The header lapic.h is included more than once, remove one of them.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220406063715.55625-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for SCHEDOP_poll hypercall.
This implementation is optimized for polling for a single channel, which
is what Linux does. Polling for multiple channels is not especially
efficient (and has not been tested).
PV spinlocks slow path uses this hypercall, and explicitly crash if it's
not supported.
[ dwmw2: Rework to use kvm_vcpu_halt(), not supported for 32-bit guests ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-17-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the end of the patch series adding this batch of event channel
acceleration features, finally add the feature bit which advertises
them and document it all.
For SCHEDOP_poll we need to wake a polling vCPU when a given port
is triggered, even when it's masked — and we want to implement that
in the kernel, for efficiency. So we want the kernel to know that it
has sole ownership of event channel delivery. Thus, we allow
userspace to make the 'promise' by setting the corresponding feature
bit in its KVM_XEN_HVM_CONFIG call. As we implement SCHEDOP_poll
bypass later, we will do so only if that promise has been made by
userspace.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-16-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows uses a per-vCPU vector, and it's delivered via the local APIC
basically like an MSI (with associated EOI) unlike the traditional
guest-wide vector which is just magically asserted by Xen (and in the
KVM case by kvm_xen_has_interrupt() / kvm_cpu_get_extint()).
Now that the kernel is able to raise event channel events for itself,
being able to do so for Windows guests is also going to be useful.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-15-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turns out this is a fast path for PV guests because they use it to
trigger the event channel upcall. So letting it bounce all the way up
to userspace is not great.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-14-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest has offloaded the timer virq, handle the following
hypercalls for programming the timer:
VCPUOP_set_singleshot_timer
VCPUOP_stop_singleshot_timer
set_timer_op(timestamp_ns)
The event channel corresponding to the timer virq is then used to inject
events once timer deadlines are met. For now we back the PV timer with
hrtimer.
[ dwmw2: Add save/restore, 32-bit compat mode, immediate delivery,
don't check timer in kvm_vcpu_has_event() ]
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-13-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.
This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cooperative Linux guests after an IPI-many may yield vcpu if
any of the IPI'd vcpus were preempted (i.e. runstate is 'runnable'.)
Support SCHEDOP_yield for handling yield.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-11-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace registers a sending @port to either deliver to an @eventfd
or directly back to a local event channel port.
After binding events the guest or host may wish to bind those
events to a particular vcpu. This is usually done for unbound
and and interdomain events. Update requests are handled via the
KVM_XEN_EVTCHN_UPDATE flag.
Unregistered ports are handled by the emulator.
Co-developed-by: Ankur Arora <ankur.a.arora@oracle.com>
Co-developed-By: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-10-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds a KVM_XEN_HVM_EVTCHN_SEND ioctl which allows direct injection
of events given an explicit { vcpu, port, priority } in precisely the
same form that those fields are given in the IRQ routing table.
Userspace is currently able to inject 2-level events purely by setting
the bits in the shared_info and vcpu_info, but FIFO event channels are
harder to deal with; we will need the kernel to take sole ownership of
delivery when we support those.
A patch advertising this feature with a new bit in the KVM_CAP_XEN_HVM
ioctl will be added in a subsequent patch.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-9-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean it up to return -errno on error consistently, while still being
compatible with the return conventions for kvm_arch_set_irq_inatomic()
and the kvm_set_irq() callback.
We use -ENOTCONN to indicate when the port is masked. No existing users
care, except that it's negative.
Also allow it to optimise the vCPU lookup. Unless we abuse the lapic
map, there is no quick lookup from APIC ID to a vCPU; the logic in
kvm_get_vcpu_by_id() will just iterate over all vCPUs till it finds
the one it wants. So do that just once and stash the result in the
struct kvm_xen_evtchn for next time.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-8-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This switches the final pvclock to kvm_setup_pvclock_pfncache() and now
the old kvm_setup_pvclock_page() can be removed.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-7-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the fast path of kvm_xen_set_evtchn_fast() doesn't set the
index bits in the target vCPU's evtchn_pending_sel, because it only has
a userspace virtual address with which to do so. It just sets them in
the kernel, and kvm_xen_has_interrupt() then completes the delivery to
the actual vcpu_info structure when the vCPU runs.
Using a gfn_to_pfn_cache allows kvm_xen_set_evtchn_fast() to do the full
delivery in the common case.
Clean up the fallback case too, by moving the deferred delivery out into
a separate kvm_xen_inject_pending_events() function which isn't ever
called in atomic contexts as __kvm_xen_has_interrupt() is.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It isn't OK to cache the dirty status of a page in internal structures
for an indefinite period of time.
Any time a vCPU exits the run loop to userspace might be its last; the
VMM might do its final check of the dirty log, flush the last remaining
dirty pages to the destination and complete a live migration. If we
have internal 'dirty' state which doesn't get flushed until the vCPU
is finally destroyed on the source after migration is complete, then
we have lost data because that will escape the final copy.
This problem already exists with the use of kvm_vcpu_unmap() to mark
pages dirty in e.g. VMX nesting.
Note that the actual Linux MM already considers the page to be dirty
since we have a writeable mapping of it. This is just about the KVM
dirty logging.
For the nesting-style use cases (KVM_GUEST_USES_PFN) we will need to
track which gfn_to_pfn_caches have been used and explicitly mark the
corresponding pages dirty before returning to userspace. But we would
have needed external tracking of that anyway, rather than walking the
full list of GPCs to find those belonging to this vCPU which are dirty.
So let's rely *solely* on that external tracking, and keep it simple
rather than laying a tempting trap for callers to fall into.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the guest_uses_pa and kernel_map booleans in the PFN cache code
with a unified enum/bitmask. Using explicit names makes it easier to
review and audit call sites.
Opportunistically add a WARN to prevent passing garbage; instantating a
cache without declaring its usage is either buggy or pointless.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use static_call() for invoking kvm_x86_ops function that already have a
defined static call, mostly as a step toward having _all_ calls to
kvm_x86_ops route through a static_call() in order to simplify auditing,
e.g. via grep, that all functions have an entry in kvm-x86-ops.h, but
also because there's no reason not to use a static_call().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are circumstances whem kvm_xen_update_runstate_guest() should not
sleep because it ends up being called from __schedule() when the vCPU
is preempted:
[ 222.830825] kvm_xen_update_runstate_guest+0x24/0x100
[ 222.830878] kvm_arch_vcpu_put+0x14c/0x200
[ 222.830920] kvm_sched_out+0x30/0x40
[ 222.830960] __schedule+0x55c/0x9f0
To handle this, make it use the same trick as __kvm_xen_has_interrupt(),
of using the hva from the gfn_to_hva_cache directly. Then it can use
pagefault_disable() around the accesses and just bail out if the page
is absent (which is unlikely).
I almost switched to using a gfn_to_pfn_cache here and bailing out if
kvm_map_gfn() fails, like kvm_steal_time_set_preempted() does — but on
closer inspection it looks like kvm_map_gfn() will *always* fail in
atomic context for a page in IOMEM, which means it will silently fail
to make the update every single time for such guests, AFAICT. So I
didn't do it that way after all. And will probably fix that one too.
Cc: stable@vger.kernel.org
Fixes: 30b5c851af ("KVM: x86/xen: Add support for vCPU runstate information")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <b17a93e5ff4561e57b1238e3e7ccd0b613eb827e.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty ring logging is enabled, any dirty logging without an active
vCPU context will cause a kernel oops. But we've already declared that
the shared_info page doesn't get dirty tracking anyway, since it would
be kind of insane to mark it dirty every time we deliver an event channel
interrupt. Userspace is supposed to just assume it's always dirty any
time a vCPU can run or event channels are routed.
So stop using the generic kvm_write_wall_clock() and just write directly
through the gfn_to_pfn_cache that we already have set up.
We can make kvm_write_wall_clock() static in x86.c again now, but let's
not remove the 'sec_hi_ofs' argument even though it's not used yet. At
some point we *will* want to use that for KVM guests too.
Fixes: 629b534884 ("KVM: x86/xen: update wallclock region")
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds basic support for delivering 2 level event channels to a guest.
Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.
It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.
Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the newly reinstated gfn_to_pfn_cache to maintain a kernel mapping
of the Xen shared_info page so that it can be accessed in atomic context.
Note that we do not participate in dirty tracking for the shared info
page and we do not explicitly mark it dirty every single tim we deliver
an event channel interrupts. We wouldn't want to do that even if we *did*
have a valid vCPU context with which to do so.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When processing a hypercall for a guest with protected state, currently
SEV-ES guests, the guest CS segment register can't be checked to
determine if the guest is in 64-bit mode. For an SEV-ES guest, it is
expected that communication between the guest and the hypervisor is
performed to shared memory using the GHCB. In order to use the GHCB, the
guest must have been in long mode, otherwise writes by the guest to the
GHCB would be encrypted and not be able to be comprehended by the
hypervisor.
Create a new helper function, is_64_bit_hypercall(), that assumes the
guest is in 64-bit mode when the guest has protected state, and returns
true, otherwise invoking is_64_bit_mode() to determine the mode. Update
the hypercall related routines to use is_64_bit_hypercall() instead of
is_64_bit_mode().
Add a WARN_ON_ONCE() to is_64_bit_mode() to catch occurences of calls to
this helper function for a guest running with protected state.
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e0b20c770c9d0d1403f23d83e785385104211f74.1621878537.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation
* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
* Fixes for migration of 32-bit nested guests on 64-bit hypervisor
* Compilation fixes
* More SEV cleanups
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 319afe6856 ("KVM: xen: do not use struct gfn_to_hva_cache") we
stopped storing this in-kernel as a GPA, and started storing it as a GFN.
Which means we probably should have stopped calling gpa_to_gfn() on it
when userspace asks for it back.
Cc: stable@vger.kernel.org
Fixes: 319afe6856 ("KVM: xen: do not use struct gfn_to_hva_cache")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In kvm_vcpu_block, the current task is set to TASK_INTERRUPTIBLE before
making a final check whether the vCPU should be woken from HLT by any
incoming interrupt.
This is a problem for the get_user() in __kvm_xen_has_interrupt(), which
really shouldn't be sleeping when the task state has already been set.
I think it's actually harmless as it would just manifest itself as a
spurious wakeup, but it's causing a debug warning:
[ 230.963649] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b6bcdbc9>] prepare_to_swait_exclusive+0x30/0x80
Fix the warning by turning it into an *explicit* spurious wakeup. When
invoked with !task_is_running(current) (and we might as well add
in_atomic() there while we're at it), just return 1 to indicate that
an IRQ is pending, which will cause a wakeup and then something will
call it again in a context that *can* sleep so it can fault the page
back in.
Cc: stable@vger.kernel.org
Fixes: 40da8ccd72 ("KVM: x86/xen: Add event channel interrupt vector upcall")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <168bf8c689561da904e48e2ff5ae4713eaef9e2d.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gfn_to_hva_cache is not thread-safe, so it is usually used only within
a vCPU (whose code is protected by vcpu->mutex). The Xen interface
implementation has such a cache in kvm->arch, but it is not really
used except to store the location of the shared info page. Replace
shinfo_set and shinfo_cache with just the value that is passed via
KVM_XEN_ATTR_TYPE_SHARED_INFO; the only complication is that the
initialization value is not zero anymore and therefore kvm_xen_init_vm
needs to be introduced.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.
In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.
The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.
The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.
Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When clearing the per-vCPU shared regions, set the return value to zero
to indicate success. This was causing spurious errors to be returned to
userspace on soft reset.
Also add a paranoid BUILD_BUG_ON() for compat structure compatibility.
Fixes: 0c165b3c01 ("KVM: x86/xen: Allow reset of Xen attributes")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to support Xen SHUTDOWN_soft_reset (for guest kexec, etc.) the
VMM needs to be able to tear everything down and return the Xen features
to a clean slate.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210208232326.1830370-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V emulation is enabled in KVM unconditionally. This is bad at least
from security standpoint as it is an extra attack surface. Ideally, there
should be a per-VM capability explicitly enabled by VMM but currently it
is not the case and we can't mandate one without breaking backwards
compatibility. We can, however, check guest visible CPUIDs and only enable
Hyper-V emulation when "Hv#1" interface was exposed in
HYPERV_CPUID_INTERFACE.
Note, VMMs are free to act in any sequence they like, e.g. they can try
to set MSRs first and CPUIDs later so we still need to allow the host
to read/write Hyper-V specific MSRs unconditionally.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-14-vkuznets@redhat.com>
[Add selftest vcpu_set_hv_cpuid API to avoid breaking xen_vmcall_test. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use hva_t, a.k.a. unsigned long, for the local variable that holds the
hypercall page address. On 32-bit KVM, gcc complains about using a u64
due to the implicit cast from a 64-bit value to a 32-bit pointer.
arch/x86/kvm/xen.c: In function ‘kvm_xen_write_hypercall_page’:
arch/x86/kvm/xen.c:300:22: error: cast to pointer from integer of
different size [-Werror=int-to-pointer-cast]
300 | page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Fixes: 23200b7a30 ("KVM: x86/xen: intercept xen hypercalls if enabled")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210208201502.1239867-1-seanjc@google.com>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This accidentally ended up locking and then immediately unlocking kvm->lock
at the beginning of the function. Fix it.
Fixes: a76b9641ad ("KVM: x86/xen: add KVM_XEN_HVM_SET_ATTR/KVM_XEN_HVM_GET_ATTR")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210208232326.1830370-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It turns out that we can't handle event channels *entirely* in userspace
by delivering them as ExtINT, because KVM is a bit picky about when it
accepts ExtINT interrupts from a legacy PIC. The in-kernel local APIC
has to have LVT0 configured in APIC_MODE_EXTINT and unmasked, which
isn't necessarily the case for Xen guests especially on secondary CPUs.
To cope with this, add kvm_xen_get_interrupt() which checks the
evtchn_pending_upcall field in the Xen vcpu_info, and delivers the Xen
upcall vector (configured by KVM_XEN_ATTR_TYPE_UPCALL_VECTOR) if it's
set regardless of LAPIC LVT0 configuration. This gives us the minimum
support we need for completely userspace-based implementation of event
channels.
This does mean that vcpu_enter_guest() needs to check for the
evtchn_pending_upcall flag being set, because it can't rely on someone
having set KVM_REQ_EVENT unless we were to add some way for userspace to
do so manually.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Allow the Xen emulated guest the ability to register secondary
vcpu time information. On Xen guests this is used in order to be
mapped to userspace and hence allow vdso gettimeofday to work.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Parameterise kvm_setup_pvclock_page() a little bit so that it can be
invoked for different gfn_to_hva_cache structures, and with different
offsets. Then we can invoke it for the normal KVM pvclock and also for
the Xen one in the vcpu_info.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
The vcpu info supersedes the per vcpu area of the shared info page and
the guest vcpus will use this instead.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Wallclock on Xen is written in the shared_info page.
To that purpose, export kvm_write_wall_clock() and pass on the GPA of
its location to populate the shared_info wall clock data.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Add KVM_XEN_ATTR_TYPE_SHARED_INFO to allow hypervisor to know where the
guest's shared info page is.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
This will be used to set up shared info pages etc.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
The code paths for Xen support are all fairly lightweight but if we hide
them behind this, they're even *more* lightweight for any system which
isn't actually hosting Xen guests.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
This is already more complex than the simple memcpy it originally had.
Move it to xen.c with the rest of the Xen support.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Disambiguate Xen vs. Hyper-V calls by adding 'orl $0x80000000, %eax'
at the start of the Hyper-V hypercall page when Xen hypercalls are
also enabled.
That bit is reserved in the Hyper-V ABI, and those hypercall numbers
will never be used by Xen (because it does precisely the same trick).
Switch to using kvm_vcpu_write_guest() while we're at it, instead of
open-coding it.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Add a new exit reason for emulator to handle Xen hypercalls.
Since this means KVM owns the ABI, dispense with the facility for the
VMM to provide its own copy of the hypercall pages; just fill them in
directly using VMCALL/VMMCALL as we do for the Hyper-V hypercall page.
This behaviour is enabled by a new INTERCEPT_HCALL flag in the
KVM_XEN_HVM_CONFIG ioctl structure, and advertised by the same flag
being returned from the KVM_CAP_XEN_HVM check.
Rename xen_hvm_config() to kvm_xen_write_hypercall_page() and move it
to the nascent xen.c while we're at it, and add a test case.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>