* DAX broke a fundamental assumption of truncate of file mapped pages.
The truncate path assumed that it is safe to disconnect a pinned page
from a file and let the filesystem reclaim the physical block. With DAX
the page is equivalent to the filesystem block. Introduce
dax_layout_busy_page() to enable filesystems to wait for pinned DAX
pages to be released. Without this wait a filesystem could allocate
blocks under active device-DMA to a new file.
* DAX arranges for the block layer to be bypassed and uses
dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
However, the memcpy_mcsafe() facility is available through the pmem
block driver. In order to safely handle media errors, via the DAX
block-layer bypass, introduce copy_to_iter_mcsafe().
* Fix cache management policy relative to the ACPI NFIT Platform
Capabilities Structure to properly elide cache flushes when they are not
necessary. The table indicates whether CPU caches are power-fail
protected. Clarify that a deep flush is always performed on
REQ_{FUA,PREFLUSH} requests.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbGxI7AAoJEB7SkWpmfYgCDjsP/2Lcibu9Kf4tKIzuInsle6iE
6qP29qlkpHVTpDKbhvIxTYTYL9sMU0DNUrpPCJR/EYdeyztLWDFC5EAT1wF240vf
maV37s/uP331jSC/2VJnKWzBs2ztQxmKLEIQCxh6aT0qs9cbaOvJgB/WlVu+qtsl
aGJFLmb6vdQacp31noU5plKrMgMA1pADyF5qx9I9K2HwowHE7T368ZEFS/3S//c3
LXmpx/Nfq52sGu/qbRbu6B1CTJhIGhmarObyQnvBYoKntK1Ov4e8DS95wD3EhNDe
FuRkOCUKhjl6cFy7QVWh1ct1bFm84ny+b4/AtbpOmv9l/+0mveJ7e+5mu8HQTifT
wYiEe2xzXJ+OG/xntv8SvlZKMpjP3BqI0jYsTutsjT4oHrciiXdXM186cyS+BiGp
KtFmWyncQJgfiTq6+Hj5XpP9BapNS+OYdYgUagw9ZwzdzptuGFYUMSVOBrYrn6c/
fwqtxjubykJoW0P3pkIoT91arFSea7nxOKnGwft06imQ7TwR4ARsI308feQ9itJq
2P2e7/20nYMsw2aRaUDDA70Yu+Lagn1m8WL87IybUGeUDLb1BAkjphAlWa6COJ+u
PhvAD2tvyM9m0c7O5Mytvz7iWKG6SVgatoAyOPkaeplQK8khZ+wEpuK58sO6C1w8
4GBvt9ri9i/Ww/A+ppWs
=4bfw
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This adds a user for the new 'bytes-remaining' updates to
memcpy_mcsafe() that you already received through Ingo via the
x86-dax- for-linus pull.
Not included here, but still targeting this cycle, is support for
handling memory media errors (poison) consumed via userspace dax
mappings.
Summary:
- DAX broke a fundamental assumption of truncate of file mapped
pages. The truncate path assumed that it is safe to disconnect a
pinned page from a file and let the filesystem reclaim the physical
block. With DAX the page is equivalent to the filesystem block.
Introduce dax_layout_busy_page() to enable filesystems to wait for
pinned DAX pages to be released. Without this wait a filesystem
could allocate blocks under active device-DMA to a new file.
- DAX arranges for the block layer to be bypassed and uses
dax_direct_access() + copy_to_iter() to satisfy read(2) calls.
However, the memcpy_mcsafe() facility is available through the pmem
block driver. In order to safely handle media errors, via the DAX
block-layer bypass, introduce copy_to_iter_mcsafe().
- Fix cache management policy relative to the ACPI NFIT Platform
Capabilities Structure to properly elide cache flushes when they
are not necessary. The table indicates whether CPU caches are
power-fail protected. Clarify that a deep flush is always performed
on REQ_{FUA,PREFLUSH} requests"
* tag 'libnvdimm-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (21 commits)
dax: Use dax_write_cache* helpers
libnvdimm, pmem: Do not flush power-fail protected CPU caches
libnvdimm, pmem: Unconditionally deep flush on *sync
libnvdimm, pmem: Complete REQ_FLUSH => REQ_PREFLUSH
acpi, nfit: Remove ecc_unit_size
dax: dax_insert_mapping_entry always succeeds
libnvdimm, e820: Register all pmem resources
libnvdimm: Debug probe times
linvdimm, pmem: Preserve read-only setting for pmem devices
x86, nfit_test: Add unit test for memcpy_mcsafe()
pmem: Switch to copy_to_iter_mcsafe()
dax: Report bytes remaining in dax_iomap_actor()
dax: Introduce a ->copy_to_iter dax operation
uio, lib: Fix CONFIG_ARCH_HAS_UACCESS_MCSAFE compilation
xfs, dax: introduce xfs_break_dax_layouts()
xfs: prepare xfs_break_layouts() for another layout type
xfs: prepare xfs_break_layouts() to be called with XFS_MMAPLOCK_EXCL
mm, fs, dax: handle layout changes to pinned dax mappings
mm: fix __gup_device_huge vs unmap
mm: introduce MEMORY_DEVICE_FS_DAX and CONFIG_DEV_PAGEMAP_OPS
...
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
commit 1c8f422059 ("mm: change return type to vm_fault_t")
There was an existing bug inside dax_load_hole() if vm_insert_mixed had
failed to allocate a page table, we'd return VM_FAULT_NOPAGE instead of
VM_FAULT_OOM. With new vmf_insert_mixed() this issue is addressed.
vm_insert_mixed_mkwrite has inefficiency when it returns an error value,
driver has to convert it to vm_fault_t type. With new
vmf_insert_mixed_mkwrite() this limitation will be addressed.
Link: http://lkml.kernel.org/r/20180510181121.GA15239@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does not return an error, so we don't need to check the return value
for IS_ERR(). Indeed, it is a bug to do so; with a sufficiently large
PFN, a legitimate DAX entry may be mistaken for an error return.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for protecting the dax read(2) path from media errors
with copy_to_iter_mcsafe() (via dax_copy_to_iter()), convert the
implementation to report the bytes successfully transferred.
Cc: <x86@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Similar to the ->copy_from_iter() operation, a platform may want to
deploy an architecture or device specific routine for handling reads
from a dax_device like /dev/pmemX. On x86 this routine will point to a
machine check safe version of copy_to_iter(). For now, add the plumbing
to device-mapper and the dax core.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Background:
get_user_pages() in the filesystem pins file backed memory pages for
access by devices performing dma. However, it only pins the memory pages
not the page-to-file offset association. If a file is truncated the
pages are mapped out of the file and dma may continue indefinitely into
a page that is owned by a device driver. This breaks coherency of the
file vs dma, but the assumption is that if userspace wants the
file-space truncated it does not matter what data is inbound from the
device, it is not relevant anymore. The only expectation is that dma can
safely continue while the filesystem reallocates the block(s).
Problem:
This expectation that dma can safely continue while the filesystem
changes the block map is broken by dax. With dax the target dma page
*is* the filesystem block. The model of leaving the page pinned for dma,
but truncating the file block out of the file, means that the filesytem
is free to reallocate a block under active dma to another file and now
the expected data-incoherency situation has turned into active
data-corruption.
Solution:
Defer all filesystem operations (fallocate(), truncate()) on a dax mode
file while any page/block in the file is under active dma. This solution
assumes that dma is transient. Cases where dma operations are known to
not be transient, like RDMA, have been explicitly disabled via
commits like 5f1d43de54 "IB/core: disable memory registration of
filesystem-dax vmas".
The dax_layout_busy_page() routine is called by filesystems with a lock
held against mm faults (i_mmap_lock) to find pinned / busy dax pages.
The process of looking up a busy page invalidates all mappings
to trigger any subsequent get_user_pages() to block on i_mmap_lock.
The filesystem continues to call dax_layout_busy_page() until it finally
returns no more active pages. This approach assumes that the page
pinning is transient, if that assumption is violated the system would
have likely hung from the uncompleted I/O.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Mike Rapoport says:
These patches convert files in Documentation/vm to ReST format, add an
initial index and link it to the top level documentation.
There are no contents changes in the documentation, except few spelling
fixes. The relatively large diffstat stems from the indentation and
paragraph wrapping changes.
I've tried to keep the formatting as consistent as possible, but I could
miss some places that needed markup and add some markup where it was not
necessary.
[jc: significant conflicts in vm/hmm.rst]
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Catch cases where extent unmap operations encounter pages that are
pinned / busy. Typically this is pinned pages that are under active dma.
This warning is a canary for potential data corruption as truncated
blocks could be allocated to a new file while the device is still
performing i/o.
Here is an example of a collision that this implementation catches:
WARNING: CPU: 2 PID: 1286 at fs/dax.c:343 dax_disassociate_entry+0x55/0x80
[..]
Call Trace:
__dax_invalidate_mapping_entry+0x6c/0xf0
dax_delete_mapping_entry+0xf/0x20
truncate_exceptional_pvec_entries.part.12+0x1af/0x200
truncate_inode_pages_range+0x268/0x970
? tlb_gather_mmu+0x10/0x20
? up_write+0x1c/0x40
? unmap_mapping_range+0x73/0x140
xfs_free_file_space+0x1b6/0x5b0 [xfs]
? xfs_file_fallocate+0x7f/0x320 [xfs]
? down_write_nested+0x40/0x70
? xfs_ilock+0x21d/0x2f0 [xfs]
xfs_file_fallocate+0x162/0x320 [xfs]
? rcu_read_lock_sched_held+0x3f/0x70
? rcu_sync_lockdep_assert+0x2a/0x50
? __sb_start_write+0xd0/0x1b0
? vfs_fallocate+0x20c/0x270
vfs_fallocate+0x154/0x270
SyS_fallocate+0x43/0x80
entry_SYSCALL_64_fastpath+0x1f/0x96
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for examining the busy state of dax pages in the truncate
path, switch from sectors to pfns in the radix.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlp16xMACgkQ8vlZVpUN
gaP1IAf8C48AKVnqy6ftFphzV1CdeGHDwJLL63lChs97fNr1mxo5TZE/6vdYB55j
k7C7huQ582cEiGWQJ0U4/+En0hF85zkAk5mTfnSao5BqxLr9ANsAocwBUNBXdFSp
B7IyMo4Dct7NCkwfmKLPRcEqZ49vwyv99TqM/9wUkgUStkTjPT7bhHgarB6VPbhp
BxoXVnFYgU0sZN0y71IBt8ngWqCK6j7fjw3gsl37oEenG3/h3SO0H9ih1FrysX8S
VOwwLJq6vfAgEwQvZACnBwWKDYsZpH7akNp9WGeDMByo28t514RNRjIi0mvLHEZa
h72I8Sb3bwHO9MJNvHFe/0b1Say4vw==
=dxAX
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Only miscellaneous cleanups and bug fixes for ext4 this cycle"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: create ext4_kset dynamically
ext4: create ext4_feat kobject dynamically
ext4: release kobject/kset even when init/register fail
ext4: fix incorrect indentation of if statement
ext4: correct documentation for grpid mount option
ext4: use 'sbi' instead of 'EXT4_SB(sb)'
ext4: save error to disk in __ext4_grp_locked_error()
jbd2: fix sphinx kernel-doc build warnings
ext4: fix a race in the ext4 shutdown path
mbcache: make sure c_entry_count is not decremented past zero
ext4: no need flush workqueue before destroying it
ext4: fixed alignment and minor code cleanup in ext4.h
ext4: fix ENOSPC handling in DAX page fault handler
dax: pass detailed error code from dax_iomap_fault()
mbcache: revert "fs/mbcache.c: make count_objects() more robust"
mbcache: initialize entry->e_referenced in mb_cache_entry_create()
ext4: fix up remaining files with SPDX cleanups
Several users of unmap_mapping_range() would prefer to express their
range in pages rather than bytes. Unfortuately, on a 32-bit kernel, you
have to remember to cast your page number to a 64-bit type before
shifting it, and four places in the current tree didn't remember to do
that. That's a sign of a bad interface.
Conveniently, unmap_mapping_range() actually converts from bytes into
pages, so hoist the guts of unmap_mapping_range() into a new function
unmap_mapping_pages() and convert the callers which want to use pages.
Link: http://lkml.kernel.org/r/20171206142627.GD32044@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reported-by: "zhangyi (F)" <yi.zhang@huawei.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
follow_pte_pmd() can theoretically return after having acquired a PMD
lock, even when DAX was not compiled with CONFIG_FS_DAX_PMD.
Release the PMD lock unconditionally.
Link: http://lkml.kernel.org/r/20180118133839.20587-1-jschoenh@amazon.de
Fixes: f729c8c9b2 ("dax: wrprotect pmd_t in dax_mapping_entry_mkclean")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ext4 needs to pass through error from its iomap handler to the page
fault handler so that it can properly detect ENOSPC and force
transaction commit and retry the fault (and block allocation). Add
argument to dax_iomap_fault() for passing such error.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This reverts commits 5c9d2d5c26, c7da82b894, and e7fe7b5cae.
We'll probably need to revisit this, but basically we should not
complicate the get_user_pages_fast() case, and checking the actual page
table protection key bits will require more care anyway, since the
protection keys depend on the exact state of the VM in question.
Particularly when doing a "remote" page lookup (ie in somebody elses VM,
not your own), you need to be much more careful than this was. Dave
Hansen says:
"So, the underlying bug here is that we now a get_user_pages_remote()
and then go ahead and do the p*_access_permitted() checks against the
current PKRU. This was introduced recently with the addition of the
new p??_access_permitted() calls.
We have checks in the VMA path for the "remote" gups and we avoid
consulting PKRU for them. This got missed in the pkeys selftests
because I did a ptrace read, but not a *write*. I also didn't
explicitly test it against something where a COW needed to be done"
It's also not entirely clear that it makes sense to check the protection
key bits at this level at all. But one possible eventual solution is to
make the get_user_pages_fast() case just abort if it sees protection key
bits set, which makes us fall back to the regular get_user_pages() case,
which then has a vma and can do the check there if we want to.
We'll see.
Somewhat related to this all: what we _do_ want to do some day is to
check the PAGE_USER bit - it should obviously always be set for user
pages, but it would be a good check to have back. Because we have no
generic way to test for it, we lost it as part of moving over from the
architecture-specific x86 GUP implementation to the generic one in
commit e585513b76 ("x86/mm/gup: Switch GUP to the generic
get_user_page_fast() implementation").
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pmd_write is must be referencing user-memory.
Link: http://lkml.kernel.org/r/151043111049.2842.15241454964150083466.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot. As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During truncation, the mapping has already been checked for shmem and
dax so it's known that workingset_update_node is required.
This patch avoids the checks on mapping for each page being truncated.
In all other cases, a lookup helper is used to determine if
workingset_update_node() needs to be called. The one danger is that the
API is slightly harder to use as calling workingset_update_node directly
without checking for dax or shmem mappings could lead to surprises.
However, the API rarely needs to be used and hopefully the comment is
enough to give people the hint.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
oneirq-v1r1 pickhelper-v1r1
Min Time 141.00 ( 0.00%) 140.00 ( 0.71%)
1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%)
Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%)
Max Time 230.00 ( 0.00%) 205.00 ( 10.87%)
Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%)
Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%)
Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%)
Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%)
Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%)
Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%)
Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%)
Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%)
Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%)
As you'd expect, the gain is marginal but it can be detected. The
differences in bonnie are all within the noise which is not surprising
given the impact on the microbenchmark.
radix_tree_update_node_t is a callback for some radix operations that
optionally passes in a private field. The only user of the callback is
workingset_update_node and as it no longer requires a mapping, the
private field is removed.
Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch only affects users of mmu_notifier->invalidate_range callback
which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ...
and it is an optimization for those users. Everyone else is unaffected
by it.
When clearing a pte/pmd we are given a choice to notify the event under
the page table lock (notify version of *_clear_flush helpers do call the
mmu_notifier_invalidate_range). But that notification is not necessary
in all cases.
This patch removes almost all cases where it is useless to have a call
to mmu_notifier_invalidate_range before
mmu_notifier_invalidate_range_end. It also adds documentation in all
those cases explaining why.
Below is a more in depth analysis of why this is fine to do this:
For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when
device use thing like ATS/PASID to get the IOMMU to walk the CPU page
table to access a process virtual address space). There is only 2 cases
when you need to notify those secondary TLB while holding page table
lock when clearing a pte/pmd:
A) page backing address is free before mmu_notifier_invalidate_range_end
B) a page table entry is updated to point to a new page (COW, write fault
on zero page, __replace_page(), ...)
Case A is obvious you do not want to take the risk for the device to write
to a page that might now be used by something completely different.
Case B is more subtle. For correctness it requires the following sequence
to happen:
- take page table lock
- clear page table entry and notify (pmd/pte_huge_clear_flush_notify())
- set page table entry to point to new page
If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.
Consider the following scenario (device use a feature similar to ATS/
PASID):
Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we
assume they are write protected for COW (other case of B apply too).
[Time N] -----------------------------------------------------------------
CPU-thread-0 {try to write to addrA}
CPU-thread-1 {try to write to addrB}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {read addrA and populate device TLB}
DEV-thread-2 {read addrB and populate device TLB}
[Time N+1] ---------------------------------------------------------------
CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+2] ---------------------------------------------------------------
CPU-thread-0 {COW_step1: {update page table point to new page for addrA}}
CPU-thread-1 {COW_step1: {update page table point to new page for addrB}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {preempted}
CPU-thread-2 {write to addrA which is a write to new page}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {preempted}
CPU-thread-2 {}
CPU-thread-3 {write to addrB which is a write to new page}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+4] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+5] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {read addrA from old page}
DEV-thread-2 {read addrB from new page}
So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value
for addrB before seing the new value for addrA. This break total memory
ordering for the device.
When changing a pte to write protect or to point to a new write protected
page with same content (KSM) it is ok to delay invalidate_range callback
to mmu_notifier_invalidate_range_end() outside the page table lock. This
is true even if the thread doing page table update is preempted right
after releasing page table lock before calling
mmu_notifier_invalidate_range_end
Thanks to Andrea for thinking of a problematic scenario for COW.
[jglisse@redhat.com: v2]
Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PMD faults on a zero length file on a file system mounted with -o dax
will not generate SIGBUS as expected.
fd = open(...O_TRUNC);
addr = mmap(NULL, 2*1024*1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
*addr = 'a';
<expect SIGBUS>
The problem is this code in dax_iomap_pmd_fault:
max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
If the inode size is zero, we end up with a max_pgoff that is way larger
than 0. :) Fix it by using DIV_ROUND_UP, as is done elsewhere in the
kernel.
I tested this with some simple test code that ensured that SIGBUS was
received where expected.
Cc: <stable@vger.kernel.org>
Fixes: 642261ac99 ("dax: add struct iomap based DAX PMD support")
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While reviewing whether MAP_SYNC should strengthen its current guarantee
of syncing writes from the initiating process to also include
third-party readers observing dirty metadata, Dave pointed out that the
check of IOMAP_WRITE is misplaced.
The policy of what to with IOMAP_F_DIRTY should be separated from the
generic filesystem mechanism of reporting dirty metadata. Move this
policy to the fs-dax core to simplify the per-filesystem iomap handlers,
and further centralize code that implements the MAP_SYNC policy. This
otherwise should not change behavior, it just makes it easier to change
behavior in the future.
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement a function that filesystems can call to finish handling of
synchronous page faults. It takes care of syncing appropriare file range
and insertion of page table entry.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a flag to iomap interface informing the caller that inode needs
fdstasync(2) for returned extent to become persistent and use it in DAX
fault code so that we don't map such extents into page tables
immediately. Instead we propagate the information that fdatasync(2) is
necessary from dax_iomap_fault() with a new VM_FAULT_NEEDDSYNC flag.
Filesystem fault handler is then responsible for calling fdatasync(2)
and inserting pfn into page tables.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently we dirty radix tree entry whenever dax_insert_mapping_entry()
gets called for a write fault. With synchronous page faults we would
like to insert clean radix tree entry and dirty it only once we call
fdatasync() and update page tables to save some unnecessary cache
flushing. Add 'dirty' argument to dax_insert_mapping_entry() for that.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For synchronous page fault dax_iomap_fault() will need to return PFN
which will then need to be inserted into page tables after fsync()
completes. Add necessary parameter to dax_iomap_fault().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add missing argument description.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
dax_pmd_insert_mapping() has only one callsite and we will need to
further fine tune what it does for synchronous faults. Just inline it
into the callsite so that we don't have to pass awkward bools around.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
dax_insert_mapping() has only one callsite and we will need to further
fine tune what it does for synchronous faults. Just inline it into the
callsite so that we don't have to pass awkward bools around.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There are already two users and more are coming.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There are already two users and more are coming.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Factor out code to get pfn out of iomap that is shared between PTE and
PMD fault path.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
dax_insert_mapping() has lots of arguments and a lot of them is actuall
duplicated by passing vm_fault structure as well. Change the function to
take the same arguments as dax_pmd_insert_mapping().
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Replace iomap->blkno, the sector number, with iomap->addr, the disk
offset in bytes. For invalid disk offsets, use the special value
IOMAP_NULL_ADDR instead of IOMAP_NULL_BLOCK.
This allows to use iomap for mappings which are not block aligned, such
as inline data on ext4.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> # iomap, xfs
Reviewed-by: Jan Kara <jack@suse.cz>
- Constify a few variables in DM core and DM integrity
- Add bufio optimization and checksum failure accounting to DM integrity
- Fix DM integrity to avoid checking integrity of failed reads
- Fix DM integrity to use init_completion
- A couple DM log-writes target fixes
- Simplify DAX flushing by eliminating the unnecessary flush abstraction
that was stood up for DM's use.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZuo8UAAoJEMUj8QotnQNa5BEIANO4mHh1nrzEbH72a4RCLgxV
H1Pk1zZx/W1bhOOmcRRhxCSM85dPgsCegc5EmpwLZEMavQrP9UZblHcYOUsyIx7W
S/lWa+soOq/5N2OveROc4WdoWVs50UFmc1+BcClc4YrEe+15XC3R0VMkjX2b/hUL
o2eYhPjpMlgaorMtRRU6MAooo2fBRQ9m05aPeVgd35fxibrE7PZm+EYW09wa0STi
9ufuDXJf8+TtFP/38BD41LbUEskuHUZTSDeAJ+3DBaTtfEZcZYxsst4P9JangsHx
jqqqI9aYzFD2a27fl9WLhCvm40YFiKp5nwzED0RZjzWxVa/jTShX7a49BdzTTfw=
=rkSB
-----END PGP SIGNATURE-----
Merge tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper updates from Mike Snitzer:
- Some request-based DM core and DM multipath fixes and cleanups
- Constify a few variables in DM core and DM integrity
- Add bufio optimization and checksum failure accounting to DM
integrity
- Fix DM integrity to avoid checking integrity of failed reads
- Fix DM integrity to use init_completion
- A couple DM log-writes target fixes
- Simplify DAX flushing by eliminating the unnecessary flush
abstraction that was stood up for DM's use.
* tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dax: remove the pmem_dax_ops->flush abstraction
dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK
dm integrity: make blk_integrity_profile structure const
dm integrity: do not check integrity for failed read operations
dm log writes: fix >512b sectorsize support
dm log writes: don't use all the cpu while waiting to log blocks
dm ioctl: constify ioctl lookup table
dm: constify argument arrays
dm integrity: count and display checksum failures
dm integrity: optimize writing dm-bufio buffers that are partially changed
dm rq: do not update rq partially in each ending bio
dm rq: make dm-sq requeuing behavior consistent with dm-mq behavior
dm mpath: complain about unsupported __multipath_map_bio() return values
dm mpath: avoid that building with W=1 causes gcc 7 to complain about fall-through
Commit abebfbe2f7 ("dm: add ->flush() dax operation support") is
buggy. A DM device may be composed of multiple underlying devices and
all of them need to be flushed. That commit just routes the flush
request to the first device and ignores the other devices.
It could be fixed by adding more complex logic to the device mapper. But
there is only one implementation of the method pmem_dax_ops->flush - that
is pmem_dax_flush() - and it calls arch_wb_cache_pmem(). Consequently, we
don't need the pmem_dax_ops->flush abstraction at all, we can call
arch_wb_cache_pmem() directly from dax_flush() because dax_dev->ops->flush
can't ever reach anything different from arch_wb_cache_pmem().
It should be also pointed out that for some uses of persistent memory it
is needed to flush only a very small amount of data (such as 1 cacheline),
and it would be overkill if we go through that device mapper machinery for
a single flushed cache line.
Fix this by removing the pmem_dax_ops->flush abstraction and call
arch_wb_cache_pmem() directly from dax_flush(). Also, remove the device
mapper code that forwards the flushes.
Fixes: abebfbe2f7 ("dm: add ->flush() dax operation support")
Cc: stable@vger.kernel.org
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
dax_pmd_insert_mapping() contains the following code:
pfn_t pfn;
if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
goto fallback;
/* ... */
fallback:
trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
When the condition in the if statement fails, the function calls
trace_dax_pmd_insert_mapping_fallback() with an uninitialized pfn value.
This issue has been found while building the kernel with clang. The
compiler reported:
fs/dax.c:1280:6: error: variable 'pfn' is used uninitialized
whenever 'if' condition is true [-Werror,-Wsometimes-uninitialized]
if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fs/dax.c:1310:60: note: uninitialized use occurs here
trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
^~~
Link: http://lkml.kernel.org/r/20170903083000.587-1-nicolas.iooss_linux@m4x.org
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ~PG_PMD_COLOUR in dax_entry_waitqueue() instead of open coding an
equivalent page offset mask.
Link: http://lkml.kernel.org/r/20170822222436.18926-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Slusarz, Marcin" <marcin.slusarz@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a comment explaining how the user addresses provided to read(2) and
write(2) are validated in the DAX I/O path.
We call dax_copy_from_iter() or copy_to_iter() on these without calling
access_ok() first in the DAX code, and there was a concern that the user
might be able to read/write to arbitrary kernel addresses with this
path.
Link: http://lkml.kernel.org/r/20170816173615.10098-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we no longer insert struct page pointers in DAX radix trees the
page cache code no longer needs to know anything about DAX exceptional
entries. Move all the DAX exceptional entry definitions from dax.h to
fs/dax.c.
Link: http://lkml.kernel.org/r/20170724170616.25810-6-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we no longer insert struct page pointers in DAX radix trees we
can remove the special casing for DAX in page_cache_tree_insert().
This also allows us to make dax_wake_mapping_entry_waiter() local to
fs/dax.c, removing it from dax.h.
Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree.
This has three major drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory. This is easily visible by looking at the overall
memory consumption of the system or by looking at /proc/[pid]/smaps:
7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 1048576 kB
Pss: 1048576 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 1048576 kB
Private_Dirty: 0 kB
Referenced: 1048576 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it. Here
are the average latencies of dax_load_hole() as measured by ftrace on
a random test box:
Old method, using zeroed page cache pages: 3.4 us
New method, using the common 4k zero page: 0.8 us
This was the average latency over 1 GiB of sequential reads done by
this simple fio script:
[global]
size=1G
filename=/root/dax/data
fallocate=none
[io]
rw=read
ioengine=mmap
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
Solve these issues by following the lead of the DAX PMD code and using a
common 4k zero page instead. As with the PMD code we will now insert a
DAX exceptional entry into the radix tree instead of a struct page
pointer which allows us to remove all the special casing in the DAX
code.
Note that we do still pretty aggressively check for regular pages in the
DAX radix tree, especially where we take action based on the bits set in
the page. If we ever find a regular page in our radix tree now that
most likely means that someone besides DAX is inserting pages (which has
happened lots of times in the past), and we want to find that out early
and fail loudly.
This solution also removes the extra memory consumption. Here is that
same /proc/[pid]/smaps after 1GiB of reading from a hole with the new
code:
7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data
Size: 1048576 kB
Rss: 0 kB
Pss: 0 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 0 kB
Anonymous: 0 kB
LazyFree: 0 kB
AnonHugePages: 0 kB
ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
Overall system memory consumption is similarly improved.
Another major change is that we remove dax_pfn_mkwrite() from our fault
flow, and instead rely on the page fault itself to make the PTE dirty
and writeable. The following description from the patch adding the
vm_insert_mixed_mkwrite() call explains this a little more:
"To be able to use the common 4k zero page in DAX we need to have our
PTE fault path look more like our PMD fault path where a PTE entry
can be marked as dirty and writeable as it is first inserted rather
than waiting for a follow-up dax_pfn_mkwrite() =>
finish_mkwrite_fault() call.
Right now we can rely on having a dax_pfn_mkwrite() call because we
can distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does
for DAX ptes. Instead of special casing the DAX + 4k zero page case
we will simplify our DAX PTE page fault sequence so that it matches
our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper.
We will instead use dax_iomap_fault() to handle write-protection
faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If
'mkwrite' is set insert_pfn() will do the work that was previously
done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path"
Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_load_hole() will soon need to call dax_insert_mapping_entry(), so it
needs to be moved lower in dax.c so the definition exists.
dax_wake_mapping_entry_waiter() will soon be removed from dax.h and be
made static to dax.c, so we need to move its definition above all its
callers.
Link: http://lkml.kernel.org/r/20170724170616.25810-3-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range()
and make sure it is bracketed by calls to *_invalidate_range_start()/end().
Note that because we can not presume the pmd value or pte value we have
to assume the worst and unconditionaly report an invalidation as
happening.
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In DAX there are two separate places where the 2MiB range of a PMD is
defined.
The first is in the page tables, where a PMD mapping inserted for a
given address spans from (vmf->address & PMD_MASK) to ((vmf->address &
PMD_MASK) + PMD_SIZE - 1). That is, from the 2MiB boundary below the
address to the 2MiB boundary above the address.
So, for example, a fault at address 3MiB (0x30 0000) falls within the
PMD that ranges from 2MiB (0x20 0000) to 4MiB (0x40 0000).
The second PMD range is in the mapping->page_tree, where a given file
offset is covered by a radix tree entry that spans from one 2MiB aligned
file offset to another 2MiB aligned file offset.
So, for example, the file offset for 3MiB (pgoff 768) falls within the
PMD range for the order 9 radix tree entry that ranges from 2MiB (pgoff
512) to 4MiB (pgoff 1024).
This system works so long as the addresses and file offsets for a given
mapping both have the same offsets relative to the start of each PMD.
Consider the case where the starting address for a given file isn't 2MiB
aligned - say our faulting address is 3 MiB (0x30 0000), but that
corresponds to the beginning of our file (pgoff 0). Now all the PMDs in
the mapping are misaligned so that the 2MiB range defined in the page
tables never matches up with the 2MiB range defined in the radix tree.
The current code notices this case for DAX faults to storage with the
following test in dax_pmd_insert_mapping():
if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
goto unlock_fallback;
This test makes sure that the pfn we get from the driver is 2MiB
aligned, and relies on the assumption that the 2MiB alignment of the pfn
we get back from the driver matches the 2MiB alignment of the faulting
address.
However, faults to holes were not checked and we could hit the problem
described above.
This was reported in response to the NVML nvml/src/test/pmempool_sync
TEST5:
$ cd nvml/src/test/pmempool_sync
$ make TEST5
You can grab NVML here:
https://github.com/pmem/nvml/
The dmesg warning you see when you hit this error is:
WARNING: CPU: 13 PID: 2900 at fs/dax.c:641 dax_insert_mapping_entry+0x2df/0x310
Where we notice in dax_insert_mapping_entry() that the radix tree entry
we are about to replace doesn't match the locked entry that we had
previously inserted into the tree. This happens because the initial
insertion was done in grab_mapping_entry() using a pgoff calculated from
the faulting address (vmf->address), and the replacement in
dax_pmd_load_hole() => dax_insert_mapping_entry() is done using
vmf->pgoff.
In our failure case those two page offsets (one calculated from
vmf->address, one using vmf->pgoff) point to different order 9 radix
tree entries.
This failure case can result in a deadlock because the radix tree unlock
also happens on the pgoff calculated from vmf->address. This means that
the locked radix tree entry that we swapped in to the tree in
dax_insert_mapping_entry() using vmf->pgoff is never unlocked, so all
future faults to that 2MiB range will block forever.
Fix this by validating that the faulting address's PMD offset matches
the PMD offset from the start of the file. This check is done at the
very beginning of the fault and covers faults that would have mapped to
storage as well as faults to holes. I left the COLOUR check in
dax_pmd_insert_mapping() in place in case we ever hit the insanity
condition where the alignment of the pfn we get from the driver doesn't
match the alignment of the userspace address.
Link: http://lkml.kernel.org/r/20170822222436.18926-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: "Slusarz, Marcin" <marcin.slusarz@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
yKWjj9wfYRQ0vSUqhsI5
=3Z93
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling updates from Jeff Layton:
"This pile represents the bulk of the writeback error handling fixes
that I have for this cycle. Some of the earlier patches in this pile
may look trivial but they are prerequisites for later patches in the
series.
The aim of this set is to improve how we track and report writeback
errors to userland. Most applications that care about data integrity
will periodically call fsync/fdatasync/msync to ensure that their
writes have made it to the backing store.
For a very long time, we have tracked writeback errors using two flags
in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
writeback error occurs (via mapping_set_error) and are cleared as a
side-effect of filemap_check_errors (as you noted yesterday). This
model really sucks for userland.
Only the first task to call fsync (or msync or fdatasync) will see the
error. Any subsequent task calling fsync on a file will get back 0
(unless another writeback error occurs in the interim). If I have
several tasks writing to a file and calling fsync to ensure that their
writes got stored, then I need to have them coordinate with one
another. That's difficult enough, but in a world of containerized
setups that coordination may even not be possible.
But wait...it gets worse!
The calls to filemap_check_errors can be buried pretty far down in the
call stack, and there are internal callers of filemap_write_and_wait
and the like that also end up clearing those errors. Many of those
callers ignore the error return from that function or return it to
userland at nonsensical times (e.g. truncate() or stat()). If I get
back -EIO on a truncate, there is no reason to think that it was
because some previous writeback failed, and a subsequent fsync() will
(incorrectly) return 0.
This pile aims to do three things:
1) ensure that when a writeback error occurs that that error will be
reported to userland on a subsequent fsync/fdatasync/msync call,
regardless of what internal callers are doing
2) report writeback errors on all file descriptions that were open at
the time that the error occurred. This is a user-visible change,
but I think most applications are written to assume this behavior
anyway. Those that aren't are unlikely to be hurt by it.
3) document what filesystems should do when there is a writeback
error. Today, there is very little consistency between them, and a
lot of cargo-cult copying. We need to make it very clear what
filesystems should do in this situation.
To achieve this, the set adds a new data type (errseq_t) and then
builds new writeback error tracking infrastructure around that. Once
all of that is in place, we change the filesystems to use the new
infrastructure for reporting wb errors to userland.
Note that this is just the initial foray into cleaning up this mess.
There is a lot of work remaining here:
1) convert the rest of the filesystems in a similar fashion. Once the
initial set is in, then I think most other fs' will be fairly
simple to convert. Hopefully most of those can in via individual
filesystem trees.
2) convert internal waiters on writeback to use errseq_t for
detecting errors instead of relying on the AS_* flags. I have some
draft patches for this for ext4, but they are not quite ready for
prime time yet.
This was a discussion topic this year at LSF/MM too. If you're
interested in the gory details, LWN has some good articles about this:
https://lwn.net/Articles/718734/https://lwn.net/Articles/724307/"
* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
xfs: minimal conversion to errseq_t writeback error reporting
ext4: use errseq_t based error handling for reporting data writeback errors
fs: convert __generic_file_fsync to use errseq_t based reporting
block: convert to errseq_t based writeback error tracking
dax: set errors in mapping when writeback fails
Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
fs: new infrastructure for writeback error handling and reporting
lib: add errseq_t type and infrastructure for handling it
mm: don't TestClearPageError in __filemap_fdatawait_range
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
jbd2: don't clear and reset errors after waiting on writeback
buffer: set errors in mapping at the time that the error occurs
fs: check for writeback errors after syncing out buffers in generic_file_fsync
buffer: use mapping_set_error instead of setting the flag
mm: fix mapping_set_error call in me_pagecache_dirty
* Introduce the _flushcache() family of memory copy helpers and use them
for persistent memory write operations on x86. The _flushcache()
semantic indicates that the cache is either bypassed for the copy
operation (movnt) or any lines dirtied by the copy operation are
written back (clwb, clflushopt, or clflush).
* Extend dax_operations with ->copy_from_iter() and ->flush()
operations. These operations and other infrastructure updates allow
all persistent memory specific dax functionality to be pushed into
libnvdimm and the pmem driver directly. It also allows dax-specific
sysfs attributes to be linked to a host device, for example:
/sys/block/pmem0/dax/write_cache
* Add support for the new NVDIMM platform/firmware mechanisms introduced
in ACPI 6.2 and UEFI 2.7. This support includes the v1.2 namespace
label format, extensions to the address-range-scrub command set, new
error injection commands, and a new BTT (block-translation-table)
layout. These updates support inter-OS and pre-OS compatibility.
* Fix a longstanding memory corruption bug in nfit_test.
* Make the pmem and nvdimm-region 'badblocks' sysfs files poll(2)
capable.
* Miscellaneous fixes and small updates across libnvdimm and the nfit
driver.
Acknowledgements that came after the branch was pushed:
commit 6aa734a2f3 "libnvdimm, region, pmem: fix 'badblocks'
sysfs_get_dirent() reference lifetime"
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXsUtAAoJEB7SkWpmfYgCOXcP/06bncqTEvtgrOF2b7O8w+8e
mTySD51RUn6UpkFd37SMRch+rmbojuqj465TAE7XIXgyLgIOJixKaTlHYUoEnP3X
rC4Q/g5mN0nittMDwL+vQaa1lQWd2kbjOlrqCgnLHVEEJpHmiQussunjvir4G1U7
5ROooP8W+qMK5y5XPLJAg/gyGhYkjpRSlDg3Eo5meZZ0IdURbI7+WCLKrPcQUERT
WmDc9gLhJdSQVxBV/0m2gdAER4ADmFjcrlm8kjXRBhdlUmEFjM0zpvlHJutHTkks
rNZWCmCJs0Sas+DmRKszFmvVFHRHqUVA3dWK4P6PJEX+tl7BwlPcxpbfacHTG2EZ
btArFc584DZ+EIrim1cXXRvLFlxnKOFBtBeteFs7l2kZjEcN6S4I5OZgTyeDpe/i
2WDpHWLQWibkcIzH9y1EuMBkYnQjTJl1pecHzJoTaC+jAQ+opLiY7EecjLmCmQS6
MBYUeQZNufLGfT5b8KXfpKeiXhpFkYrAGp+ErfoH/6RKy2zqTdagN1yVhos2y+a7
JJu/Weetpn8qv+KTGUShO8TGyWv3wU46YkG2rKWl0FL1+C+6LMMw1/L0A97lwVlg
BpypVVyaNu1D22ifZ8O5wbqPIYghoZ5akA0CiduhX19cpl5rTeTd8EvLjvcYhZEZ
pMHuMAqIcIyLhIe2/sRF
=xKQB
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"libnvdimm updates for the latest ACPI and UEFI specifications. This
pull request also includes new 'struct dax_operations' enabling to
undo the abuse of copy_user_nocache() for copy operations to pmem.
The dax work originally missed 4.12 to address concerns raised by Al.
Summary:
- Introduce the _flushcache() family of memory copy helpers and use
them for persistent memory write operations on x86. The
_flushcache() semantic indicates that the cache is either bypassed
for the copy operation (movnt) or any lines dirtied by the copy
operation are written back (clwb, clflushopt, or clflush).
- Extend dax_operations with ->copy_from_iter() and ->flush()
operations. These operations and other infrastructure updates allow
all persistent memory specific dax functionality to be pushed into
libnvdimm and the pmem driver directly. It also allows dax-specific
sysfs attributes to be linked to a host device, for example:
/sys/block/pmem0/dax/write_cache
- Add support for the new NVDIMM platform/firmware mechanisms
introduced in ACPI 6.2 and UEFI 2.7. This support includes the v1.2
namespace label format, extensions to the address-range-scrub
command set, new error injection commands, and a new BTT
(block-translation-table) layout. These updates support inter-OS
and pre-OS compatibility.
- Fix a longstanding memory corruption bug in nfit_test.
- Make the pmem and nvdimm-region 'badblocks' sysfs files poll(2)
capable.
- Miscellaneous fixes and small updates across libnvdimm and the nfit
driver.
Acknowledgements that came after the branch was pushed: commit
6aa734a2f3 ("libnvdimm, region, pmem: fix 'badblocks'
sysfs_get_dirent() reference lifetime") was reviewed by Toshi Kani
<toshi.kani@hpe.com>"
* tag 'libnvdimm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (42 commits)
libnvdimm, namespace: record 'lbasize' for pmem namespaces
acpi/nfit: Issue Start ARS to retrieve existing records
libnvdimm: New ACPI 6.2 DSM functions
acpi, nfit: Show bus_dsm_mask in sysfs
libnvdimm, acpi, nfit: Add bus level dsm mask for pass thru.
acpi, nfit: Enable DSM pass thru for root functions.
libnvdimm: passthru functions clear to send
libnvdimm, btt: convert some info messages to warn/err
libnvdimm, region, pmem: fix 'badblocks' sysfs_get_dirent() reference lifetime
libnvdimm: fix the clear-error check in nsio_rw_bytes
libnvdimm, btt: fix btt_rw_page not returning errors
acpi, nfit: quiet invalid block-aperture-region warnings
libnvdimm, btt: BTT updates for UEFI 2.7 format
acpi, nfit: constify *_attribute_group
libnvdimm, pmem: disable dax flushing when pmem is fronting a volatile region
libnvdimm, pmem, dax: export a cache control attribute
dax: convert to bitmask for flags
dax: remove default copy_from_iter fallback
libnvdimm, nfit: enable support for volatile ranges
libnvdimm, pmem: fix persistence warning
...
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.
These values are exposed using the memory.stats interface of cgroup v2.
The meaning of each value is the same as for global counters, available
using /proc/vmstat.
Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().
Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>