Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This allows saving a little of space when not using ssb on Broadcom SoC.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This cleans main.c a bit and will allow us to compile SoC related code
conditionally in the future.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
ssb bus can be found on various "host" devices like PCI/PCMCIA/SDIO.
Every ssb bus contains cores AKA devices.
The main idea is to have ssb driver scan/initialize bus and register
ready-to-use cores. This way ssb drivers can operate on a single core
mostly ignoring underlaying details.
For some reason PCMCIA support was split between ssb and b43. We got
PCMCIA host device probing in b43, then bus scanning in ssb and then
wireless core probing back in b43. The truth is it's very unlikely we
will ever see PCMCIA ssb device with no 802.11 core but I still don't
see any advantage of the current architecture.
With proposed change we get the same functionality with a simpler
architecture, less Kconfig symbols, one killed EXPORT and hopefully
cleaner b43. Since b43 supports both: ssb & bcma I prefer to keep ssb
specific code in ssb driver.
This mostly moves code from b43's pcmcia.c to bridge_pcmcia_80211.c. We
already use similar solution with b43_pci_bridge.c. I didn't use "b43"
in name of this new file as in theory any driver can operate on wireless
core.
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Register a GPIO driver to access the GPIOs provided by the chip.
The GPIOs of the SoC should always start at 0 and the other GPIOs could
start at a random position. There is just one SoC in a system and when
they start at 0 the number is predictable.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Patchwork: http://patchwork.linux-mips.org/patch/4591
Acked-by: Florian Fainelli <florian@openwrt.org>
Add support for communicating with a Sonics Silicon Backplane through a
SDIO interface, as found in the Nintendo Wii WLAN daughter card.
The Nintendo Wii WLAN card includes a custom Broadcom 4318 chip with
a SDIO host interface.
Signed-off-by: Albert Herranz <albert_herranz@yahoo.es>
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This adds support for the SSB PMU.
A PMU is found on Low-Power devices.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This adds support for reading/writing the SPROM invariants
for PCMCIA based devices.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This adds the Gigabit Ethernet driver for the SSB
Gigabit Ethernet core. This driver actually is a frontend to
the Tigon3 driver. So the real work is done by tg3.
This device is used in the Linksys WRT350N.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The bridge code was unnecessary enabled by the b44
driver, but it prevents the bcm43xx driver from
being loaded, as the bridge claims the same pci ids.
Now we enable the birdge only if the b43{legacy}
drivers are selected.
Signed-off-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Acked-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This fixes the SSB watchdog access for devices without a chipcommon.
These devices have the watchdog on the extif.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
SSB is an SoC bus used in a number of embedded devices. The most
well-known of these devices is probably the Linksys WRT54G, but there
are others as well. The bus is also used internally on the BCM43xx
and BCM44xx devices from Broadcom.
This patch also includes support for SSB ID tables in modules, so
that SSB drivers can be loaded automatically.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>