We recently added some new locking but missed the unlocks on these
error paths in sha512_ctx_mgr_submit().
Fixes: c459bd7bed ("crypto: sha512-mb - Protect sha512 mb ctx mgr access")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The flusher and regular multi-buffer computation via mcryptd may race with another.
Add here a lock and turn off interrupt to to access multi-buffer
computation state cstate->mgr before a round of computation. This should
prevent the flusher code jumping in.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Current multi-buffer hash implementations have a restriction on the total
length of a hash job to 512MB. Hashing larger buffers will result in an
incorrect hash. This extends the limit to 2^62 - 1.
Signed-off-by: Greg Tucker <greg.b.tucker@intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1. fix ctx pointer
Use req_ctx which is the ctx for the next job that have
been completed in the lanes instead of the first
completed job rctx, whose completion could have been
called and released.
Signed-off-by: Xiaodong Liu <xiaodong.liu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
for condition comparison and cleanup multiline comment style
In sha*_ctx_mgr_submit, we currently use the | operator instead of ||
((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE))
Switching it to || and remove extraneous paranthesis to
adhere to coding style.
Also cleanup inconsistent multiline comment style.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the assembly routines to do SHA512 computation on
buffers belonging to several jobs at once. The assembly routines are
optimized with AVX2 instructions that have 4 data lanes and using AVX2
registers.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the data structures and prototypes of functions
needed for computing SHA512 hash using multi-buffer. Included are the
structures of the multi-buffer SHA512 job, job scheduler in C and x86
assembly.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the routines used to submit and flush buffers
belonging to SHA512 crypto jobs to the SHA512 multibuffer algorithm.
It is implemented mostly in assembly optimized with AVX2 instructions.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA512 jobs to the
multi-buffer algorithm. It also contains the flush routine that's called
by the crypto daemon to complete the job when no new jobs arrive before
the deadline of maximum latency of a SHA512 crypto job.
The SHA512 multi-buffer crypto algorithm is defined and initialized in this
patch.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>