapcache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/1595490560-15117-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix W=1 compile warnings (invalid kerneldoc):
mm/swap_state.c:742: warning: Function parameter or member 'fentry' not described in 'swap_vma_readahead'
mm/swap_state.c:742: warning: Excess function parameter 'entry' description in 'swap_vma_readahead'
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200728171109.28687-2-krzk@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chris Murphy reports that a slightly overcommitted load, testing swap
and zram along with i915, splats and keeps on splatting, when it had
better fail less noisily:
gnome-shell: page allocation failure: order:0,
mode:0x400d0(__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_RECLAIMABLE),
nodemask=(null),cpuset=/,mems_allowed=0
CPU: 2 PID: 1155 Comm: gnome-shell Not tainted 5.7.0-1.fc33.x86_64 #1
Call Trace:
dump_stack+0x64/0x88
warn_alloc.cold+0x75/0xd9
__alloc_pages_slowpath.constprop.0+0xcfa/0xd30
__alloc_pages_nodemask+0x2df/0x320
alloc_slab_page+0x195/0x310
allocate_slab+0x3c5/0x440
___slab_alloc+0x40c/0x5f0
__slab_alloc+0x1c/0x30
kmem_cache_alloc+0x20e/0x220
xas_nomem+0x28/0x70
add_to_swap_cache+0x321/0x400
__read_swap_cache_async+0x105/0x240
swap_cluster_readahead+0x22c/0x2e0
shmem_swapin+0x8e/0xc0
shmem_swapin_page+0x196/0x740
shmem_getpage_gfp+0x3a2/0xa60
shmem_read_mapping_page_gfp+0x32/0x60
shmem_get_pages+0x155/0x5e0 [i915]
__i915_gem_object_get_pages+0x68/0xa0 [i915]
i915_vma_pin+0x3fe/0x6c0 [i915]
eb_add_vma+0x10b/0x2c0 [i915]
i915_gem_do_execbuffer+0x704/0x3430 [i915]
i915_gem_execbuffer2_ioctl+0x1ea/0x3e0 [i915]
drm_ioctl_kernel+0x86/0xd0 [drm]
drm_ioctl+0x206/0x390 [drm]
ksys_ioctl+0x82/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x5b/0xf0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported on 5.7, but it goes back really to 3.1: when
shmem_read_mapping_page_gfp() was implemented for use by i915, and
allowed for __GFP_NORETRY and __GFP_NOWARN flags in most places, but
missed swapin's "& GFP_KERNEL" mask for page tree node allocation in
__read_swap_cache_async() - that was to mask off HIGHUSER_MOVABLE bits
from what page cache uses, but GFP_RECLAIM_MASK is now what's needed.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=208085
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2006151330070.11064@eggly.anvils
Fixes: 68da9f0557 ("tmpfs: pass gfp to shmem_getpage_gfp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Chris Murphy <lists@colorremedies.com>
Analyzed-by: Vlastimil Babka <vbabka@suse.cz>
Analyzed-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org> [3.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM tries to balance reclaim pressure between anon and file so as to
reduce the amount of IO incurred due to the memory shortage. It already
counts refaults and swapins, but in addition it should also count
writepage calls during reclaim.
For swap, this is obvious: it's IO that wouldn't have occurred if the
anonymous memory hadn't been under memory pressure. From a relative
balancing point of view this makes sense as well: even if anon is cold and
reclaimable, a cache that isn't thrashing may have equally cold pages that
don't require IO to reclaim.
For file writeback, it's trickier: some of the reclaim writepage IO would
have likely occurred anyway due to dirty expiration. But not all of it -
premature writeback reduces batching and generates additional writes.
Since the flushers are already woken up by the time the VM starts writing
cache pages one by one, let's assume that we'e likely causing writes that
wouldn't have happened without memory pressure. In addition, the per-page
cost of IO would have probably been much cheaper if written in larger
batches from the flusher thread rather than the single-page-writes from
kswapd.
For our purposes - getting the trend right to accelerate convergence on a
stable state that doesn't require paging at all - this is sufficiently
accurate. If we later wanted to optimize for sustained thrashing, we can
still refine the measurements.
Count all writepage calls from kswapd as IO cost toward the LRU that the
page belongs to.
Why do this dynamically? Don't we know in advance that anon pages require
IO to reclaim, and so could build in a static bias?
First, scanning is not the same as reclaiming. If all the anon pages are
referenced, we may not swap for a while just because we're scanning the
anon list. During this time, however, it's important that we age
anonymous memory and the page cache at the same rate so that their
hot-cold gradients are comparable. Everything else being equal, we still
want to reclaim the coldest memory overall.
Second, we keep copies in swap unless the page changes. If there is
swap-backed data that's mostly read (tmpfs file) and has been swapped out
before, we can reclaim it without incurring additional IO.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the LRUs were split into anon and file lists, the VM has been
balancing between page cache and anonymous pages based on per-list ratios
of scanned vs. rotated pages. In most cases that tips page reclaim
towards the list that is easier to reclaim and has the fewest actively
used pages, but there are a few problems with it:
1. Refaults and LRU rotations are weighted the same way, even though
one costs IO and the other costs a bit of CPU.
2. The less we scan an LRU list based on already observed rotations,
the more we increase the sampling interval for new references, and
rotations become even more likely on that list. This can enter a
death spiral in which we stop looking at one list completely until
the other one is all but annihilated by page reclaim.
Since commit a528910e12 ("mm: thrash detection-based file cache sizing")
we have refault detection for the page cache. Along with swapin events,
they are good indicators of when the file or anon list, respectively, is
too small for its workingset and needs to grow.
For example, if the page cache is thrashing, the cache pages need more
time in memory, while there may be colder pages on the anonymous list.
Likewise, if swapped pages are faulting back in, it indicates that we
reclaim anonymous pages too aggressively and should back off.
Replace LRU rotations with refaults and swapins as the basis for relative
reclaim cost of the two LRUs. This will have the VM target list balances
that incur the least amount of IO on aggregate.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They're the same function, and for the purpose of all callers they are
equivalent to lru_cache_add().
[akpm@linux-foundation.org: fix it for local_lock changes]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapin faults were the last event to charge pages after they had already
been put on the LRU list. Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, users that are otherwise memory controlled can easily escape
their containment and allocate significant amounts of memory that they're
not being charged for. That's because swap readahead pages are not being
charged until somebody actually faults them into their page table. This
can be exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.
There are additional problems with the delayed charging of swap pages:
1. To implement refault/workingset detection for anonymous pages, we
need to have a target LRU available at swapin time, but the LRU is not
determinable until the page has been charged.
2. To implement per-cgroup LRU locking, we need page->mem_cgroup to be
stable when the page is isolated from the LRU; otherwise, the locks
change under us. But swapcache gets charged after it's already on the
LRU, and even if we cannot isolate it ourselves (since charging is not
exactly optional).
The previous patch ensured we always maintain cgroup ownership records for
swap pages. This patch moves the swapcache charging point from the fault
handler to swapin time to fix all of the above problems.
v2: simplify swapin error checking (Joonsoo)
[hughd@google.com: fix livelock in __read_swap_cache_async()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005212246080.8458@eggly.anvils
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-17-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,
BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead
write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
swap_cluster_readahead+0x2a6/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by (dnf)/14795:
#0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1535
irq event stamp: 83493
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
swap_cluster_readahead+0xfd/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by systemd/1:
#0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
irq event stamp: 43530289
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
add_to_swap_cache() and delete_from_swap_cache() are counterparts, while
currently they use different ways to count pages.
It doesn't break anything because we only have two sizes for PageAnon, but
this is confusing and not good practice.
This patch corrects it by making both functions use hpage_nr_pages().
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200315012920.2687-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
Kirill and Huang Ying contributed several fixes.
[willy@infradead.org: use compound_nr, squish uninit-var warning]
Link: http://lkml.kernel.org/r/20190731210400.7419-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-by: Song Liu <songliubraving@fb.com>
Tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
total_swapcache_pages() may race with swapper_spaces[] allocation and
freeing. Previously, this is protected with a swapper_spaces[] specific
RCU mechanism. To simplify the logic/code complexity, it is replaced with
get/put_swap_device(). The code line number is reduced too. Although not
so important, the swapoff() performance improves too because one
synchronize_rcu() call during swapoff() is deleted.
[ying.huang@intel.com: fix bad swap file entry warning]
Link: http://lkml.kernel.org/r/20190531024102.21723-1-ying.huang@intel.com
Link: http://lkml.kernel.org/r/20190527082714.12151-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When swapin is performed, after getting the swap entry information from
the page table, system will swap in the swap entry, without any lock held
to prevent the swap device from being swapoff. This may cause the race
like below,
CPU 1 CPU 2
----- -----
do_swap_page
swapin_readahead
__read_swap_cache_async
swapoff swapcache_prepare
p->swap_map = NULL __swap_duplicate
p->swap_map[?] /* !!! NULL pointer access */
Because swapoff is usually done when system shutdown only, the race may
not hit many people in practice. But it is still a race need to be fixed.
To fix the race, get_swap_device() is added to check whether the specified
swap entry is valid in its swap device. If so, it will keep the swap
entry valid via preventing the swap device from being swapoff, until
put_swap_device() is called.
Because swapoff() is very rare code path, to make the normal path runs as
fast as possible, rcu_read_lock/unlock() and synchronize_rcu() instead of
reference count is used to implement get/put_swap_device(). >From
get_swap_device() to put_swap_device(), RCU reader side is locked, so
synchronize_rcu() in swapoff() will wait until put_swap_device() is
called.
In addition to swap_map, cluster_info, etc. data structure in the struct
swap_info_struct, the swap cache radix tree will be freed after swapoff,
so this patch fixes the race between swap cache looking up and swapoff
too.
Races between some other swap cache usages and swapoff are fixed too via
calling synchronize_rcu() between clearing PageSwapCache() and freeing
swap cache data structure.
Another possible method to fix this is to use preempt_off() +
stop_machine() to prevent the swap device from being swapoff when its data
structure is being accessed. The overhead in hot-path of both methods is
similar. The advantages of RCU based method are,
1. stop_machine() may disturb the normal execution code path on other
CPUs.
2. File cache uses RCU to protect its radix tree. If the similar
mechanism is used for swap cache too, it is easier to share code
between them.
3. RCU is used to protect swap cache in total_swapcache_pages() and
exit_swap_address_space() already. The two mechanisms can be
merged to simplify the logic.
Link: http://lkml.kernel.org/r/20190522015423.14418-1-ying.huang@intel.com
Fixes: 235b621767 ("mm/swap: add cluster lock")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Not-nacked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
[willy@infradead.org: fix swapcache pages]
Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org
[kirill@shutemov.name: hugetlb stores pages in page cache differently]
Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1
Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-and-tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Hugh Dickins <hughd@google.com>
Cc: Song Liu <liu.song.a23@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_vma_readahead()'s comment is missing, just add it.
Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead would read in a few pages regardless if the underlying
device is busy or not. It may incur long waiting time if the device is
congested, and it may also exacerbate the congestion.
Use inode_read_congested() to check if the underlying device is busy or
not like what file page readahead does. Get inode from
swap_info_struct.
Although we can add inode information in swap_address_space
(address_space->host), it may lead some unexpected side effect, i.e. it
may break mapping_cap_account_dirty(). Using inode from
swap_info_struct seems simple and good enough.
Just does the check in vma_cluster_readahead() since
swap_vma_readahead() is just used for non-rotational device which much
less likely has congestion than traditional HDD.
Although swap slots may be consecutive on swap partition, it still may
be fragmented on swap file. This check would help to reduce excessive
stall for such case.
The test with page_fault1 of will-it-scale (sometimes tracing may just
show runtest.py that is the wrapper script of page_fault1), which
basically launches NR_CPU threads to generate 128MB anonymous pages for
each thread, on my virtual machine with congested HDD shows long tail
latency is reduced significantly.
Without the patch
page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page();
page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page();
page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page();
page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page();
page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page();
page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page();
page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page();
page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page();
With the patch
runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page();
runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page();
runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page();
runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page();
runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page();
runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page();
runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page();
runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page();
[akpm@linux-foundation.org: code cleanup]
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com
Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
Refaults happen during transitions between workingsets as well as in-place
thrashing. Knowing the difference between the two has a range of
applications, including measuring the impact of memory shortage on the
system performance, as well as the ability to smarter balance pressure
between the filesystem cache and the swap-backed workingset.
During workingset transitions, inactive cache refaults and pushes out
established active cache. When that active cache isn't stale, however,
and also ends up refaulting, that's bonafide thrashing.
Introduce a new page flag that tells on eviction whether the page has been
active or not in its lifetime. This bit is then stored in the shadow
entry, to classify refaults as transitioning or thrashing.
How many page->flags does this leave us with on 32-bit?
20 bits are always page flags
21 if you have an MMU
23 with the zone bits for DMA, Normal, HighMem, Movable
29 with the sparsemem section bits
30 if PAE is enabled
31 with this patch.
So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If
that's not enough, the system can switch to discontigmem and re-gain the 6
or 7 sparsemem section bits.
Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With no more radix tree API users left, we can drop the GFP flags
and use xa_init() instead of INIT_RADIX_TREE().
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Both callers of __delete_from_swap_cache have the swp_entry_t already,
so pass that in to make constructing the XA_STATE easier.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Combine __add_to_swap_cache and add_to_swap_cache into one function
since there is no more need to preload.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Patch series "mm, memcontrol: Implement memory.swap.events", v2.
This patchset implements memory.swap.events which contains max and fail
events so that userland can monitor and respond to swap running out.
This patch (of 2):
get_swap_page() is always followed by mem_cgroup_try_charge_swap().
This patch moves mem_cgroup_try_charge_swap() into get_swap_page() and
makes get_swap_page() call the function even after swap allocation
failure.
This simplifies the callers and consolidates memcg related logic and
will ease adding swap related memcg events.
Link: http://lkml.kernel.org/r/20180416230934.GH1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bool enable_vma_readahead and swap_vma_readahead() are local to the
source and do not need to be in global scope, so make them static.
Cleans up sparse warnings:
mm/swap_state.c:41:6: warning: symbol 'enable_vma_readahead' was not declared. Should it be static?
mm/swap_state.c:742:13: warning: symbol 'swap_vma_readahead' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180223164852.5159-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes do_swap_page() not need to be aware of two different
swap readahead algorithms. Just unify cluster-based and vma-based
readahead function call.
Link: http://lkml.kernel.org/r/1509520520-32367-3-git-send-email-minchan@kernel.org
Link: http://lkml.kernel.org/r/20180220085249.151400-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I see recent change of swap readahead, I am very unhappy about
current code structure which diverges two swap readahead algorithm in
do_swap_page. This patch is to clean it up.
Main motivation is that fault handler doesn't need to be aware of
readahead algorithms but just should call swapin_readahead.
As first step, this patch cleans up a little bit but not perfect (I just
separate for review easier) so next patch will make the goal complete.
[minchan@kernel.org: do not check readahead flag with THP anon]
Link: http://lkml.kernel.org/r/874lm83zho.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20180227232611.169883-1-minchan@kernel.org
Link: http://lkml.kernel.org/r/1509520520-32367-2-git-send-email-minchan@kernel.org
Link: http://lkml.kernel.org/r/20180220085249.151400-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of release_pages claim the pages being released are cache
hot. As no one cares about the hotness of pages being released to the
allocator, just ditch the parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These global variables are only set during initialization or rarely
change, so declare them as __read_mostly.
Link: http://lkml.kernel.org/r/1507802349-5554-1-git-send-email-changbin.du@intel.com
Signed-off-by: Changbin Du <changbin.du@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a page fault occurs for a swap entry, the physical swap readahead
(not the VMA base swap readahead) may readahead several swap entries
after the fault swap entry. The readahead algorithm calculates some of
the swap entries to readahead via increasing the offset of the fault
swap entry without checking whether they are beyond the end of the swap
device and it relys on the __swp_swapcount() and swapcache_prepare() to
check it. Although __swp_swapcount() checks for the swap entry passed
in, it will complain with the error message as follow for the expected
invalid swap entry. This may make the end users confused.
swap_info_get: Bad swap offset entry 0200f8a7
To fix the false error message, the swap entry checking is added in
swapin_readahead() to avoid to pass the out-of-bound swap entries and
the swap entry reserved for the swap header to __swp_swapcount() and
swapcache_prepare().
Link: http://lkml.kernel.org/r/20171102054225.22897-1-ying.huang@intel.com
Fixes: e8c26ab605 ("mm/swap: skip readahead for unreferenced swap slots")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Christian Kujau <lists@nerdbynature.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Suggested-by: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the VMA based swap readahead was introduced, a new knob
/sys/kernel/mm/swap/vma_ra_max_order
was added as the max window of VMA swap readahead. This is to make it
possible to use different max window for VMA based readahead and
original physical readahead. But Minchan Kim pointed out that this will
cause a regression because setting page-cluster sysctl to zero cannot
disable swap readahead with the change.
To fix the regression, the page-cluster sysctl is used as the max window
of both the VMA based swap readahead and original physical swap
readahead. If more fine grained control is needed in the future, more
knobs can be added as the subordinate knobs of the page-cluster sysctl.
The vma_ra_max_order knob is deleted. Because the knob was introduced
in v4.14-rc1, and this patch is targeting being merged before v4.14
releasing, there should be no existing users of this newly added ABI.
Link: http://lkml.kernel.org/r/20171011070847.16003-1-ying.huang@intel.com
Fixes: ec560175c0 ("mm, swap: VMA based swap readahead")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADV_FREE clears pte dirty bit and then marks the page lazyfree (clear
SwapBacked). There is no lock to prevent the page is added to swap
cache between these two steps by page reclaim. If page reclaim finds
such page, it will simply add the page to swap cache without pageout the
page to swap because the page is marked as clean. Next time, page fault
will read data from the swap slot which doesn't have the original data,
so we have a data corruption. To fix issue, we mark the page dirty and
pageout the page.
However, we shouldn't dirty all pages which is clean and in swap cache.
swapin page is swap cache and clean too. So we only dirty page which is
added into swap cache in page reclaim, which shouldn't be swapin page.
As Minchan suggested, simply dirty the page in add_to_swap can do the
job.
Fixes: 802a3a92ad ("mm: reclaim MADV_FREE pages")
Link: http://lkml.kernel.org/r/08c84256b007bf3f63c91d94383bd9eb6fee2daa.1506446061.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Reported-by: Artem Savkov <asavkov@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [4.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sysfs interface to control the VMA based swap readahead is added as
follow,
/sys/kernel/mm/swap/vma_ra_enabled
Enable the VMA based swap readahead algorithm, or use the original
global swap readahead algorithm.
/sys/kernel/mm/swap/vma_ra_max_order
Set the max order of the readahead window size for the VMA based swap
readahead algorithm.
The corresponding ABI documentation is added too.
Link: http://lkml.kernel.org/r/20170807054038.1843-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The swap readahead is an important mechanism to reduce the swap in
latency. Although pure sequential memory access pattern isn't very
popular for anonymous memory, the space locality is still considered
valid.
In the original swap readahead implementation, the consecutive blocks in
swap device are readahead based on the global space locality estimation.
But the consecutive blocks in swap device just reflect the order of page
reclaiming, don't necessarily reflect the access pattern in virtual
memory. And the different tasks in the system may have different access
patterns, which makes the global space locality estimation incorrect.
In this patch, when page fault occurs, the virtual pages near the fault
address will be readahead instead of the swap slots near the fault swap
slot in swap device. This avoid to readahead the unrelated swap slots.
At the same time, the swap readahead is changed to work on per-VMA from
globally. So that the different access patterns of the different VMAs
could be distinguished, and the different readahead policy could be
applied accordingly. The original core readahead detection and scaling
algorithm is reused, because it is an effect algorithm to detect the
space locality.
The test and result is as follow,
Common test condition
=====================
Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device:
NVMe disk
Micro-benchmark with combined access pattern
============================================
vm-scalability, sequential swap test case, 4 processes to eat 50G
virtual memory space, repeat the sequential memory writing until 300
seconds. The first round writing will trigger swap out, the following
rounds will trigger sequential swap in and out.
At the same time, run vm-scalability random swap test case in
background, 8 processes to eat 30G virtual memory space, repeat the
random memory write until 300 seconds. This will trigger random swap-in
in the background.
This is a combined workload with sequential and random memory accessing
at the same time. The result (for sequential workload) is as follow,
Base Optimized
---- ---------
throughput 345413 KB/s 414029 KB/s (+19.9%)
latency.average 97.14 us 61.06 us (-37.1%)
latency.50th 2 us 1 us
latency.60th 2 us 1 us
latency.70th 98 us 2 us
latency.80th 160 us 2 us
latency.90th 260 us 217 us
latency.95th 346 us 369 us
latency.99th 1.34 ms 1.09 ms
ra_hit% 52.69% 99.98%
The original swap readahead algorithm is confused by the background
random access workload, so readahead hit rate is lower. The VMA-base
readahead algorithm works much better.
Linpack
=======
The test memory size is bigger than RAM to trigger swapping.
Base Optimized
---- ---------
elapsed_time 393.49 s 329.88 s (-16.2%)
ra_hit% 86.21% 98.82%
The score of base and optimized kernel hasn't visible changes. But the
elapsed time reduced and readahead hit rate improved, so the optimized
kernel runs better for startup and tear down stages. And the absolute
value of readahead hit rate is high, shows that the space locality is
still valid in some practical workloads.
Link: http://lkml.kernel.org/r/20170807054038.1843-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the original implementation, it is possible that the existing pages
in the swap cache (not newly readahead) could be marked as the readahead
pages. This will cause the statistics of swap readahead be wrong and
influence the swap readahead algorithm too.
This is fixed via marking a page as the readahead page only if it is
newly allocated and read from the disk.
When testing with linpack, after the fixing the swap readahead hit rate
increased from ~66% to ~86%.
Link: http://lkml.kernel.org/r/20170807054038.1843-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, swap: VMA based swap readahead", v4.
The swap readahead is an important mechanism to reduce the swap in
latency. Although pure sequential memory access pattern isn't very
popular for anonymous memory, the space locality is still considered
valid.
In the original swap readahead implementation, the consecutive blocks in
swap device are readahead based on the global space locality estimation.
But the consecutive blocks in swap device just reflect the order of page
reclaiming, don't necessarily reflect the access pattern in virtual
memory space. And the different tasks in the system may have different
access patterns, which makes the global space locality estimation
incorrect.
In this patchset, when page fault occurs, the virtual pages near the
fault address will be readahead instead of the swap slots near the fault
swap slot in swap device. This avoid to readahead the unrelated swap
slots. At the same time, the swap readahead is changed to work on
per-VMA from globally. So that the different access patterns of the
different VMAs could be distinguished, and the different readahead
policy could be applied accordingly. The original core readahead
detection and scaling algorithm is reused, because it is an effect
algorithm to detect the space locality.
In addition to the swap readahead changes, some new sysfs interface is
added to show the efficiency of the readahead algorithm and some other
swap statistics.
This new implementation will incur more small random read, on SSD, the
improved correctness of estimation and readahead target should beat the
potential increased overhead, this is also illustrated in the test
results below. But on HDD, the overhead may beat the benefit, so the
original implementation will be used by default.
The test and result is as follow,
Common test condition
=====================
Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM)
Swap device: NVMe disk
Micro-benchmark with combined access pattern
============================================
vm-scalability, sequential swap test case, 4 processes to eat 50G
virtual memory space, repeat the sequential memory writing until 300
seconds. The first round writing will trigger swap out, the following
rounds will trigger sequential swap in and out.
At the same time, run vm-scalability random swap test case in
background, 8 processes to eat 30G virtual memory space, repeat the
random memory write until 300 seconds. This will trigger random swap-in
in the background.
This is a combined workload with sequential and random memory accessing
at the same time. The result (for sequential workload) is as follow,
Base Optimized
---- ---------
throughput 345413 KB/s 414029 KB/s (+19.9%)
latency.average 97.14 us 61.06 us (-37.1%)
latency.50th 2 us 1 us
latency.60th 2 us 1 us
latency.70th 98 us 2 us
latency.80th 160 us 2 us
latency.90th 260 us 217 us
latency.95th 346 us 369 us
latency.99th 1.34 ms 1.09 ms
ra_hit% 52.69% 99.98%
The original swap readahead algorithm is confused by the background
random access workload, so readahead hit rate is lower. The VMA-base
readahead algorithm works much better.
Linpack
=======
The test memory size is bigger than RAM to trigger swapping.
Base Optimized
---- ---------
elapsed_time 393.49 s 329.88 s (-16.2%)
ra_hit% 86.21% 98.82%
The score of base and optimized kernel hasn't visible changes. But the
elapsed time reduced and readahead hit rate improved, so the optimized
kernel runs better for startup and tear down stages. And the absolute
value of readahead hit rate is high, shows that the space locality is
still valid in some practical workloads.
This patch (of 5):
The statistics for total readahead pages and total readahead hits are
recorded and exported via the following sysfs interface.
/sys/kernel/mm/swap/ra_hits
/sys/kernel/mm/swap/ra_total
With them, the efficiency of the swap readahead could be measured, so
that the swap readahead algorithm and parameters could be tuned
accordingly.
[akpm@linux-foundation.org: don't display swap stats if CONFIG_SWAP=n]
Link: http://lkml.kernel.org/r/20170807054038.1843-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For fast flash disk, async IO could introduce overhead because of
context switch. block-mq now supports IO poll, which improves
performance and latency a lot. swapin is a good place to use this
technique, because the task is waiting for the swapin page to continue
execution.
In my virtual machine, directly read 4k data from a NVMe with iopoll is
about 60% better than that without poll. With iopoll support in swapin
patch, my microbenchmark (a task does random memory write) is about
10%~25% faster. CPU utilization increases a lot though, 2x and even 3x
CPU utilization. This will depend on disk speed.
While iopoll in swapin isn't intended for all usage cases, it's a win
for latency sensistive workloads with high speed swap disk. block layer
has knob to control poll in runtime. If poll isn't enabled in block
layer, there should be no noticeable change in swapin.
I got a chance to run the same test in a NVMe with DRAM as the media.
In simple fio IO test, blkpoll boosts 50% performance in single thread
test and ~20% in 8 threads test. So this is the base line. In above
swap test, blkpoll boosts ~27% performance in single thread test.
blkpoll uses 2x CPU time though.
If we enable hybid polling, the performance gain has very slight drop
but CPU time is only 50% worse than that without blkpoll. Also we can
adjust parameter of hybid poll, with it, the CPU time penality is
reduced further. In 8 threads test, blkpoll doesn't help though. The
performance is similar to that without blkpoll, but cpu utilization is
similar too. There is lock contention in swap path. The cpu time
spending on blkpoll isn't high. So overall, blkpoll swapin isn't worse
than that without it.
The swapin readahead might read several pages in in the same time and
form a big IO request. Since the IO will take longer time, it doesn't
make sense to do poll, so the patch only does iopoll for single page
swapin.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965c
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The add_to_swap aims to allocate swap_space(ie, swap slot and swapcache)
so if it fails due to lack of space in case of THP or something(hdd swap
but tries THP swapout) *caller* rather than add_to_swap itself should
split the THP page and retry it with base page which is more natural.
Link: http://lkml.kernel.org/r/20170515112522.32457-4-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, get_swap_page takes struct page and allocates swap space according
to page size(ie, normal or THP) so it would be more cleaner to introduce
put_swap_page which is a counter function of get_swap_page. Then, it
calls right swap slot free function depending on page's size.
[ying.huang@intel.com: minor cleanup and fix]
Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP swap: Delay splitting THP during swapping out", v11.
This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.
Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine. Because the
performance of the storage device improved faster than that of single
logical CPU. And it seems that the trend will not change in the near
future. On the other hand, the THP becomes more and more popular
because of increased memory size. So it becomes necessary to optimize
THP swap performance.
The advantages of the THP swap support include:
- Batch the swap operations for the THP to reduce lock
acquiring/releasing, including allocating/freeing the swap space,
adding/deleting to/from the swap cache, and writing/reading the swap
space, etc. This will help improve the performance of the THP swap.
- The THP swap space read/write will be 2M sequential IO. It is
particularly helpful for the swap read, which are usually 4k random
IO. This will improve the performance of the THP swap too.
- It will help the memory fragmentation, especially when the THP is
heavily used by the applications. The 2M continuous pages will be
free up after THP swapping out.
- It will improve the THP utilization on the system with the swap
turned on. Because the speed for khugepaged to collapse the normal
pages into the THP is quite slow. After the THP is split during the
swapping out, it will take quite long time for the normal pages to
collapse back into the THP after being swapped in. The high THP
utilization helps the efficiency of the page based memory management
too.
There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device. To deal with that, the THP swap in should be turned
on only when necessary. For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.
This patchset is the first step for the THP swap support. The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.
As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache. This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.
With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes. The test is done on a Xeon E5 v3 system. The swap
device used is a RAM simulated PMEM (persistent memory) device. To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.
This patch (of 5):
In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache. This
will batch the corresponding operation, thus improve THP swap out
throughput.
This is the first step for the THP swap optimization. The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.
In this patch, one swap cluster is used to hold the contents of each THP
swapped out. So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512). For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture. In effect, this will enlarge swap cluster size by 2
times on x86_64. Which may make it harder to find a free cluster when
the swap space becomes fragmented. So that, this may reduce the
continuous swap space allocation and sequential write in theory. The
performance test in 0day shows no regressions caused by this.
In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.
The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.
The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP. A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster. The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead. This works good enough for normal cases. If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary. For example, this could be caused by big size
difference among multiple swap devices.
The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be
enhanced in the future with multi-order radix tree. But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.
The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out. The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP. So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.
The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.
[ying.huang@intel.com: fix two issues in THP optimize patch]
Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc. Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc. So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.
In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term. And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.
From Dave Hansen:
"for example, we have a two-page data structure. vmalloc() takes two
effectively random order-0 pages, probably from two different 2M pages
and pins them. That "kills" two 2M pages. kmalloc(), allocating two
*contiguous* pages, will not cross a 2M boundary. That means it will
only "kill" the possibility of a single 2M page. More 2M pages == less
fragmentation.
The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.
The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it. That makes it a little harder to change.
Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit cbab0e4eec ("swap: avoid read_swap_cache_async() race to
deadlock while waiting on discard I/O completion") fixed a deadlock in
read_swap_cache_async(). Because at that time, in swap allocation path,
a swap entry may be set as SWAP_HAS_CACHE, then wait for discarding to
complete before the page for the swap entry is added to the swap cache.
But in commit 815c2c543d ("swap: make swap discard async"), the
discarding for swap become asynchronous, waiting for discarding to
complete will be done before the swap entry is set as SWAP_HAS_CACHE.
So the comments in code is incorrect now. This patch fixes the
comments.
The cond_resched() added in the commit cbab0e4eec is not necessary now
too. But if we added some sleep in swap allocation path in the future,
there may be some hard to debug/reproduce deadlock bug. So it is kept.
Link: http://lkml.kernel.org/r/20170317064635.12792-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because during swap off, a swap entry may have swap_map[] ==
SWAP_HAS_CACHE (for example, just allocated). If we return NULL in
__read_swap_cache_async(), the swap off will abort. So when swap slot
cache is disabled, (for swap off), we will wait for page to be put into
swap cache in such race condition. This should not be a problem for swap
slot cache, because swap slot cache should be drained after clearing
swap_slot_cache_enabled.
[ying.huang@intel.com: fix memory leak in __read_swap_cache_async()]
Link: http://lkml.kernel.org/r/874lzt6znd.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/5e2c5f6abe8e6eb0797408897b1bba80938e9b9d.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We add per cpu caches for swap slots that can be allocated and freed
quickly without the need to touch the swap info lock.
Two separate caches are maintained for swap slots allocated and swap
slots returned. This is to allow the swap slots to be returned to the
global pool in a batch so they will have a chance to be coaelesced with
other slots in a cluster. We do not reuse the slots that are returned
right away, as it may increase fragmentation of the slots.
The swap allocation cache is protected by a mutex as we may sleep when
searching for empty slots in cache. The swap free cache is protected by
a spin lock as we cannot sleep in the free path.
We refill the swap slots cache when we run out of slots, and we disable
the swap slots cache and drain the slots if the global number of slots
fall below a low watermark threshold. We re-enable the cache agian when
the slots available are above a high watermark.
[ying.huang@intel.com: use raw_cpu_ptr over this_cpu_ptr for swap slots access]
[tim.c.chen@linux.intel.com: add comments on locks in swap_slots.h]
Link: http://lkml.kernel.org/r/20170118180327.GA24225@linux.intel.com
Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can avoid needlessly allocating page for swap slots that are not used
by anyone. No pages have to be read in for these slots.
Link: http://lkml.kernel.org/r/0784b3f20b9bd3aa5552219624cb78dc4ae710c9.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch is to improve the scalability of the swap out/in via using
fine grained locks for the swap cache. In current kernel, one address
space will be used for each swap device. And in the common
configuration, the number of the swap device is very small (one is
typical). This causes the heavy lock contention on the radix tree of
the address space if multiple tasks swap out/in concurrently.
But in fact, there is no dependency between pages in the swap cache. So
that, we can split the one shared address space for each swap device
into several address spaces to reduce the lock contention. In the
patch, the shared address space is split into 64MB trunks. 64MB is
chosen to balance the memory space usage and effect of lock contention
reduction.
The size of struct address_space on x86_64 architecture is 408B, so with
the patch, 6528B more memory will be used for every 1GB swap space on
x86_64 architecture.
One address space is still shared for the swap entries in the same 64M
trunks. To avoid lock contention for the first round of swap space
allocation, the order of the swap clusters in the initial free clusters
list is changed. The swap space distance between the consecutive swap
clusters in the free cluster list is at least 64M. After the first
round of allocation, the swap clusters are expected to be freed
randomly, so the lock contention should be reduced effectively.
Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0. Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device. If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture. For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11. But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4. The increased height causes unnecessary radix tree
descending and increased cache footprint.
This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache. In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.
Use the whole swap entry as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,
Use the swap offset as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,
Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
File pages use a set of radix tree tags (DIRTY, TOWRITE, WRITEBACK,
etc.) to accelerate finding the pages with a specific tag in the radix
tree during inode writeback. But for anonymous pages in the swap cache,
there is no inode writeback. So there is no need to find the pages with
some writeback tags in the radix tree. It is not necessary to touch
radix tree writeback tags for pages in the swap cache.
Per Rik van Riel's suggestion, a new flag AS_NO_WRITEBACK_TAGS is
introduced for address spaces which don't need to update the writeback
tags. The flag is set for swap caches. It may be used for DAX file
systems, etc.
With this patch, the swap out bandwidth improved 22.3% (from ~1.2GB/s to
~1.48GBps) in the vm-scalability swap-w-seq test case with 8 processes.
The test is done on a Xeon E5 v3 system. The swap device used is a RAM
simulated PMEM (persistent memory) device. The improvement comes from
the reduced contention on the swap cache radix tree lock. To test
sequential swapping out, the test case uses 8 processes, which
sequentially allocate and write to the anonymous pages until RAM and
part of the swap device is used up.
Details of comparison is as follow,
base base+patch
---------------- --------------------------
%stddev %change %stddev
\ | \
2506952 ± 2% +28.1% 3212076 ± 7% vm-scalability.throughput
1207402 ± 7% +22.3% 1476578 ± 6% vmstat.swap.so
10.86 ± 12% -23.4% 8.31 ± 16% perf-profile.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list
10.82 ± 13% -33.1% 7.24 ± 14% perf-profile.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_zone_memcg
10.36 ± 11% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.__test_set_page_writeback.bdev_write_page.__swap_writepage.swap_writepage
10.52 ± 12% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.test_clear_page_writeback.end_page_writeback.page_endio.pmem_rw_page
Link: http://lkml.kernel.org/r/1472578089-5560-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone. This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted. Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.
[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Christian Borntraeger reported a kernel panic after corrupt page counts,
and it turned out to be a regression introduced with commit aa88b68c3b
("thp: keep huge zero page pinned until tlb flush"), at least on s390.
put_huge_zero_page() was moved over from zap_huge_pmd() to
release_pages(), and it was replaced by tlb_remove_page(). However,
release_pages() might not always be triggered by (the arch-specific)
tlb_remove_page().
On s390 we call free_page_and_swap_cache() from tlb_remove_page(), and
not tlb_flush_mmu() -> free_pages_and_swap_cache() like the generic
version, because we don't use the MMU-gather logic. Although both
functions have very similar names, they are doing very unsimilar things,
in particular free_page_xxx is just doing a put_page(), while
free_pages_xxx calls release_pages().
This of course results in very harmful put_page()s on the huge zero
page, on architectures where tlb_remove_page() is implemented in this
way. It seems to affect only s390 and sh, but sh doesn't have THP
support, so the problem (currently) probably only exists on s390.
The following quick hack fixed the issue:
Link: http://lkml.kernel.org/r/20160602172141.75c006a9@thinkpad
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@vger.kernel.org> [4.6.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
v3.16 commit 07a4278843 ("mm: shmem: avoid atomic operation during
shmem_getpage_gfp") rightly replaced one instance of SetPageSwapBacked
by __SetPageSwapBacked, pointing out that the newly allocated page is
not yet visible to other users (except speculative get_page_unless_zero-
ers, who may not update page flags before their further checks).
That was part of a series in which Mel was focused on tmpfs profiles:
but almost all SetPageSwapBacked uses can be so optimized, with the same
justification.
Remove ClearPageSwapBacked from __read_swap_cache_async() error path:
it's not an error to free a page with PG_swapbacked set.
Follow a convention of __SetPageLocked, __SetPageSwapBacked instead of
doing it differently in different places; but that's for tidiness - if
the ordering actually mattered, we should not be using the __variants.
There's probably scope for further __SetPageFlags in other places, but
SwapBacked is the one I'm interested in at the moment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces swap accounting to cgroup2.
This patch (of 7):
In the legacy hierarchy we charge memsw, which is dubious, because:
- memsw.limit must be >= memory.limit, so it is impossible to limit
swap usage less than memory usage. Taking into account the fact that
the primary limiting mechanism in the unified hierarchy is
memory.high while memory.limit is either left unset or set to a very
large value, moving memsw.limit knob to the unified hierarchy would
effectively make it impossible to limit swap usage according to the
user preference.
- memsw.usage != memory.usage + swap.usage, because a page occupying
both swap entry and a swap cache page is charged only once to memsw
counter. As a result, it is possible to effectively eat up to
memory.limit of memory pages *and* memsw.limit of swap entries, which
looks unexpected.
That said, we should provide a different swap limiting mechanism for
cgroup2.
This patch adds mem_cgroup->swap counter, which charges the actual number
of swap entries used by a cgroup. It is only charged in the unified
hierarchy, while the legacy hierarchy memsw logic is left intact.
The swap usage can be monitored using new memory.swap.current file and
limited using memory.swap.max.
Note, to charge swap resource properly in the unified hierarchy, we have
to make swap_entry_free uncharge swap only when ->usage reaches zero, not
just ->count, i.e. when all references to a swap entry, including the one
taken by swap cache, are gone. This is necessary, because otherwise
swap-in could result in uncharging swap even if the page is still in swap
cache and hence still occupies a swap entry. At the same time, this
shouldn't break memsw counter logic, where a page is never charged twice
for using both memory and swap, because in case of legacy hierarchy we
uncharge swap on commit (see mem_cgroup_commit_charge).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux doesn't have an ability to free pages lazy while other OS already
have been supported that named by madvise(MADV_FREE).
The gain is clear that kernel can discard freed pages rather than
swapping out or OOM if memory pressure happens.
Without memory pressure, freed pages would be reused by userspace
without another additional overhead(ex, page fault + allocation +
zeroing).
Jason Evans said:
: Facebook has been using MAP_UNINITIALIZED
: (https://lkml.org/lkml/2012/1/18/308) in some of its applications for
: several years, but there are operational costs to maintaining this
: out-of-tree in our kernel and in jemalloc, and we are anxious to retire it
: in favor of MADV_FREE. When we first enabled MAP_UNINITIALIZED it
: increased throughput for much of our workload by ~5%, and although the
: benefit has decreased using newer hardware and kernels, there is still
: enough benefit that we cannot reasonably retire it without a replacement.
:
: Aside from Facebook operations, there are numerous broadly used
: applications that would benefit from MADV_FREE. The ones that immediately
: come to mind are redis, varnish, and MariaDB. I don't have much insight
: into Android internals and development process, but I would hope to see
: MADV_FREE support eventually end up there as well to benefit applications
: linked with the integrated jemalloc.
:
: jemalloc will use MADV_FREE once it becomes available in the Linux kernel.
: In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's
: available: *BSD, OS X, Windows, and Solaris -- every platform except Linux
: (and AIX, but I'm not sure it even compiles on AIX). The lack of
: MADV_FREE on Linux forced me down a long series of increasingly
: sophisticated heuristics for madvise() volume reduction, and even so this
: remains a common performance issue for people using jemalloc on Linux.
: Please integrate MADV_FREE; many people will benefit substantially.
How it works:
When madvise syscall is called, VM clears dirty bit of ptes of the
range. If memory pressure happens, VM checks dirty bit of page table
and if it found still "clean", it means it's a "lazyfree pages" so VM
could discard the page instead of swapping out. Once there was store
operation for the page before VM peek a page to reclaim, dirty bit is
set so VM can swap out the page instead of discarding.
One thing we should notice is that basically, MADV_FREE relies on dirty
bit in page table entry to decide whether VM allows to discard the page
or not. IOW, if page table entry includes marked dirty bit, VM
shouldn't discard the page.
However, as a example, if swap-in by read fault happens, page table
entry doesn't have dirty bit so MADV_FREE could discard the page
wrongly.
For avoiding the problem, MADV_FREE did more checks with PageDirty and
PageSwapCache. It worked out because swapped-in page lives on swap
cache and since it is evicted from the swap cache, the page has PG_dirty
flag. So both page flags check effectively prevent wrong discarding by
MADV_FREE.
However, a problem in above logic is that swapped-in page has PG_dirty
still after they are removed from swap cache so VM cannot consider the
page as freeable any more even if madvise_free is called in future.
Look at below example for detail.
ptr = malloc();
memset(ptr);
..
..
.. heavy memory pressure so all of pages are swapped out
..
..
var = *ptr; -> a page swapped-in and could be removed from
swapcache. Then, page table doesn't mark
dirty bit and page descriptor includes PG_dirty
..
..
madvise_free(ptr); -> It doesn't clear PG_dirty of the page.
..
..
..
.. heavy memory pressure again.
.. In this time, VM cannot discard the page because the page
.. has *PG_dirty*
To solve the problem, this patch clears PG_dirty if only the page is
owned exclusively by current process when madvise is called because
PG_dirty represents ptes's dirtiness in several processes so we could
clear it only if we own it exclusively.
Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc
and hope glibc supports it) and jemalloc/tcmalloc already have supported
the feature for other OS(ex, FreeBSD)
barrios@blaptop:~/benchmark/ebizzy$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 12
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 2
Stepping: 3
CPU MHz: 3200.185
BogoMIPS: 6400.53
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 4096K
NUMA node0 CPU(s): 0-11
ebizzy benchmark(./ebizzy -S 10 -n 512)
Higher avg is better.
vanilla-jemalloc MADV_free-jemalloc
1 thread
records: 10 records: 10
avg: 2961.90 avg: 12069.70
std: 71.96(2.43%) std: 186.68(1.55%)
max: 3070.00 max: 12385.00
min: 2796.00 min: 11746.00
2 thread
records: 10 records: 10
avg: 5020.00 avg: 17827.00
std: 264.87(5.28%) std: 358.52(2.01%)
max: 5244.00 max: 18760.00
min: 4251.00 min: 17382.00
4 thread
records: 10 records: 10
avg: 8988.80 avg: 27930.80
std: 1175.33(13.08%) std: 3317.33(11.88%)
max: 9508.00 max: 30879.00
min: 5477.00 min: 21024.00
8 thread
records: 10 records: 10
avg: 13036.50 avg: 33739.40
std: 170.67(1.31%) std: 5146.22(15.25%)
max: 13371.00 max: 40572.00
min: 12785.00 min: 24088.00
16 thread
records: 10 records: 10
avg: 11092.40 avg: 31424.20
std: 710.60(6.41%) std: 3763.89(11.98%)
max: 12446.00 max: 36635.00
min: 9949.00 min: 25669.00
32 thread
records: 10 records: 10
avg: 11067.00 avg: 34495.80
std: 971.06(8.77%) std: 2721.36(7.89%)
max: 12010.00 max: 38598.00
min: 9002.00 min: 30636.00
In summary, MADV_FREE is about much faster than MADV_DONTNEED.
This patch (of 12):
Add core MADV_FREE implementation.
[akpm@linux-foundation.org: small cleanups]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jason Evans <je@fb.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: "Shaohua Li" <shli@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lock_page() must operate on the whole compound page. It doesn't make
much sense to lock part of compound page. Change code to use head
page's PG_locked, if tail page is passed.
This patch also gets rid of custom helper functions --
__set_page_locked() and __clear_page_locked(). They are replaced with
helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these
helper would trigger VM_BUG_ON().
SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never
appear there. VM_BUG_ON() is added to make sure that this assumption is
correct.
[akpm@linux-foundation.org: fix fs/cifs/file.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap_get_swap_cache_page and read_swap_cache_async have pretty much the
same code with only significant difference in return value and usage of
swap_readpage.
I a helper __read_swap_cache_async() with the common code. Behavior
change: now zswap_get_swap_cache_page will use radix_tree_maybe_preload
instead radix_tree_preload. Looks like, this wasn't changed only by the
reason of code duplication.
Signed-off-by: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
This bdi flag isn't too useful - we can determine that a vma is backed by
either swap or shmem trivially in the caller.
This also allows removing the backing_dev_info instaces for swap and shmem
in favor of noop_backing_dev_info.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.
Rename it and move the conditional compilation into mm/Makefile.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pages_and_swap_cache limits release_pages to PAGEVEC_SIZE chunks.
This is not a big deal for the normal release path but it completely kills
memcg uncharge batching which reduces res_counter spin_lock contention.
Dave has noticed this with his page fault scalability test case on a large
machine when the lock was basically dominating on all CPUs:
80.18% 80.18% [kernel] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--66.59%-- res_counter_uncharge_until
| res_counter_uncharge
| uncharge_batch
| uncharge_list
| mem_cgroup_uncharge_list
| release_pages
| free_pages_and_swap_cache
| tlb_flush_mmu_free
| |
| |--90.12%-- unmap_single_vma
| | unmap_vmas
| | unmap_region
| | do_munmap
| | vm_munmap
| | sys_munmap
| | system_call_fastpath
| | __GI___munmap
| |
| --9.88%-- tlb_flush_mmu
| tlb_finish_mmu
| unmap_region
| do_munmap
| vm_munmap
| sys_munmap
| system_call_fastpath
| __GI___munmap
In his case the load was running in the root memcg and that part has been
handled by reverting 05b8430123 ("mm: memcontrol: use root_mem_cgroup
res_counter") because this is a clear regression, but the problem remains
inside dedicated memcgs.
There is no reason to limit release_pages to PAGEVEC_SIZE batches other
than lru_lock held times. This logic, however, can be moved inside the
function. mem_cgroup_uncharge_list and free_hot_cold_page_list do not
hold any lock for the whole pages_to_free list so it is safe to call them
in a single run.
The release_pages() code was previously breaking the lru_lock each
PAGEVEC_SIZE pages (ie, 14 pages). However this code has no usage of
pagevecs so switch to breaking the lock at least every SWAP_CLUSTER_MAX
(32) pages. This means that the lock acquisition frequency is
approximately halved and the max hold times are approximately doubled.
The now unneeded batching is removed from free_pages_and_swap_cache().
Also update the grossly out-of-date release_pages documentation.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Hansen <dave@sr71.net>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is designed to avoid a few ifdefs in .c files but it's obnoxious
because it can cause unsuspecting "migrate_page" symbols to get turned into
"NULL".
Just nuke it and use the ifdefs.
Cc: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch (of 6):
The i_mmap_writable field counts existing writable mappings of an
address_space. To allow drivers to prevent new writable mappings, make
this counter signed and prevent new writable mappings if it is negative.
This is modelled after i_writecount and DENYWRITE.
This will be required by the shmem-sealing infrastructure to prevent any
new writable mappings after the WRITE seal has been set. In case there
exists a writable mapping, this operation will fail with EBUSY.
Note that we rely on the fact that iff you already own a writable mapping,
you can increase the counter without using the helpers. This is the same
that we do for i_writecount.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cold is a bool, make it one. Make the likely case the "if" part of the
block instead of the else as according to the optimisation manual this is
preferred.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a patch to improve swap readahead algorithm. It's from Hugh and
I slightly changed it.
Hugh's original changelog:
swapin readahead does a blind readahead, whether or not the swapin is
sequential. This may be ok on harddisk, because large reads have
relatively small costs, and if the readahead pages are unneeded they can
be reclaimed easily - though, what if their allocation forced reclaim of
useful pages? But on SSD devices large reads are more expensive than
small ones: if the readahead pages are unneeded, reading them in caused
significant overhead.
This patch adds very simplistic random read detection. Stealing the
PageReadahead technique from Konstantin Khlebnikov's patch, avoiding the
vma/anon_vma sophistications of Shaohua Li's patch, swapin_nr_pages()
simply looks at readahead's current success rate, and narrows or widens
its readahead window accordingly. There is little science to its
heuristic: it's about as stupid as can be whilst remaining effective.
The table below shows elapsed times (in centiseconds) when running a
single repetitive swapping load across a 1000MB mapping in 900MB ram
with 1GB swap (the harddisk tests had taken painfully too long when I
used mem=500M, but SSD shows similar results for that).
Vanilla is the 3.6-rc7 kernel on which I started; Shaohua denotes his
Sep 3 patch in mmotm and linux-next; HughOld denotes my Oct 1 patch
which Shaohua showed to be defective; HughNew this Nov 14 patch, with
page_cluster as usual at default of 3 (8-page reads); HughPC4 this same
patch with page_cluster 4 (16-page reads); HughPC0 with page_cluster 0
(1-page reads: no readahead).
HDD for swapping to harddisk, SSD for swapping to VertexII SSD. Seq for
sequential access to the mapping, cycling five times around; Rand for
the same number of random touches. Anon for a MAP_PRIVATE anon mapping;
Shmem for a MAP_SHARED anon mapping, equivalent to tmpfs.
One weakness of Shaohua's vma/anon_vma approach was that it did not
optimize Shmem: seen below. Konstantin's approach was perhaps mistuned,
50% slower on Seq: did not compete and is not shown below.
HDD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0
Seq Anon 73921 76210 75611 76904 78191 121542
Seq Shmem 73601 73176 73855 72947 74543 118322
Rand Anon 895392 831243 871569 845197 846496 841680
Rand Shmem 1058375 1053486 827935 764955 764376 756489
SSD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0
Seq Anon 24634 24198 24673 25107 21614 70018
Seq Shmem 24959 24932 25052 25703 22030 69678
Rand Anon 43014 26146 28075 25989 26935 25901
Rand Shmem 45349 45215 28249 24268 24138 24332
These tests are, of course, two extremes of a very simple case: under
heavier mixed loads I've not yet observed any consistent improvement or
degradation, and wider testing would be welcome.
Shaohua Li:
Test shows Vanilla is slightly better in sequential workload than Hugh's
patch. I observed with Hugh's patch sometimes the readahead size is
shrinked too fast (from 8 to 1 immediately) in sequential workload if
there is no hit. And in such case, continuing doing readahead is good
actually.
I don't prepare a sophisticated algorithm for the sequential workload
because so far we can't guarantee sequential accessed pages are swap out
sequentially. So I slightly change Hugh's heuristic - don't shrink
readahead size too fast.
Here is my test result (unit second, 3 runs average):
Vanilla Hugh New
Seq 356 370 360
Random 4525 2447 2444
Attached graph is the swapin/swapout throughput I collected with 'vmstat
2'. The first part is running a random workload (till around 1200 of
the x-axis) and the second part is running a sequential workload.
swapin and swapout throughput are almost identical in steady state in
both workloads. These are expected behavior. while in Vanilla, swapin
is much bigger than swapout especially in random workload (because wrong
readahead).
Original patches by: Shaohua Li and Konstantin Khlebnikov.
[fengguang.wu@intel.com: swapin_nr_pages() can be static]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is
one such possible user), the following race can happen:
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
<interrupt>
...
radix_tree_preload()
...
radix_tree_insert()
radix_tree_node_alloc()
if (rtp->nr) {
ret = rtp->nodes[rtp->nr - 1];
And we give out one radix tree node twice. That clearly results in radix
tree corruption with different results (usually OOPS) depending on which
two users of radix tree race.
We fix the problem by making radix_tree_node_alloc() always allocate fresh
radix tree nodes when in interrupt. Using preloading when in interrupt
doesn't make sense since all the allocations have to be atomic anyway and
we cannot steal nodes from process-context users because some users rely
on radix_tree_insert() succeeding after radix_tree_preload().
in_interrupt() check is somewhat ugly but we cannot simply key off passed
gfp_mask as that is acquired from root_gfp_mask() and thus the same for
all preload users.
Another part of the fix is to avoid node preallocation in
radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again,
preallocation in such case doesn't make sense and when preallocation would
happen in interrupt we could possibly leak some allocated nodes. However,
some users of radix_tree_preload() require following radix_tree_insert()
to succeed. To avoid unexpected effects for these users,
radix_tree_preload() only warns if passed gfp mask doesn't allow waiting
and we provide a new function radix_tree_maybe_preload() for those users
which get different gfp mask from different call sites and which are
prepared to handle radix_tree_insert() failure.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
read_swap_cache_async() can race against get_swap_page(), and stumble
across a SWAP_HAS_CACHE entry in the swap map whose page wasn't brought
into the swapcache yet.
This transient swap_map state is expected to be transitory, but the
actual placement of discard at scan_swap_map() inserts a wait for I/O
completion thus making the thread at read_swap_cache_async() to loop
around its -EEXIST case, while the other end at get_swap_page() is
scheduled away at scan_swap_map(). This can leave the system deadlocked
if the I/O completion happens to be waiting on the CPU waitqueue where
read_swap_cache_async() is busy looping and !CONFIG_PREEMPT.
This patch introduces a cond_resched() call to make the aforementioned
read_swap_cache_async() busy loop condition to bail out when necessary,
thus avoiding the subtle race window.
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In page reclaim, huge page is split. split_huge_page() adds tail pages
to LRU list. Since we are reclaiming a huge page, it's better we
reclaim all subpages of the huge page instead of just the head page.
This patch adds split tail pages to shrink page list so the tail pages
can be reclaimed soon.
Before this patch, run a swap workload:
thp_fault_alloc 3492
thp_fault_fallback 608
thp_collapse_alloc 6
thp_collapse_alloc_failed 0
thp_split 916
With this patch:
thp_fault_alloc 4085
thp_fault_fallback 16
thp_collapse_alloc 90
thp_collapse_alloc_failed 0
thp_split 1272
fallback allocation is reduced a lot.
[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_writepage() is currently where frontswap hooks into the swap write
path to capture pages with the frontswap_store() function. However, if
a frontswap backend wants to "resume" the writeback of a page to the
swap device, it can't call swap_writepage() as the page will simply
reenter the backend.
This patch separates swap_writepage() into a top and bottom half, the
bottom half named __swap_writepage() to allow a frontswap backend, like
zswap, to resume writeback beyond the frontswap_store() hook.
__add_to_swap_cache() is also made non-static so that the page for which
writeback is to be resumed can be added to the swap cache.
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended. This makes each swap partition have one
address_space to reduce the lock contention. There is an array of
address_space for swap. The swap entry type is the index to the array.
In my test with 3 SSD, this increases the swapout throughput 20%.
[akpm@linux-foundation.org: revert unneeded change to __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently swapfiles are managed entirely by the core VM by using ->bmap to
allocate space and write to the blocks directly. This effectively ensures
that the underlying blocks are allocated and avoids the need for the swap
subsystem to locate what physical blocks store offsets within a file.
If the swap subsystem is to use the filesystem information to locate the
blocks, it is critical that information such as block groups, block
bitmaps and the block descriptor table that map the swap file were
resident in memory. This patch adds address_space_operations that the VM
can call when activating or deactivating swap backed by a file.
int swap_activate(struct file *);
int swap_deactivate(struct file *);
The ->swap_activate() method is used to communicate to the file that the
VM relies on it, and the address_space should take adequate measures such
as reserving space in the underlying device, reserving memory for mempools
and pinning information such as the block descriptor table in memory. The
->swap_deactivate() method is called on sys_swapoff() if ->swap_activate()
returned success.
After a successful swapfile ->swap_activate, the swapfile is marked
SWP_FILE and swapper_space.a_ops will proxy to
sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache
pages and ->readpage to read.
It is perfectly possible that direct_IO be used to read the swap pages but
it is an unnecessary complication. Similarly, it is possible that
->writepage be used instead of direct_io to write the pages but filesystem
developers have stated that calling writepage from the VM is undesirable
for a variety of reasons and using direct_IO opens up the possibility of
writing back batches of swap pages in the future.
[a.p.zijlstra@chello.nl: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead works fine, but the I/O to disk is almost always done in
page size requests, despite the fact that readahead submits
1<<page-cluster pages at a time.
On older kernels the old per device plugging behavior might have captured
this and merged the requests, but currently all comes down to much more
I/Os than required.
On a single device this might not be an issue, but as soon as a server
runs on shared san resources savin I/Os not only improves swapin
throughput but also provides a lower resource utilization.
With a load running KVM in a lot of memory overcommitment (the hot memory
is 1.5 times the host memory) swapping throughput improves significantly
and the lead feels more responsive as well as achieves more throughput.
In a test setup with 16 swap disks running blocktrace on one of those disks
shows the improved merging:
Prior:
Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB
Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB
Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB
IO unplugs: 149,614 Timer unplugs: 2,940
With the patch:
Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB
Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB
Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB
IO unplugs: 337,130 Timer unplugs: 11,184
I got ~10% to ~40% more throughput in my cases and at the same time much
lower cpu consumption when broken down per transferred kilobyte (the
majority of that due to saved interrupts and better cache handling). In a
shared SAN others might get an additional benefit as well, because this
now causes less protocol overhead.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel reports a BUG_ON(slot == NULL) in radix_tree_tag_set() on s390
3.0.13: called from __set_page_dirty_nobuffers() when page_remove_rmap()
tries to transfer dirty flag from s390 storage key to struct page and
radix_tree.
That would be because of reclaim's shrink_page_list() calling
add_to_swap() on this page at the same time: first PageSwapCache is set
(causing page_mapping(page) to appear as &swapper_space), then
page->private set, then tree_lock taken, then page inserted into
radix_tree - so there's an interval before taking the lock when the
radix_tree slot is empty.
We could fix this by moving __add_to_swap_cache()'s spin_lock_irq up
before the SetPageSwapCache. But a better fix is simply to do what's
five years overdue: Ken Chen introduced __set_page_dirty_no_writeback()
(if !PageDirty TestSetPageDirty) for tmpfs to skip all the radix_tree
overhead, and swap is just the same - it ignores the radix_tree tag, and
does not participate in dirty page accounting, so should be using
__set_page_dirty_no_writeback() too.
s390 testing now confirms that this does indeed fix the problem.
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ken Chen <kenchen@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ever since abandoning the virtual scan of processes, for scalability
reasons, swap space has been a little more fragmented than before. This
can lead to the situation where a large memory user is killed, swap space
ends up full of "holes" and swapin readahead is totally ineffective.
On my home system, after killing a leaky firefox it took over an hour to
page just under 2GB of memory back in, slowing the virtual machines down
to a crawl.
This patch makes swapin readahead simply skip over holes, instead of
stopping at them. This allows the system to swap things back in at rates
of several MB/second, instead of a few hundred kB/second.
The checks done in valid_swaphandles are already done in
read_swap_cache_async as well, allowing us to remove a fair amount of
code.
[akpm@linux-foundation.org: fix it for page_cluster >= 32]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Adrian Drzewiecki <z@drze.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).
Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.
A task, or a charge, or a page on lru: each secures a memcg against
removal. In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.
Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons. So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.
There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed. We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().
I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3e ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.
But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged. A risky
change? just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.
And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9 ("memcg:
clear pc->mem_cgroup if necessary").
Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup
and reducing atomic ops/complexity in memcg LRU handling.
In some cases, pages are added to lru before charge to memcg and pages
are not classfied to memory cgroup at lru addtion. Now, the lru where
the page should be added is determined a bit in page_cgroup->flags and
pc->mem_cgroup. I'd like to remove the check of flag.
To handle the case pc->mem_cgroup may contain stale pointers if pages
are added to LRU before classification. This patch resets
pc->mem_cgroup to root_mem_cgroup before lru additions.
[akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build]
[hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build]
[akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal]
[hughd@google.com: stop oops in mem_cgroup_reset_owner()]
[hughd@google.com: fix page migration to reset_owner]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move invalidate_bdev, block_sync_page into fs/block_dev.c. Export
kill_bdev as well, so brd doesn't have to open code it. Reduce
buffer_head.h requirement accordingly.
Removed a rather large comment from invalidate_bdev, as it looked a bit
obsolete to bother moving. The small comment replacing it says enough.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There is nothing modular in these files, and no reason to drag
in all the 357 headers that module.h brings with it, since
it just slows down compiles.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Paging logic that splits the page before it is unmapped and added to swap
to ensure backwards compatibility with the legacy swap code. Eventually
swap should natively pageout the hugepages to increase performance and
decrease seeking and fragmentation of swap space. swapoff can just skip
over huge pmd as they cannot be part of swap yet. In add_to_swap be
careful to split the page only if we got a valid swap entry so we don't
split hugepages with a full swap.
In theory we could split pages before isolating them during the lru scan,
but for khugepaged to be safe, I'm relying on either mmap_sem write mode,
or PG_lock taken, so split_huge_page has to run either with mmap_sem
read/write mode or PG_lock taken. Calling it from isolate_lru_page would
make locking more complicated, in addition to that split_huge_page would
deadlock if called by __isolate_lru_page because it has to take the lru
lock to add the tail pages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
only the context which have set SWAP_HAS_CACHE flag by swapcache_prepare()
or get_swap_page() would call add_to_swap_cache(). So add_to_swap_cache()
doesn't return -EEXIST any more.
Even though it doesn't return -EEXIST, it's not good behavior conceptually
to call swapcache_prepare() in the -EEXIST case, because it means clearing
SWAP_HAS_CACHE flag while the entry is on swap cache.
This patch removes redundant codes and comments from callers of it, and
adds VM_BUG_ON() in error path of add_to_swap_cache() and some comments.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
read_swap_cache_async() will busy-wait while a entry doesn't exist in swap
cache but it has SWAP_HAS_CACHE flag.
Such entries can exist on add/delete path of swap cache. On add path,
add_to_swap_cache() is called soon after SWAP_HAS_CACHE flag is set, and
on delete path, swapcache_free() will be called (SWAP_HAS_CACHE flag is
cleared) soon after __delete_from_swap_cache() is called. So, the
busy-wait works well in most cases.
But this mechanism can cause soft lockup if add_to_swap_cache() sleeps and
read_swap_cache_async() tries to swap-in the same entry on the same cpu.
This patch calls radix_tree_preload() before swapcache_prepare() and
divides add_to_swap_cache() into two part: radix_tree_preload() part and
radix_tree_insert() part(define it as __add_to_swap_cache()).
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>