In __dax_pmd_fault() we currently assume that get_block() will always
set bh.b_bdev and we unconditionally dereference it in __dax_dbg().
This assumption isn't always true - when called for reads of holes
ext4_dax_mmap_get_block() returns a buffer head where bh->b_bdev is
never set. I hit this BUG while testing the DAX PMD fault path.
Instead, initialize bh.b_bdev before passing bh into get_block(). It is
possible that the filesystem's get_block() will update bh.b_bdev, and
this is fine - we just want to initialize bh.b_bdev to something
reasonable so that the calls to __dax_dbg() work and print something
useful.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that the get_user_pages() path knows how to handle dax-pmd mappings,
remove the protections that disabled dax-pmd support.
Tests available from github.com/pmem/ndctl:
make TESTS="lib/test-dax.sh lib/test-mmap.sh" check
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a wide gamut of conditions that can trigger the dax pmd path to
fallback to pte mappings. Ideally we'd have a syscall interface to
determine mapping characteristics after the fact. In the meantime
provide debug messages.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Suggested-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the conversion of vm_insert_mixed() use pfn_t in the
vmf_insert_pfn_pmd() to tag the resulting pte with _PAGE_DEVICE when the
pfn is backed by a devm_memremap_pages() mapping.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the raw unsigned long 'pfn' argument to pfn_t for the purpose of
evaluating the PFN_MAP and PFN_DEV flags. When both are set it triggers
_PAGE_DEVMAP to be set in the resulting pte.
There are no functional changes to the gpu drivers as a result of this
conversion.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the purpose of communicating the optional presence of a 'struct
page' for the pfn returned from ->direct_access(), introduce a type that
encapsulates a page-frame-number plus flags. These flags contain the
historical "page_link" encoding for a scatterlist entry, but can also
denote "device memory". Where "device memory" is a set of pfns that are
not part of the kernel's linear mapping by default, but are accessed via
the same memory controller as ram.
The motivation for this new type is large capacity persistent memory
that needs struct page entries in the 'memmap' to support 3rd party DMA
(i.e. O_DIRECT I/O with a persistent memory source/target). However,
we also need it in support of maintaining a list of mapped inodes which
need to be unmapped at driver teardown or freeze_bdev() time.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave@sr71.net>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An infinite loop of PMD faults was observed when attempted to mlock() a
private read-only PMD mmap'd range of a DAX file.
__dax_pmd_fault() simply returns with VM_FAULT_FALLBACK when falling
back to PTE on COW. However, __handle_mm_fault() returns without
falling back to handle_pte_fault() because a PMD map is present in this
case.
Change __dax_pmd_fault() to split the PMD map, if present, before
returning with VM_FAULT_FALLBACK.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The DAX implementation needs to protect new calls to ->direct_access()
and usage of its return value against the driver for the underlying
block device being disabled. Use blk_queue_enter()/blk_queue_exit() to
hold off blk_cleanup_queue() from proceeding, or otherwise fail new
mapping requests if the request_queue is being torn down.
This also introduces blk_dax_ctl to simplify the interface from fs/dax.c
through dax_map_atomic() to bdev_direct_access().
[willy@linux.intel.com: fix read() of a hole]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a ->direct_access() implementation ever returns a map count less than
PAGE_SIZE, catch the error in bdev_direct_access(). This simplifies
error checking in upper layers.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dax_clear_blocks is currently performing a cond_resched() after every
PAGE_SIZE memset. We need not check so frequently, for example md-raid
only calls cond_resched() at stripe granularity. Also, in preparation
for introducing a dax_map_atomic() operation that temporarily pins a dax
mapping move the call to cond_resched() to the outer loop.
The worst case latency between calls to cond_resched() after this change
is 500us the average latency is 133us. This is up from a 10us max and
4us average.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace). This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o. It allows userspace to coordinate
DMA/RDMA from/to persistent memory.
The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver. The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.
The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag. Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.
Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array. Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory. The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.
This patch (of 25):
Both __dax_pmd_fault, and clear_pmem() were taking special steps to
clear memory a page at a time to take advantage of non-temporal
clear_page() implementations. However, x86_64 does not use non-temporal
instructions for clear_page(), and arch_clear_pmem() was always
incurring the cost of __arch_wb_cache_pmem().
Clean up the assumption that doing clear_pmem() a page at a time is more
performant.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While dax pmd mappings are functional in the nominal path they trigger
kernel crashes in the following paths:
BUG: unable to handle kernel paging request at ffffea0004098000
IP: [<ffffffff812362f7>] follow_trans_huge_pmd+0x117/0x3b0
[..]
Call Trace:
[<ffffffff811f6573>] follow_page_mask+0x2d3/0x380
[<ffffffff811f6708>] __get_user_pages+0xe8/0x6f0
[<ffffffff811f7045>] get_user_pages_unlocked+0x165/0x1e0
[<ffffffff8106f5b1>] get_user_pages_fast+0xa1/0x1b0
kernel BUG at arch/x86/mm/gup.c:131!
[..]
Call Trace:
[<ffffffff8106f34c>] gup_pud_range+0x1bc/0x220
[<ffffffff8106f634>] get_user_pages_fast+0x124/0x1b0
BUG: unable to handle kernel paging request at ffffea0004088000
IP: [<ffffffff81235f49>] copy_huge_pmd+0x159/0x350
[..]
Call Trace:
[<ffffffff811fad3c>] copy_page_range+0x34c/0x9f0
[<ffffffff810a0daf>] copy_process+0x1b7f/0x1e10
[<ffffffff810a11c1>] _do_fork+0x91/0x590
All of these paths are interpreting a dax pmd mapping as a transparent
huge page and making the assumption that the pfn is covered by the
memmap, i.e. that the pfn has an associated struct page. PTE mappings
do not suffer the same fate since they have the _PAGE_SPECIAL flag to
cause the gup path to fault. We can do something similar for the PMD
path, or otherwise defer pmd support for cases where a struct page is
available. For now, 4.4-rc and -stable need to disable dax pmd support
by default.
For development the "depends on BROKEN" line can be removed from
CONFIG_FS_DAX_PMD.
Cc: <stable@vger.kernel.org>
Cc: Jan Kara <jack@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull libnvdimm fixes from Dan Williams:
- three fixes tagged for -stable including a crash fix, simple
performance tweak, and an invalid i/o error.
- build regression fix for the nvdimm unit tests
- nvdimm documentation update
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: fix __dax_pmd_fault crash
libnvdimm: documentation clarifications
libnvdimm, pmem: fix size trim in pmem_direct_access()
libnvdimm, e820: fix numa node for e820-type-12 pmem ranges
tools/testing/nvdimm, acpica: fix flag rename build breakage
Since 4.3 introduced devm_memremap_pages() the pfns handled by DAX may
optionally have a struct page backing. When a mapped pfn reaches
vmf_insert_pfn_pmd() it fails with a crash signature like the following:
kernel BUG at mm/huge_memory.c:905!
[..]
Call Trace:
[<ffffffff812a73ba>] __dax_pmd_fault+0x2ea/0x5b0
[<ffffffffa01a4182>] xfs_filemap_pmd_fault+0x92/0x150 [xfs]
[<ffffffff811fbe02>] handle_mm_fault+0x312/0x1b50
Fix this by falling back to 4K mappings in the pfn_valid() case. Longer
term, vmf_insert_pfn_pmd() needs to grow support for architectures that
can provide a 'pmd_special' capability.
Cc: <stable@vger.kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull misc block fixes from Jens Axboe:
"Stuff that got collected after the merge window opened. This
contains:
- NVMe:
- Fix for non-striped transfer size setting for NVMe from
Sathyavathi.
- (Some) support for the weird Apple nvme controller in the
macbooks. From Stephan Günther.
- The error value leak for dax from Al.
- A few minor blk-mq tweaks from me.
- Add the new linux-block@vger.kernel.org mailing list to the
MAINTAINERS file.
- Discard fix for brd, from Jan.
- A kerneldoc warning for block core from Randy.
- An older fix from Vivek, converting a WARN_ON() to a rate limited
printk when a device is hot removed with dirty inodes"
* 'for-linus' of git://git.kernel.dk/linux-block:
block: don't hardcode blk_qc_t -> tag mask
dax_io(): don't let non-error value escape via retval instead of EFAULT
block: fix blk-core.c kernel-doc warning
fs/block_dev.c: Remove WARN_ON() when inode writeback fails
NVMe: add support for Apple NVMe controller
NVMe: use split lo_hi_{read,write}q
blk-mq: mark __blk_mq_complete_request() static
MAINTAINERS: add reference to new linux-block list
NVMe: Increase the max transfer size when mdts is 0
brd: Refuse improperly aligned discard requests
This update contains:
o per-mount operational statistics in sysfs
o fixes for concurrent aio append write submission
o various logging fixes
o detection of zeroed logs and invalid log sequence numbers on v5 filesystems
o memory allocation failure message improvements
o a bunch of xattr/ACL fixes
o fdatasync optimisation
o miscellaneous other fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJWQ7GzAAoJEK3oKUf0dfodJakP/3s3N5ngqRWa+PQwBQPdTO0r
MBQppSKXWdT7YLhiFt1ZRlvXiMQOIZPNx0yBS9mzQghL9sTGvcPdxjbQnNh6LUnE
fGC2Yzi/J8lM2M80ezk3JoFqdqAQ/U78ARA/VpZct4imrps/h+s2Klkx87xPJsiK
/wY56FXFtoUS1ADYhL8qCeiAGOFpyIttiDNOVW3O2ZXn4iJUsa2nLCoiFwF/yFvU
S85iUJWAsvVSW5WgfUufmodC4u+WOT+9isNRxEmBjpxYYAFrFb5+8DYY3Coh6z0V
HqYPhpzBOG9gXbAue5v+ccsp2w60atXIFUQkR2HFBblvxsDMkvsgycJWJgDNmJiw
RYDMBJ26epxUdTScUxijKiGfnnbZW5b+uzp6FvVsE4KPdP62ol7YNqxj8/FFIjQN
JBl2ooiczOgvhCdvdWmWNEGWHccBcJ8UJ2RzJ0owVIIJZZYwjkZNzeSieWzYc7tr
b9wBC4wnaYAK/V7aEGLJxMXVjkanrqAnaXf5ymICSFv8me/qAfZ2sLcY2P6SHuhO
Fmkj6R5Thh1SYxk3thgGFZg7LGuxJW9cmypvFGpKhIvEaNGIM6ScdIwO7kCHYWv7
3EkP42mmJLIYxKz/q2nHqt7R246YFraIRowLWptJUl32uyzO7SrdKbc8+o5WD4Wl
2byjE9TjXOa1jGuPa3kN
=zu+5
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is nothing really major here - the only significant addition is
the per-mount operation statistics infrastructure. Otherwises there's
various ACL, xattr, DAX, AIO and logging fixes, and a smattering of
small cleanups and fixes elsewhere.
Summary:
- per-mount operational statistics in sysfs
- fixes for concurrent aio append write submission
- various logging fixes
- detection of zeroed logs and invalid log sequence numbers on v5 filesystems
- memory allocation failure message improvements
- a bunch of xattr/ACL fixes
- fdatasync optimisation
- miscellaneous other fixes and cleanups"
* tag 'xfs-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits)
xfs: give all workqueues rescuer threads
xfs: fix log recovery op header validation assert
xfs: Fix error path in xfs_get_acl
xfs: optimise away log forces on timestamp updates for fdatasync
xfs: don't leak uuid table on rmmod
xfs: invalidate cached acl if set via ioctl
xfs: Plug memory leak in xfs_attrmulti_attr_set
xfs: Validate the length of on-disk ACLs
xfs: invalidate cached acl if set directly via xattr
xfs: xfs_filemap_pmd_fault treats read faults as write faults
xfs: add ->pfn_mkwrite support for DAX
xfs: DAX does not use IO completion callbacks
xfs: Don't use unwritten extents for DAX
xfs: introduce BMAPI_ZERO for allocating zeroed extents
xfs: fix inode size update overflow in xfs_map_direct()
xfs: clear PF_NOFREEZE for xfsaild kthread
xfs: fix an error code in xfs_fs_fill_super()
xfs: stats are no longer dependent on CONFIG_PROC_FS
xfs: simplify /proc teardown & error handling
xfs: per-filesystem stats counter implementation
...
DAX has a page fault serialisation problem with block allocation.
Because it allows concurrent page faults and does not have a page
lock to serialise faults to the same page, it can get two concurrent
faults to the page that race.
When two read faults race, this isn't a huge problem as the data
underlying the page is not changing and so "detect and drop" works
just fine. The issues are to do with write faults.
When two write faults occur, we serialise block allocation in
get_blocks() so only one faul will allocate the extent. It will,
however, be marked as an unwritten extent, and that is where the
problem lies - the DAX fault code cannot differentiate between a
block that was just allocated and a block that was preallocated and
needs zeroing. The result is that both write faults end up zeroing
the block and attempting to convert it back to written.
The problem is that the first fault can zero and convert before the
second fault starts zeroing, resulting in the zeroing for the second
fault overwriting the data that the first fault wrote with zeros.
The second fault then attempts to convert the unwritten extent,
which is then a no-op because it's already written. Data loss occurs
as a result of this race.
Because there is no sane locking construct in the page fault code
that we can use for serialisation across the page faults, we need to
ensure block allocation and zeroing occurs atomically in the
filesystem. This means we can still take concurrent page faults and
the only time they will serialise is in the filesystem
mapping/allocation callback. The page fault code will always see
written, initialised extents, so we will be able to remove the
unwritten extent handling from the DAX code when all filesystems are
converted.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The following two locking commits in the DAX code:
commit 843172978b ("dax: fix race between simultaneous faults")
commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for DAX")
introduced a number of deadlocks and other issues which need to be fixed
for the v4.3 kernel. The list of issues in DAX after these commits
(some newly introduced by the commits, some preexisting) can be found
here:
https://lkml.org/lkml/2015/9/25/602 (Subject: "Re: [PATCH] dax: fix deadlock in __dax_fault").
This undoes most of the changes introduced by those two commits,
essentially returning us to the DAX locking scheme that was used in
v4.2.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for
DAX") moved some code in __dax_pmd_fault() that was responsible for
zeroing newly allocated PMD pages. The new location didn't properly set
up 'kaddr', so when run this code resulted in a NULL pointer BUG.
Fix this by getting the correct 'kaddr' via bdev_direct_access().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit bbab37ddc2 (block: Add support for DAX reads/writes to
block devices) caused a regression in mkfs.xfs. That utility
sets the block size of the device to the logical block size
using the BLKBSZSET ioctl, and then issues a single sector read
from the last sector of the device. This results in the dax_io
code trying to do a page-sized read from 512 bytes from the end
of the device. The result is -ERANGE being returned to userspace.
The fix is to align the block to the page size before calling
get_block.
Thanks to willy for simplifying my original patch.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Tested-by: Linda Knippers <linda.knippers@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
As part of the v4.3 merge window the DAX code was updated by Matthew and
Kirill to handle PMD pages. Also as part of the v4.3 merge window we
updated the DAX code to do proper PMEM flushing (commit 2765cfbb342c:
"dax: update I/O path to do proper PMEM flushing").
The additional code added by the DAX PMD patches also needs to be
updated to properly use the PMEM API. This ensures that after a PMD
fault is handled the zeros written to the newly allocated pages are
durable on the DIMMs.
linux/dax.h is included to get rid of a bunch of sparse warnings.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>,
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge second patch-bomb from Andrew Morton:
"Almost all of the rest of MM. There was an unusually large amount of
MM material this time"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (141 commits)
zpool: remove no-op module init/exit
mm: zbud: constify the zbud_ops
mm: zpool: constify the zpool_ops
mm: swap: zswap: maybe_preload & refactoring
zram: unify error reporting
zsmalloc: remove null check from destroy_handle_cache()
zsmalloc: do not take class lock in zs_shrinker_count()
zsmalloc: use class->pages_per_zspage
zsmalloc: consider ZS_ALMOST_FULL as migrate source
zsmalloc: partial page ordering within a fullness_list
zsmalloc: use shrinker to trigger auto-compaction
zsmalloc: account the number of compacted pages
zsmalloc/zram: introduce zs_pool_stats api
zsmalloc: cosmetic compaction code adjustments
zsmalloc: introduce zs_can_compact() function
zsmalloc: always keep per-class stats
zsmalloc: drop unused variable `nr_to_migrate'
mm/memblock.c: fix comment in __next_mem_range()
mm/page_alloc.c: fix type information of memoryless node
memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node()
...
DAX is not so special: we need i_mmap_lock to protect mapping->i_mmap.
__dax_pmd_fault() uses unmap_mapping_range() shoot out zero page from
all mappings. We need to drop i_mmap_lock there to avoid lock deadlock.
Re-aquiring the lock should be fine since we check i_size after the
point.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I was basically open-coding it (thanks to copying code from do_fault()
which probably also needs to be fixed).
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the first access to a huge page was a store, there would be no existing
zero pmd in this process's page tables. There could be a zero pmd in
another process's page tables, if it had done a load. We can detect this
case by noticing that the buffer_head returned from the filesystem is New,
and ensure that other processes mapping this huge page have their page
tables flushed.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is another place where DAX assumed that pgtable_t was a pointer.
Open code the important parts of set_huge_zero_page() in DAX and make
set_huge_zero_page() static again.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If two threads write-fault on the same hole at the same time, the winner
of the race will return to userspace and complete their store, only to
have the loser overwrite their store with zeroes. Fix this for now by
taking the i_mmap_sem for write instead of read, and do so outside the
call to get_block(). Now the loser of the race will see the block has
already been zeroed, and will not zero it again.
This severely limits our scalability. I have ideas for improving it, but
those can wait for a later patch.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara pointed out I should be more explicit here about the perils of
racing against truncate. The comment is mostly the same as for the PTE
case.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the support code for DAX-enabled filesystems to allow them to
provide huge pages in response to faults.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
Update the annotation for the kaddr pointer returned by direct_access()
so that it is a __pmem pointer. This is consistent with the PMEM driver
and with how this direct_access() pointer is used in the DAX code.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Update the DAX I/O path so that all operations that store data (I/O
writes, zeroing blocks, punching holes, etc.) properly synchronize the
stores to media using the PMEM API. This ensures that the data DAX is
writing is durable on media before the operation completes.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When modifying the patch series to handle the XFS MMAP_LOCK nesting
of page faults, I botched the conversion of the read page fault
path, and so it is only every calling through the page cache. Re-add
the necessary __dax_fault() call for such files.
Because the get_blocks callback on read faults may not set up the
mapping buffer correctly to allow unwritten extent completion to be
run, we need to allow callers of __dax_fault() to pass a null
complete_unwritten() callback. The DAX code always zeros the
unwritten page when it is read faulted so there are no stale data
exposure issues with not doing the conversion. The only downside
will be the potential for increased CPU overhead on repeated read
faults of the same page. If this proves to be a problem, then the
filesystem needs to fix it's get_block callback and provide a
convert_unwritten() callback to the read fault path.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
If a block device supports the ->direct_access methods, bypass the normal
DIO path and use DAX to go straight to memcpy() instead of allocating
a DIO and a BIO.
Includes support for the DIO_SKIP_DIO_COUNT flag in DAX, as is done in
do_blockdev_direct_IO().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When userspace does a write, there's no need for the written data to
pollute the CPU cache. This matches the original XIP code.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Some filesystems cannot call dax_fault() directly because they have
different locking and/or allocation constraints in the page fault IO
path. To handle this, we need to follow the same model as the
generic block_page_mkwrite code, where the internals are exposed via
__block_page_mkwrite() so that filesystems can wrap the correct
locking and operations around the outside.
This is loosely based on a patch originally from Matthew Willcox.
Unlike the original patch, it does not change ext4 code, error
returns or unwritten extent conversion handling. It also adds a
__dax_mkwrite() wrapper for .page_mkwrite implementations to do the
right thing, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
dax_fault() currently relies on the get_block callback to attach an
io completion callback to the mapping buffer head so that it can
run unwritten extent conversion after zeroing allocated blocks.
Instead of this hack, pass the conversion callback directly into
dax_fault() similar to the get_block callback. When the filesystem
allocates unwritten extents, it will set the buffer_unwritten()
flag, and hence the dax_fault code can call the completion function
in the contexts where it is necessary without overloading the
mapping buffer head.
Note: The changes to ext4 to use this interface are suspect at best.
In fact, the way ext4 did this end_io assignment in the first place
looks suspect because it only set a completion callback when there
wasn't already some other write() call taking place on the same
inode. The ext4 end_io code looks rather intricate and fragile with
all it's reference counting and passing to different contexts for
modification via inode private pointers that aren't protected by
locks...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.
For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:
clat percentiles (usec):
| 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34],
| 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35],
| 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80],
| 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155],
| 99.99th=[ 165]
After:
clat percentiles (usec):
| 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149],
| 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171],
| 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270],
| 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422],
| 99.99th=[ 438]
In other setups, Robert Elliott reported seeing good performance
improvements:
https://lkml.org/lkml/2015/4/3/557
The more applications accessing the device, the worse it gets.
Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull third hunk of vfs changes from Al Viro:
"This contains the ->direct_IO() changes from Omar + saner
generic_write_checks() + dealing with fcntl()/{read,write}() races
(mirroring O_APPEND/O_DIRECT into iocb->ki_flags and instead of
repeatedly looking at ->f_flags, which can be changed by fcntl(2),
check ->ki_flags - which cannot) + infrastructure bits for dhowells'
d_inode annotations + Christophs switch of /dev/loop to
vfs_iter_write()"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (30 commits)
block: loop: switch to VFS ITER_BVEC
configfs: Fix inconsistent use of file_inode() vs file->f_path.dentry->d_inode
VFS: Make pathwalk use d_is_reg() rather than S_ISREG()
VFS: Fix up debugfs to use d_is_dir() in place of S_ISDIR()
VFS: Combine inode checks with d_is_negative() and d_is_positive() in pathwalk
NFS: Don't use d_inode as a variable name
VFS: Impose ordering on accesses of d_inode and d_flags
VFS: Add owner-filesystem positive/negative dentry checks
nfs: generic_write_checks() shouldn't be done on swapout...
ocfs2: use __generic_file_write_iter()
mirror O_APPEND and O_DIRECT into iocb->ki_flags
switch generic_write_checks() to iocb and iter
ocfs2: move generic_write_checks() before the alignment checks
ocfs2_file_write_iter: stop messing with ppos
udf_file_write_iter: reorder and simplify
fuse: ->direct_IO() doesn't need generic_write_checks()
ext4_file_write_iter: move generic_write_checks() up
xfs_file_aio_write_checks: switch to iocb/iov_iter
generic_write_checks(): drop isblk argument
blkdev_write_iter: expand generic_file_checks() call in there
...
From: Yigal Korman <yigal@plexistor.com>
[v1]
Without this patch, c/mtime is not updated correctly when mmap'ed page is
first read from and then written to.
A new xfstest is submitted for testing this (generic/080)
[v2]
Jan Kara has pointed out that if we add the
sb_start/end_pagefault pair in the new pfn_mkwrite we
are then fixing another bug where: A user could start
writing to the page while filesystem is frozen.
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Boaz Harrosh <boaz@plexistor.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This new function allows us to support hole-punch for DAX files by zeroing
a partial page, as opposed to the dax_truncate_page() function which can
only truncate to the end of the page. Reimplement dax_truncate_page() to
call dax_zero_page_range().
[ross.zwisler@linux.intel.com: ported to 3.13-rc2]
[akpm@linux-foundation.org: fix typos in comments]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It takes a get_block parameter just like nobh_truncate_page() and
block_truncate_page()
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling aops->get_xip_mem from the fault handler, the
filesystem passes a get_block_t that is used to find the appropriate
blocks.
This requires that all architectures implement copy_user_page(). At the
time of writing, mips and arm do not. Patches exist and are in progress.
[akpm@linux-foundation.org: remap_file_pages went away]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is practically generic code; other filesystems will want to call it
from other places, but there's nothing ext2-specific about it.
Make it a little more generic by allowing it to take a count of the number
of bytes to zero rather than fixing it to a single page. Thanks to Dave
Hansen for suggesting that I need to call cond_resched() if zeroing more
than one page.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the generic AIO infrastructure instead of custom read and write
methods. In addition to giving us support for AIO, this adds the missing
locking between read() and truncate().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>